1
|
Hofmann BJ, Aljohani ET, Cicovacki N, Lee I, Warren DT, Sobolewski A, Stringer T, Lord RM. Ferrocenyl β-Diketonate Compounds: Extended Ring Systems for Improved Anticancer Activity. Chembiochem 2024:e202400759. [PMID: 39446339 DOI: 10.1002/cbic.202400759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A library of ferrocenyl β-diketonate compounds with varying degrees of aromatic functionality have been synthesized and fully characterized. This includes cyclic voltammetry and the analysis of four new structures by single crystal X-ray diffraction. The compounds cytotoxic potential has been determined by MTT screening against pancreatic carcinoma (MIA PaCa-2), ovarian adenocarcinoma (A2780), breast adenocarcinomas (MDA-MB-231 and MCF-7) and normal epithelial retinal (ARPE-19). The compounds show a general trend, where increasing the number of aromatic rings in the molecule yields an increase in cytotoxicity and follows the trend anthracenyl>naphthyl>phenyl>methyl. The compounds are particularly sensitive to the triple negative cancer cell line MDA-MB-231, and the potential modes of action have been studied by production of reactive oxygen species using fluorescence microscopy and cell morphology using Scanning Electron Microscopy. All assays highlight the ferrocenyl β-diketonate with an anthracenyl substituent to be the lead compound in this library. The decomposition of this compound was also observed within cells, yielding a cytotoxic fluorescent molecule, which has been visualized by confocal microscopy.
Collapse
Affiliation(s)
- Benjamin J Hofmann
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7SH, UK
| | - Enas T Aljohani
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Natalia Cicovacki
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Ivan Lee
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Derek T Warren
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Anastasia Sobolewski
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Tameryn Stringer
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- School of Chemistry, University of Waikato, Hamilton, 3240, New Zealand
| | - Rianne M Lord
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7SH, UK
| |
Collapse
|
2
|
Sindhu M, Kalaivani P, Prabusankar G, Sivasamy R, Prabhakaran R. Preparation of new organo-ruthenium(II) complexes and their nucleic acid/albumin binding efficiency and in vitro cytotoxicity studies. Dalton Trans 2024; 53:3075-3096. [PMID: 38235791 DOI: 10.1039/d3dt04017h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hetero-bimetallic ruthenium(II) complexes (PRAFIZ and PRBFIZ) containing acetyl ferrocene (AFIZ)/benzoyl ferrocene isonicotinic hydrazone ligands (BFIZ) were synthesized and characterized by various spectral and analytical techniques. The structure of acetyl ferrocene isonicotinic hydrazone (AFIZ) and the complex PRBFIZ was confirmed by X-ray crystallography. The hydrazide ligands coordinated in a bidentate monobasic fashion using their N1 hydrazinic nitrogen and enolic oxygen atoms. The binding interactions of the ligands and complexes were examined using Calf-Thymus DNA (CT-DNA) and bovine serum albumin (BSA). Scanning Electron Microscopic (SEM) experiments clarified the efficient binding interaction of the ligands and complexes with BSA. The results of in vitro cytotoxicity studies on MDA-MB-261 breast cancer cells and A549 human lung cancer cells and cell morphological analysis results through staining assays clearly indicated the cytotoxic nature of the complexes.
Collapse
Affiliation(s)
- M Sindhu
- Department of Chemistry, Nirmala College for Women, Bharathiar University, Coimbatore 641 018, India.
| | - P Kalaivani
- Department of Chemistry, Nirmala College for Women, Bharathiar University, Coimbatore 641 018, India.
