1
|
Choroba K, Palion-Gazda J, Penkala M, Rawicka P, Machura B. Tunability of triplet excited states and photophysical behaviour of bis-cyclometalated iridium(III) complexes with imidazo[4,5- f][1,10]phenanthroline. Dalton Trans 2024. [PMID: 39432269 DOI: 10.1039/d4dt01996b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
This is a comprehensive study of the photophysical behaviour of heteroleptic iridium(III) complexes with imidazo[4,5-f][1,10]phenanthroline (imphen) as an ancillary ligand, represented by the general formula [Ir(N∩C)2(imphen)]PF6. As cyclometalating ligands, 2-phenylpyridine (Hppy), 2-phenylquinoline (Hpquin), 2-phenylbenzothiazole (Hpbztz), and 2-(2-pyridyl)benzothiophene (pybzthH) were used. The impact of structural modifications of cyclometalating ligands was widely explored by a combination of steady-state and time-resolved optical techniques accompanied by theoretical calculations. We evidenced that the cyclometalating ligands induce essential changes in the nature of the emissive excited state and the emission characteristics of [Ir(N∩C)2(imphen)]PF6. While the complex [Ir(ppy)2(imphen)]PF6 (1) is a typical 3MLLCT emitter, the lowest triplet states of [Ir(pquin)2(imphen)]PF6 (2), [Ir(pbztz)2(imphen)]PF6 (3) and [Ir(pybzth)2(imphen)]PF6 (4) have a predominant 3LCN∩C character. The phosphorescence colour of the investigated Ir(III) complexes changes from greenish-yellow to red, their quantum yields vary from 56 to 2%, and their triplet excited-state lifetimes fall in the 743-3840 ns range. The highest photoluminescence quantum yield was revealed for 2 in CH2Cl2, while complex 3 in MeCN shows the most pronounced increase in the lifetime. Both complexes 2 and 3 show an increased efficiency of singlet oxygen generation. The herein discussed structure-property relationships are of high significance for controlling photoinduced processes in heteroleptic iridium(III) complexes with the imphen-based ancillary ligand, and making further progress in effectively tuning the emission energies, quantum yields and excited-state lifetimes of these systems by structural modifications of cyclometalating ligands, especially the π-conjugation, the position of the N-donor and the presence of sulfur heteroatoms.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Joanna Palion-Gazda
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Mateusz Penkala
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Patrycja Rawicka
- Institute of Physics, Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Barbara Machura
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| |
Collapse
|
2
|
Alkhaibari I, Zhang X, Zhao J, Stonelake TM, Knighton RC, Horton PN, Coles SJ, Buurma NJ, Richards E, Pope SJA. Tuning Excited State Character in Iridium(III) Photosensitizers and Its Influence on TTA-UC. Inorg Chem 2024; 63:9931-9940. [PMID: 38738860 PMCID: PMC11134496 DOI: 10.1021/acs.inorgchem.4c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
A series of mixed ligand, photoluminescent organometallic Ir(III) complexes have been synthesized to incorporate substituted 2-phenyl-1H-naphtho[2,3-d]imidazole cyclometalating ligands. The structures of three example complexes were categorically confirmed using X-ray crystallography each sharing very similar structural traits including evidence of interligand hydrogen bond contacts that account for the shielding effects observed in the 1H NMR spectra. The structural iterations of the cyclometalated ligand provide tuning of the principal electronic transitions that determine the visible absorption and emission properties of the complexes: emission can be tuned in the visible region between 550 and 610 nm and with triplet lifetimes up to 10 μs. The nature of the emitting state varies across the series of complexes, with different admixtures of ligand-centered and metal-to-ligand charge transfer triplet levels evident. Finally, the use of the complexes as photosensitizers in triplet-triplet annihilation energy upconversion (TTA-UC) was investigated in the solution state. The study showed that the complexes possessing the longest triplet lifetimes showed good viability as photosensitizers in TTA-UC. Therefore, the use of an electron-withdrawing group on the 2-phenyl-1H-naphtho[2,3-d]imidazole ligand framework can be used to rationally promote TTA-UC using this class of complex.
Collapse
Affiliation(s)
- Ibrahim
S. Alkhaibari
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
- Department
of Chemistry, College of Science, Qassim
University, Buraydah 52571, Saudi Arabia
| | - Xue Zhang
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jianzhang Zhao
- State
Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart
Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Thomas M. Stonelake
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| | - Richard C. Knighton
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Peter N. Horton
- UK
National Crystallographic Service, Chemistry, Faculty of Natural and
Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Simon J. Coles
- UK
National Crystallographic Service, Chemistry, Faculty of Natural and
Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Niklaas J. Buurma
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| | - Emma Richards
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| | - Simon J. A. Pope
- School
of Chemistry, Main Building, Cardiff University, Cardiff, Cymru/Wales CF10 3AT, U.K.
| |
Collapse
|
3
|
Payce EN, Knighton RC, Platts JA, Horton PN, Coles SJ, Pope SJA. Luminescent Pt(II) Complexes Using Unsymmetrical Bis(2-pyridylimino)isoindolate Analogues. Inorg Chem 2024; 63:8273-8285. [PMID: 38656154 PMCID: PMC11080048 DOI: 10.1021/acs.inorgchem.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
A series of ligands based upon a 1,3-diimino-isoindoline framework have been synthesized and investigated as pincer-type (N∧N∧N) chelates for Pt(II). The synthetic route allows different combinations of heterocyclic moieties (including pyridyl, thiazole, and isoquinoline) to yield new unsymmetrical ligands. Pt(L1-6)Cl complexes were obtained and characterized using a range of spectroscopic and analytical techniques: 1H and 13C NMR, IR, UV-vis and luminescence spectroscopies, elemental analyses, high-resolution mass spectrometry, electrochemistry, and one example via X-ray crystallography which showed a distorted square planar environment at Pt(II). Cyclic voltammetry on the complexes showed one irreversible oxidation between +0.75 and +1 V (attributed to Pt2+/3+ couple) and a number of ligand-based reductions; in four complexes, two fully reversible reductions were noted between -1.4 and -1.9 V. Photophysical studies showed that Pt(L1-6)Cl absorbs efficiently in the visible region through a combination of ligand-based bands and metal-to-ligand charge-transfer features at 400-550 nm, with assignments supported by DFT calculations. Excitation at 500 nm led to luminescence (studied in both solutions and solid state) in all cases with different combinations of the heterocyclic donors providing tuning of the emission wavelength around 550-678 nm.
Collapse
Affiliation(s)
- Ellie N Payce
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, U.K
| | - Richard C Knighton
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, U.K
| | - James A Platts
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, U.K
| | - Peter N Horton
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, England, U.K
| | - Simon J Coles
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, England, U.K
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, U.K
| |
Collapse
|
4
|
Stokes EC, Shoetan IO, Gillman AM, Horton PN, Coles SJ, Woodbury SE, Fallis IA, Pope SJA. Alkyl chain functionalised Ir(iii) complexes: synthesis, properties and behaviour as emissive dopants in microemulsions. RSC Adv 2024; 14:6987-6997. [PMID: 38414995 PMCID: PMC10897649 DOI: 10.1039/d3ra06764e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
Six iridium(iii) complexes of the general form [Ir(C^N)2(N^N)]X (where C^N = cyclometalating ligand; N^N = disubstituted 2,2'-bipyridine), and incorporating alkyl chains of differing lengths (C8, C10, C12), have been synthesised and characterised. The complexes have been characterised using a variety of methods including spectroscopies (NMR, IR, UV-Vis, luminescence) and analytical techniques (high resolution mass spectrometry, cyclic voltammetry, X-ray diffraction). Two dodecyl-functionalised complexes were studied for their behaviour in aqueous solutions. Although the complexes did not possess sufficient solubility to determine their critical micelle concentrations (CMC) in water, they were amenable for use as emissive dopants in a N-methyl C12 substituted imidazolium salt microemulsion carrier system with a CMC = 36.5 mM. The investigation showed that the metal doped microemulsions had increased CMCs of 40.4 and 51.3 mM and luminescent properties characterised by the dopant.