| | - G Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502 285, India
| | - R Sivasamy
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, India
| | - R Prabhakaran
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
3
|
Faubert L, Arman HD, Adrian RA. Aqua-bis-(2,2'-bi-pyridine-κ 2N, N')(isonicotinamide-κ N)ruthenium(II) bis-(trifluoromethanesulfonate). IUCRDATA 2024; 9:x240114. [PMID: 38455113 PMCID: PMC10915547 DOI: 10.1107/s2414314624001147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
In the title complex, [Ru(C10H8N2)2(C6H6N2O)(H2O)](CF3SO3)2, the central RuII atom is sixfold coordinated by two bidentate 2,2'-bi-pyridine, an isonic-otinamide ligand, and a water mol-ecule in a distorted octa-hedral environment with tri-fluoro-methane-sulfonate ions completing the outer coordination sphere of the complex. Hydrogen bonding involving the water mol-ecule and weak π-π stacking inter-actions between the pyridyl rings in adjacent mol-ecules contribute to the alignment of the complexes in columns parallel to the c axis.
Collapse
Affiliation(s)
- Liam Faubert
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, Texas 78209, USA
| | - Hadi D. Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Rafael A. Adrian
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, Texas 78209, USA
| |
Collapse
|
4
|
Allison M, Caramés-Méndez P, Hofmann BJ, Pask CM, Phillips RM, Lord RM, McGowan PC. Cytotoxicity of Ruthenium(II) Arene Complexes Containing Functionalized Ferrocenyl β-Diketonate Ligands. Organometallics 2023; 42:1869-1881. [PMID: 37592952 PMCID: PMC10428205 DOI: 10.1021/acs.organomet.2c00553] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 08/19/2023]
Abstract
The synthesis and characterization of 24 ruthenium(II) arene complexes of the type [(p-cym)RuCl(Fc-acac)] (where p-cym = p-cymene and Fc-acac = functionalized ferrocenyl β-diketonate ligands) are reported, including single-crystal X-ray diffraction for 21 new complexes. Chemosensitivity studies have been conducted against human pancreatic carcinoma (MIA PaCa-2), human colorectal adenocarcinoma p53-wildtype (HCT116 p53+/+) and normal human retinal epithelial cell lines (APRE-19). The most active complex, which contains a 2-furan-substituted ligand (4), is 5x more cytotoxic than the analogs 3-furan complex (5) against MIA PaCa-2. Several complexes were screened under hypoxic conditions and at shorter-time incubations, and their ability to damage DNA was determined by the comet assay. Compounds were also screened for their potential to inhibit the growth of both bacterial and fungal strains.
Collapse
Affiliation(s)
- Matthew Allison
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Pablo Caramés-Méndez
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
- Department
of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, U.K.
| | - Benjamin J. Hofmann
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
| | - Christopher M. Pask
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Roger M. Phillips
- Department
of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, U.K.
| | - Rianne M. Lord
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, U.K.
| | - Patrick C. McGowan
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
5
|
Camacho C, Maciel D, Tomás H, Rodrigues J. Biological Effects in Cancer Cells of Mono- and Bidentate Conjugation of Cisplatin on PAMAM Dendrimers: A Comparative Study. Pharmaceutics 2023; 15:pharmaceutics15020689. [PMID: 36840012 PMCID: PMC9960565 DOI: 10.3390/pharmaceutics15020689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum(II)) is a potent chemotherapeutic agent commonly used to treat cancer. However, its use also leads to serious side effects, such as nephrotoxicity, ototoxicity, and cardiotoxicity, which limit the dose that can be safely administered to patients. To minimize these problems, dendrimers may be used as carriers for cisplatin through the coordination of their terminal functional groups to platinum. Here, cisplatin was conjugated to half-generation anionic PAMAM dendrimers in mono- and bidentate forms, and their biological effects were assessed in vitro. After preparation and characterization of the metallodendrimers, their cytotoxicity was evaluated against several cancer cell lines (A2780, A2780cisR, MCF-7, and CACO-2 cells) and a non-cancer cell line (BJ cells). The results showed that all the metallodendrimers were cytotoxic and that the cytotoxicity level depended on the cell line and the type of coordination mode (mono- or bidentate). Although, in this study, a correlation between dendrimer generation (number of carried metallic fragments) and cytotoxicity could not be completely established, the monodentate coordination form of cisplatin resulted in lower IC50 values, thus revealing a more accessible cisplatin release from the dendritic scaffold. Moreover, most of the metallodendrimers were more potent than the cisplatin, especially for the A2780 and A2780cisR cell lines, which showed higher selectivity than for non-cancer cells (BJ cells). The monodentate G0.5COO(Pt(NH3)2Cl)8 and G2.5COO(Pt(NH3)2Cl)32 metallodendrimers, as well as the bidentate G2.5COO(Pt(NH3)2)16 metallodendrimer, were even more active towards the cisplatin-resistant cell line (A2780cisR cells) than the correspondent cisplatin-sensitive one (A2780 cells). Finally, the effect of the metallodendrimers on the hemolysis of human erythrocytes was neglectable, and metallodendrimers' interaction with calf thymus DNA seemed to be stronger than that of free cisplatin.