Collapse
Affiliation(s)
- Emily C Stokes
- School of Chemistry, Cardiff University Main Building Cardiff CF10 3AT UK
| | - Ibrahim O Shoetan
- School of Chemistry, Cardiff University Main Building Cardiff CF10 3AT UK
| | - Alice M Gillman
- School of Chemistry, Cardiff University Main Building Cardiff CF10 3AT UK
| | - Peter N Horton
- Chemistry, UK National Crystallographic Service, Faculty of Natural and Environmental Sciences, University of Southampton Highfield Southampton SO17 1BJ England UK
| | - Simon J Coles
- Chemistry, UK National Crystallographic Service, Faculty of Natural and Environmental Sciences, University of Southampton Highfield Southampton SO17 1BJ England UK
| | - Simon E Woodbury
- National Nuclear Laboratory, Central Laboratory Sellafield, Seascale Cumbria CA20 1PG UK
| | - Ian A Fallis
- School of Chemistry, Cardiff University Main Building Cardiff CF10 3AT UK
| | - Simon J A Pope
- School of Chemistry, Cardiff University Main Building Cardiff CF10 3AT UK
| |
Collapse
|
5
|
Wang L, Wang X, Chen F, Song YQ, Nao SC, Chan DSH, Wong CY, Wang W, Leung CH. A glycyrrhetinic acid-iridium(III) conjugate as a theranostic NIR probe for hepatocellular carcinoma with mitochondrial-targeting ability. Eur J Med Chem 2024; 264:115995. [PMID: 38043488 DOI: 10.1016/j.ejmech.2023.115995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major contributor to global mortality rates, but current treatment options have limitations. Advanced theranostics are needed to effectively integrate diagnosis and therapeutic of HCC. Glycyrrhetinic acid (GA) has abundant binding sites with glycyrrhetinic acid receptors (GA-Rs) on the surface of HCC cells and has also been reported to possess ligands with mitochondrial-targeting capability but with limited efficacy. Herein, we report a near-infrared (NIR) luminescent theranostic complex 1 through conjugating an iridium(III) complex to GA, which exhibits the desired photophysical properties and promotes mitochondrial-targeting capability. Complex 1 was selectively taken up by HepG2 liver cancer cells and was imaged within mitochondria with NIR emission. Complex 1 targeted mitochondria and opened mitochondrial permeability transition pores (MPTPs), resulting in ROS accumulation, mitochondrial damage, disruption of Bax/Bcl-2 equilibrium, and tumor cell apoptosis, resulting in significantly improved anticancer activity compared to GA. This work offers a methodology for developing multifunctional theranostic probes with amplified specificity and efficacy.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Xueliang Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen, 518057, China
| | - Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Ying-Qi Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Sang-Cuo Nao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | | | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen, 518057, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao, 999078, China; Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao, 999078, China.
| |
Collapse
|
6
|
Knighton RC, Beames JM, Pope SJA. Polycationic Ru(II) Luminophores: Syntheses, Photophysics, and Application in Electrostatically Driven Sensitization of Lanthanide Luminescence. Inorg Chem 2023; 62:19446-19456. [PMID: 37984058 DOI: 10.1021/acs.inorgchem.3c02352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A series of photoluminescent Ru(II) polypyridine complexes have been synthesized in a manner that varies the extent of the cationic charge. Two ligand systems (L1 and L2), based upon 2,2'-bipyridine (bipy) mono- or difunctionalized at the 5- or 5,5'-positions using N-methylimidazolium groups, were utilized. The resulting Ru(II) species therefore carried +3, +4, +6, and +8 complex moieties based on a [Ru(bipy)3]2+ core. Tetra-cationic [Ru(bipy)2(L2)][PF6]4 was characterized using XRD, revealing H-bonding interactions between two of the counteranions and the cationic unit. The ground-state features of the complexes were found to closely resemble those of the parent unfunctionalized [Ru(bipy)3]2+ complex. In contrast, the excited state properties produce a variation in emission maxima, including a bathochromic 44 nm shift of the 3MLCT band for the tetra-cationic complex; interestingly, further increases in overall charge to +6 and +8 produced a hypsochromic shift in the 3MLCT band. Supporting DFT calculations suggest that the trend in emission behavior may, in part, be due to the precise nature of the LUMO and its localization. The utility of a photoactive polycationic Ru(II) complex was then demonstrated through the sensitization of a polyanionic Yb(III) complex in free solution. The study shows that electrostatically driven ion pairing is sufficient to facilitate energy transfer between the 3MLCT donor state of the Ru(II) complex and the accepting 2F5/2 excited state of Yb(III).
Collapse
Affiliation(s)
- Richard C Knighton
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, U.K
| | - Joseph M Beames
- School of Chemistry, University of Birmingham, Birmingham B152TT, England
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, U.K
| |
Collapse
|
7
|
Fitzgerald SA, Payce EN, Horton PN, Coles SJ, Pope SJA. 2-(Thienyl)quinoxaline derivatives and their application in Ir(III) complexes yielding tuneable deep red emitters. Dalton Trans 2023; 52:16480-16491. [PMID: 37874197 DOI: 10.1039/d3dt02193a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The synthesis and characterisation of eleven different 2-(thienyl)quinoxaline species that incorporate different points of functionality, including at the thiophene or quinoxaline rings, are described. These species display variable fluorescence properties in the visible region (λem = 401-491 nm) depending upon the molecular structures and extent of conjugation. The series of 2-(thienyl)quinoxaline species were then investigated as cyclometalating agents for Ir(III) to yield [Ir(C^N)2(bipy)]PF6 (where C^N = the cyclometalated ligand; bipy = 2,2'-bipyridine). Eight complexes were successfully isolated and fully characterised by an array of spectroscopic and analytical techniques. Two Ir(III) examples were structurally characterised in the solid state using single crystal X-ray diffraction; both structures confirmed the proposed formulations and coordination spheres in each case showing that the thiophene coordinates via a Ir-C bond. The photophysical properties of the complexes revealed that each complex is luminescent under ambient conditions with a range of emission wavelengths observed (665-751 nm) indicating that electronic tuning can be achieved via both the thienyl and quinoxaline moieties.
Collapse
Affiliation(s)
- Sophie A Fitzgerald
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK.
| | - Ellie N Payce
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK.
| | - Peter N Horton
- UK National Crystallographic Service, Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Simon J Coles
- UK National Crystallographic Service, Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, UK.
| |
Collapse
|
8
|
Zakharov AY, Kovalenko IV, Meshcheriakova EA, Nykhrikova EV, Zharova AO, Kiseleva MA, Kalle P, Tekshina EV, Kozyukhin SA, Emets VV, Bezzubov SI. The Effect of the Ancillary Ligand on Optical and Redox Properties of Cyclometalated Iridium(III) 2,5-Diphenyloxazole Complexes. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422700051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Wang Y, Wu Y, Liu C, Zhang J, Yan X. Mechanofluorochromism of 2-Biarylyl Cinchoninic Acids with High Sensitivity and Large Mechanochromic Shift. Chem Asian J 2022; 17:e202200592. [PMID: 35862099 DOI: 10.1002/asia.202200592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/03/2022] [Indexed: 11/09/2022]
Abstract
In recent years, organic mechanofluorochromism (MFC) materials have attracted wide attention in many fields. However, the exploration of MFC materials with high-contrast, high-sensitivity and high-responsiveness remains a challenge. Herein, a series of MFC materials with 2-biarylyl cinchoninic acid skeleton were successfully established, which are based on interconversion of classical/ frustrated Brönsted pairs. These compounds have the mechanochromic shift of up to 115 nm, as well as the property of stunning sensitivity and multiple responses to external mechanical force stimuli. The luminescence properties can be easily tuned by changing the substituents.