Collapse
|
6
|
Lu Y, Zhu D, Le Q, Wang Y, Wang W. Ruthenium-based antitumor drugs and delivery systems from monotherapy to combination therapy. NANOSCALE 2022; 14:16339-16375. [PMID: 36341705 DOI: 10.1039/d2nr02994d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ruthenium complex is an important compound group for antitumor drug research and development. NAMI-A, KP1019, TLD1433 and other ruthenium complexes have entered clinical research. In recent years, the research on ruthenium antitumor drugs has not been limited to single chemotherapy drugs; other applications of ruthenium complexes have emerged such as in combination therapy. During the development of ruthenium complexes, drug delivery forms of ruthenium antitumor drugs have also evolved from single-molecule drugs to nanodrug delivery systems. The review summarizes the following aspects: (1) ruthenium complexes from monotherapy to combination therapy, including the development of single-molecule compounds, carrier nanomedicine, and self-assembly of carrier-free nanomedicine; (2) ruthenium complexes in the process of ADME in terms of absorption, distribution, metabolism and excretion; (3) the applications of ruthenium complexes in combination therapy, including photodynamic therapy (PDT), photothermal therapy (PTT), photoactivated chemotherapy (PACT), immunotherapy, and their combined application; (4) the future prospects of ruthenium-based antitumor drugs.
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| | - Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Quynh Le
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Wei Wang
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| |
Collapse
|
7
|
Gandioso A, Vidal A, Burckel P, Gasser G, Alessio E. Ruthenium(II) Polypyridyl Complexes Containing Simple Dioxo Ligands: a Structure-Activity Relationship Study Shows the Importance of the Charge. Chembiochem 2022; 23:e202200398. [PMID: 35924883 DOI: 10.1002/cbic.202200398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/04/2022] [Indexed: 01/07/2023]
Abstract
Cancer is one of the main causes of death worldwide. Platinum complexes (i. e., cisplatin, carboplatin, and others) are currently heavily used for the treatment of different types of cancer, but unwanted effects occur. Ruthenium complexes have been shown to be potential promising alternatives to these metal-based drugs. In this work, we performed a structure-activity relationship (SAR) study on two small series of Ru(II) polypyridyl complexes of the type [Ru(L1)2 (O^O)]Cln (3-8), where L1 is 4,7-diphenyl-1,10-phenantroline (DIP) or 1,10-phenantroline (phen), and O^O is a symmetrical anionic dioxo ligand: oxalate (ox, n=0), malonate (mal, n=0), or acetylacetonate (acac, n=1). These two self-consistent series of compounds allowed us to perform a systematic investigation for establishing how the nature of the ligands and the charge affect the anticancer properties of the complexes. Cytotoxicity tests on different cell lines demonstrated that some of the six compounds 3-8 have a promising anticancer activity. More specifically, the cationic complex [Ru(DIP)2 (η2 -acac)]Cl (4) has IC50 values in the mid-nanomolar concentration range, lower than those of cisplatin on the same cell lines. Interestingly, [Ru(DIP)2 (η2 -acac)]Cl was found to localize mainly in the mitochondria, whereas a smaller fraction was detected in the nucleus. Overall, our SAR investigation demonstrates the importance of combining the positive charge of the complex with the highly lipophilic diimine ligand DIP.