Collapse
Affiliation(s)
- Yedong Wang
- Renmin University of China, Chemistry, CHINA
| | - Yixin Wu
- Renmin University of China, Chemistry, CHINA
| | - Chang Liu
- Renmin University of China, Chemistry, CHINA
| | | | - Xiaoyu Yan
- Renmin University of China, Department of Chemistry, Renmin University of China, Beijing 100872, China, 100872, Beijing, CHINA
| |
Collapse
|
10
|
Wang C, Reichenauer F, Kitzmann WR, Kerzig C, Heinze K, Resch‐Genger U. Efficient Triplet-Triplet Annihilation Upconversion Sensitized by a Chromium(III) Complex via an Underexplored Energy Transfer Mechanism. Angew Chem Int Ed Engl 2022; 61:e202202238. [PMID: 35344256 PMCID: PMC9322448 DOI: 10.1002/anie.202202238] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 12/14/2022]
Abstract
Sensitized triplet-triplet annihilation upconversion (sTTA-UC) mainly relies on precious metal complexes thanks to their high intersystem crossing (ISC) efficiencies, excited state energies, and lifetimes, while complexes of abundant first-row transition metals are only rarely utilized and with often moderate UC quantum yields. [Cr(bpmp)2 ]3+ (bpmp=2,6-bis(2-pyridylmethyl)pyridine) containing earth-abundant chromium possesses an absorption band suitable for green light excitation, a doublet excited state energy matching the triplet energy of 9,10-diphenyl anthracene (DPA), a close to millisecond excited state lifetime, and high photostability. Combined ISC and doublet-triplet energy transfer from excited [Cr(bpmp)2 ]3+ to DPA gives 3 DPA with close-to-unity quantum yield. TTA of 3 DPA furnishes green-to-blue UC with a quantum yield of 12.0 % (close to the theoretical maximum). Sterically less-hindered anthracenes undergo a [4+4] cycloaddition with [Cr(bpmp)2 ]3+ and green light.
Collapse
Affiliation(s)
- Cui Wang
- Division BiophotonicsFederal Institute for Materials Research and Testing (BAM)Richard-Willstätter-Strasse 1112489BerlinGermany
- Institute of Chemistry and BiochemistryFree University of BerlinArnimallee 2214195BerlinGermany
| | - Florian Reichenauer
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Winald R. Kitzmann
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Christoph Kerzig
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Katja Heinze
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Ute Resch‐Genger
- Division BiophotonicsFederal Institute for Materials Research and Testing (BAM)Richard-Willstätter-Strasse 1112489BerlinGermany
| |
Collapse
|
11
|
Rational design of mitochondria targeted thiabendazole-based Ir(III) biscyclometalated complexes for a multimodal photodynamic therapy of cancer. J Inorg Biochem 2022; 231:111790. [DOI: 10.1016/j.jinorgbio.2022.111790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
|
12
|
Wang C, Reichenauer F, Kitzmann WR, Kerzig C, Heinze K, Resch‐Genger U. Efficient Triplet‐Triplet Annihilation Upconversion Sensitized by a Chromium(III) Complex via an Underexplored Energy Transfer Mechanism. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Cui Wang
- Division Biophotonics Federal Institute for Materials Research and Testing (BAM) Richard-Willstätter-Strasse 11 12489 Berlin Germany
- Institute of Chemistry and Biochemistry Free University of Berlin Arnimallee 22 14195 Berlin Germany
| | - Florian Reichenauer
- Department of Chemistry Johannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Winald R. Kitzmann
- Department of Chemistry Johannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Christoph Kerzig
- Department of Chemistry Johannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Katja Heinze
- Department of Chemistry Johannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Ute Resch‐Genger
- Division Biophotonics Federal Institute for Materials Research and Testing (BAM) Richard-Willstätter-Strasse 11 12489 Berlin Germany
| |
Collapse
|
13
|