Collapse
Affiliation(s)
- Albert Gandioso
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Alessio Vidal
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy
| | - Pierre Burckel
- Université de Paris, Institut de physique du globe de Paris, CNRS, 75005, Paris, France.,Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-, 75005, Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Enzo Alessio
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy
| |
Collapse
|
8
|
Antiproliferative Ruthenium Complexes Containing Curcuminoid Ligands Tested In Vitro on Human Ovarian Tumor Cell Line A2780, towards Their Capability to Modulate the NF-κBTranscription Factor, FGF-2 Growth Factor, and MMP-9 Pathway. Molecules 2022; 27:molecules27144565. [PMID: 35889441 PMCID: PMC9322753 DOI: 10.3390/molecules27144565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
So far, the polyphenolic components of turmeric have shown a significant pharmacological preventative activity for a wide spectrum of diseases, including oncological disorders. This type of natural product could be of great interest for the inhibition of cancer cell proliferation, displaying less side effects in comparison to classical chemotherapeutics. The poor bioavailability and quick metabolism of such natural compounds require new investigative methods to improve their stability in the organisms. A synthetic approach to increase the efficiency of curcuminoids is to coordinate them to metals through the beta-dicarbonyl moiety. We report the synthesis and the biological attempts on human ovarian carcinoma A2780 of ruthenium(II) complexes 1–4, containing curcuminoid ligands. The cytotoxicity of complexes 1–4 proves their antiproliferative capability, and a correlation between the IC50 values and NF-κB transcription factor, FGF-2, and MMP-9 levels was figured out through the principal component analysis (PCA).
Collapse
|
9
|
Jiao YP, Zhou WY, Shi HY, Jia AQ, Zhang QF. Syntheses, crystal structures, and electrochemistry of a series of ferrocene-containing ketoimines. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2081079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yan-Ping Jiao
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan, Anhui, PR China
| | - Wen-Yan Zhou
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan, Anhui, PR China
| | - Hao-Yu Shi
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan, Anhui, PR China
| | - Ai-Quan Jia
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan, Anhui, PR China
| | - Qian-Feng Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan, Anhui, PR China
| |
Collapse
|
10
|
Hu Y, Gao S, Khan AR, Yang X, Ji J, Xi Y, Zhai G. Tumor microenvironment-responsive size-switchable drug delivery nanosystems. Expert Opin Drug Deliv 2022; 19:221-234. [PMID: 35164610 DOI: 10.1080/17425247.2022.2042512] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Compared with ordinary chemotherapeutic drugs, the variable-size nanoparticles (NPs) have better therapeutic effects and fewer side effects. AREAS COVERED This review mainly summarizes the strategies used to construct smart, size-tunable nanocarriers based on characteristic factors of tumor microenvironment (TME) to dramatically increase the penetration and retention of drugs within tumors. EXPERT OPINION Nanosystems with changeable sizes based on the TME have been extensively studied in the past decade, and their permeability and retention have been greatly improved, making them a very promising treatment for tumors.
Collapse
Affiliation(s)
- Yue Hu
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Shan Gao
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Abdur Rauf Khan
- Government of Punjab, Specialized HealthCare and Medical Education Department, Lahore, Pakistan
| | - Xiaoye Yang
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Yanwei Xi
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| |
Collapse
|
11
|
Gupta S, Vandevord JM, Loftus LM, Toupin N, Al-Afyouni MH, Rohrabaugh TN, Turro C, Kodanko JJ. Ru(II)-Based Acetylacetonate Complexes Induce Apoptosis Selectively in Cancer Cells. Inorg Chem 2021; 60:18964-18974. [PMID: 34846875 DOI: 10.1021/acs.inorgchem.1c02796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The synthesis, chemical and biological characterization of seven Ru(II) polypyridyl complexes containing acetylacetonate (acac) ligands are reported. Electronic absorption spectra were determined and electrochemical potentials consistent with Ru(III/II) couples ranging from +0.60 to +0.73 V vs Ag/AgCl were measured. A series of complexes were screened against MDA-MB-231, DU-145, and MCF-10A cell lines to evaluate their cytotoxicities in cancer and normal cell lines. Although most complexes were either nontoxic or equipotent in cancer cells and normal cell lines, compound 1, [Ru(dpqy)(acac)(py)](PF6), where dqpy is 2,6-di(quinolin-2-yl)pyridine, showed up to 2.5:1.0 selectivity for cancer as compared to normal cells, along with nanomolar EC50 values in MDA-MB-231 cells. Lipophilicity, determined as the octanol/water partition coefficient, log Po/w, ranged from -0.33 (0.06) to 1.15 (0.10) for the complexes. Although cytotoxicity was not correlated with electrochemical potentials, a moderate linear correlation between lipophilicity and toxicities was observed. Cell death mechanism studies indicated that several of the Ru-acac compounds, including 1, induce apoptosis in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Sayak Gupta
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Jessica M Vandevord
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lauren M Loftus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas Toupin
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Malik H Al-Afyouni
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas N Rohrabaugh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
12
|
Ryan RT, Havrylyuk D, Stevens KC, Moore LH, Parkin S, Blackburn JS, Heidary DK, Selegue JP, Glazer EC. Biological Investigations of Ru(II) Complexes With Diverse β-diketone Ligands. Eur J Inorg Chem 2021; 2021:3611-3621. [PMID: 34539235 PMCID: PMC8447810 DOI: 10.1002/ejic.202100468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 02/04/2023]
Abstract
The β-diketone scaffold is a commonly used synthetic intermediate, and is a functional group found in natural products such as curcuminoids. This core structure can also act as a chelating ligand for a variety of metals. In order to assess the potential of this scaffold for medicinal inorganic chemistry, seven different κ2-O,O'-chelating ligands were used to construct Ru(II) complexes with polypyridyl co-ligands, and their biological activity was evaluated. The complexes demonstrated promising structure-dependent cytotoxicity. Three complexes maintained high activity in a tumor spheroid model, and all complexes demonstrated low in vivo toxicity in a zebrafish model. From this series, the best compound exhibited a ~ 30-fold window between cytotoxicity in a 3-D tumor spheroid model and potential in vivo toxicity. These results suggest that κ2-O,O'-ligands can be incorporated into Ru(II)-polypyridyl complexes to create favorable candidates for future drug development.
Collapse
Affiliation(s)
- Raphael T Ryan
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, USA
| | - Dmytro Havrylyuk
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, USA
| | - Kimberly C Stevens
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, USA
| | - L Henry Moore
- University of Kentucky, Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, USA
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, USA
| | - Jessica S Blackburn
- University of Kentucky, Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, USA
| | - David K Heidary
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, USA
| | - John P Selegue
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, USA
| | - Edith C Glazer
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, USA
| |
Collapse
|
13
|
Lin Y, Betts H, Keller S, Cariou K, Gasser G. Recent developments of metal-based compounds against fungal pathogens. Chem Soc Rev 2021; 50:10346-10402. [PMID: 34313264 DOI: 10.1039/d0cs00945h] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review provides insight into the rapidly expanding field of metal-based antifungal agents. In recent decades, the antibacterial resistance crisis has caused reflection on many aspects of public health where weaknesses in our medicinal arsenal may potentially be present - including in the treatment of fungal infections, particularly in the immunocompromised and those with underlying health conditions where mortality rates can exceed 50%. Combination of organic moieties with known antifungal properties and metal ions can lead to increased bioavailability, uptake and efficacy. Development of such organometallic drugs may alleviate pressure on existing antifungal medications. Prodigious antimicrobial moieties such as azoles, Schiff bases, thiosemicarbazones and others reported herein lend themselves easily to the coordination of a host of metal ions, which can vastly improve the biocidal activity of the parent ligand, thereby extending the library of antifungal drugs available to medical professionals for treatment of an increasing incidence of fungal infections. Overall, this review shows the impressive but somewhat unexploited potential of metal-based compounds to treat fungal infections.
Collapse
Affiliation(s)
- Yan Lin
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Harley Betts
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Sarah Keller
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| |
Collapse
|
14
|
Camacho C, Tomás H, Rodrigues J. Use of Half-Generation PAMAM Dendrimers (G0.5–G3.5) with Carboxylate End-Groups to Improve the DACHPtCl2 and 5-FU Efficacy as Anticancer Drugs. Molecules 2021. [DOI: https://doi.org/10.3390/molecules26102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DACHPtCl2 compound (trans-(R,R)-1,2-diaminocyclohexanedichloroplatinum(II)) is a potent anticancer drug with a broad spectrum of activity and is less toxic than oxaliplatin (trans-l-diaminocyclohexane oxalate platinum II), with which it shares the active metal fragment DACHPt. Nevertheless, due to poor water solubility, its use as a chemotherapeutic drug is limited. Here, DACHPtCl2 was conjugated, in a bidentate form, with half-generation PAMAM dendrimers (G0.5–G3.5) with carboxylate end-groups, and the resulting conjugates were evaluated against various types of cancer cell lines. In this way, we aimed at increasing the solubility and availability at the target site of DACHPt while potentially reducing the adverse side effects. DNA binding assays showed a hyperchromic effect compatible with DNA helix’s disruption upon the interaction of the metallodendrimers and/or the released active metallic fragments with DNA. Furthermore, the prepared DACHPt metallodendrimers presented cytotoxicity in a wide set of cancer cell lines used (the relative potency regarding oxaliplatin was in general high) and were not hemotoxic. Importantly, their selectivity for A2780 and CACO-2 cancer cells with respect to non-cancer cells was particularly high. Subsequently, the anticancer drug 5-FU was loaded in a selected metallodendrimer (the G2.5COO(DACHPt)16) to investigate a possible synergistic effect between the two drugs carried by the same dendrimer scaffold and tested for cytotoxicity in A2780cisR and CACO-2 cancer cell lines. This combination resulted in IC50 values much lower than the IC50 for 5-FU but higher than those found for the metallodendrimers without 5-FU. It seems, thus, that the metallic fragment-induced cytotoxicity dominates over the cytotoxicity of 5-FU in the set of considered cell lines.
Collapse
|
15
|
Camacho C, Tomás H, Rodrigues J. Use of Half-Generation PAMAM Dendrimers (G0.5-G3.5) with Carboxylate End-Groups to Improve the DACHPtCl 2 and 5-FU Efficacy as Anticancer Drugs. Molecules 2021; 26:2924. [PMID: 34069054 PMCID: PMC8156256 DOI: 10.3390/molecules26102924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
The DACHPtCl2 compound (trans-(R,R)-1,2-diaminocyclohexanedichloroplatinum(II)) is a potent anticancer drug with a broad spectrum of activity and is less toxic than oxaliplatin (trans-l-diaminocyclohexane oxalate platinum II), with which it shares the active metal fragment DACHPt. Nevertheless, due to poor water solubility, its use as a chemotherapeutic drug is limited. Here, DACHPtCl2 was conjugated, in a bidentate form, with half-generation PAMAM dendrimers (G0.5-G3.5) with carboxylate end-groups, and the resulting conjugates were evaluated against various types of cancer cell lines. In this way, we aimed at increasing the solubility and availability at the target site of DACHPt while potentially reducing the adverse side effects. DNA binding assays showed a hyperchromic effect compatible with DNA helix's disruption upon the interaction of the metallodendrimers and/or the released active metallic fragments with DNA. Furthermore, the prepared DACHPt metallodendrimers presented cytotoxicity in a wide set of cancer cell lines used (the relative potency regarding oxaliplatin was in general high) and were not hemotoxic. Importantly, their selectivity for A2780 and CACO-2 cancer cells with respect to non-cancer cells was particularly high. Subsequently, the anticancer drug 5-FU was loaded in a selected metallodendrimer (the G2.5COO(DACHPt)16) to investigate a possible synergistic effect between the two drugs carried by the same dendrimer scaffold and tested for cytotoxicity in A2780cisR and CACO-2 cancer cell lines. This combination resulted in IC50 values much lower than the IC50 for 5-FU but higher than those found for the metallodendrimers without 5-FU. It seems, thus, that the metallic fragment-induced cytotoxicity dominates over the cytotoxicity of 5-FU in the set of considered cell lines.
Collapse
Affiliation(s)
- Cláudia Camacho
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal; (C.C.); (H.T.)
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal; (C.C.); (H.T.)
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal; (C.C.); (H.T.)
- School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
16
|
Vidal A, Calligaro R, Gasser G, Alberto R, Balducci G, Alessio E. cis-Locked Ru(II)-DMSO Precursors for the Microwave-Assisted Synthesis of Bis-Heteroleptic Polypyridyl Compounds. Inorg Chem 2021; 60:7180-7195. [PMID: 33908778 PMCID: PMC8154425 DOI: 10.1021/acs.inorgchem.1c00240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We describe a synthetic
strategy for the preparation of bis-heteroleptic
polypyridyl Ru(II) complexes of the type [Ru(L1)2(L2)]2+ (L1 and L2 = diimine ligands) from well-defined Ru(II) precursors.
For this purpose, a series of six neutral, anionic, and cationic cis-locked Ru(II)-DMSO complexes (2–7) of the general formula [Y] fac-[RuX(DMSO–S)3(O–O)]n (where O–O
is a symmetrical chelating anion: oxalate (ox), malonate (mal), acetylacetonate
(acac); X = DMSO–O or Cl–; n = −1/0/+1 depending on the nature and charge of X and O–O;
when present, Y = K+ or PF6–) were efficiently prepared from the well-known cis-[RuCl2(DMSO)4] (1). When treated
with diimine chelating ligands (L1 = bpy, phen, dpphen), the compounds 2–7 afforded the target [Ru(L1)2(O–O)]0/+ complex together with the undesired (and
unexpected) [Ru(L1)3]2+ species. Nevertheless,
we found that the formation of [Ru(L1)3]2+can
be minimized by carefully adjusting the reaction conditions: in particular,
high selectivity toward [Ru(L1)2(O–O)]0/+ and almost complete conversion of the precursor was obtained within
minutes, also on a 100–200 mg scale, when the reactions were
performed in absolute ethanol at 150 °C in a microwave reactor.
Depending on the nature of L1 and concentration, with the oxalate
and malonate precursors, the neutral product [Ru(L1)2(O–O)]
can precipitate spontaneously from the final mixture, in pure form
and acceptable-to-good yields. When spontaneous precipitation of the
disubstituted product does not occur, purification from [Ru(L1)3]2+ can be rather easily accomplished by column
chromatography or solvent extraction. By comparison, under the same
conditions, compound 1 is much less selective, thus demonstrating
that locking the geometry of the precursor through the introduction
of O–O in the coordination sphere of Ru is a valid strategic
approach. By virtue of its proton-sensitive nature, facile and quantitative
replacement of O–O in [Ru(L1)2(O–O)]0/+ by L2, selectively affording [Ru(L1)2(L2)]2+, was accomplished in refluxing ethanol in the presence of
a slight excess of trifluoroacetic acid or HPF6. cis-Locked Ru(II)-DMSO
complexes bearing
a symmetrical chelating anion, such as [K] fac-[RuCl(DMSO−S)3(η2-mal)] (2), are suitable
precursors for the two-step selective preparation of bis-heteroleptic
polypyridyl compounds of the type [Ru(L1)2(L2)]2+ (L1 and L2 = diimine ligands).
Collapse
Affiliation(s)
- Alessio Vidal
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Rudy Calligaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 75005 Paris, France
| | - Roger Alberto
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Gabriele Balducci
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Enzo Alessio
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|