Fitzgerald SA, Otaif HY, Elgar CE, Sawicka N, Horton PN, Coles SJ, Beames JM, Pope SJA. Polysubstituted Ligand Framework for Color Tuning Phosphorescent Iridium(III) Complexes. Inorg Chem 2021; 60:15467-15484. [PMID: 34605234 DOI: 10.1021/acs.inorgchem.1c02121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of ligands have been synthesized based upon a polysubstituted 2-phenylquinoxaline core structure. These ligands introduce different combinations of fluorine and methyl substituents on both the phenyl and quinoxaline constituent rings. The resultant investigation of these species as cyclometalating agents for Ir(III) gave cationic complexes of the form [Ir(C^N)2(bipy)]PF6 (where C^N = cyclometalating ligand; bipy = 2,2'-bipyridine). X-ray crystallographic studies were conducted on four complexes and each revealed the expected distorted octahedral geometry based upon a cis-C,C and trans-N,N ligand arrangement at Ir(III). Supporting computational studies predict that each of the complexes share the same general descriptions for the frontier orbitals. TD-DFT calculations suggest MLCT contributions to the lowest energy absorption and a likely MLCT/ILCT/LLCT nature to the emitting state. Experimentally, the complexes display tunable luminescence across the yellow-orange-red part of the visible spectrum (λem = 579-655 nm).
Collapse
Affiliation(s)
- Sophie A Fitzgerald
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| | - Haleema Y Otaif
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| | - Christopher E Elgar
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| | - Natalia Sawicka
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| | - Peter N Horton
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, England, United Kingdom
| | - Simon J Coles
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, England, United Kingdom
| | - Joseph M Beames
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| |
Collapse
|
14
|
Glaser F, Kerzig C, Wenger OS. Sensitization-initiated electron transfer via upconversion: mechanism and photocatalytic applications. Chem Sci 2021; 12:9922-9933. [PMID: 34349964 PMCID: PMC8317647 DOI: 10.1039/d1sc02085d] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Sensitization-initiated electron transfer (SenI-ET) describes a recently discovered photoredox strategy that relies on two consecutive light absorption events, triggering a sequence of energy and electron transfer steps. The cumulative energy input from two visible photons gives access to thermodynamically demanding reactions, which would be unattainable by single excitation with visible light. For this reason, SenI-ET has become a very useful strategy in synthetic photochemistry, but the mechanism has been difficult to clarify due to its complexity. We demonstrate that SenI-ET can operate via sensitized triplet-triplet annihilation upconversion, and we provide the first direct spectroscopic evidence for the catalytically active species. In our system comprised of fac-[Ir(ppy)3] as a light absorber, 2,7-di-tert-butylpyrene as an annihilator, and N,N-dimethylaniline as a sacrificial reductant, all photochemical reaction steps proceed with remarkable rates and efficiencies, and this system is furthermore suitable for photocatalytic aryl dehalogenations, pinacol couplings and detosylation reactions. The insights presented here are relevant for the further rational development of photoredox processes based on multi-photon excitation, and they could have important implications in the greater contexts of synthetic photochemistry and solar energy conversion.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Christoph Kerzig
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
15
|
Yang M, Sheykhi S, Zhang Y, Milsmann C, Castellano FN. Low power threshold photochemical upconversion using a zirconium(iv) LMCT photosensitizer. Chem Sci 2021; 12:9069-9077. [PMID: 34276936 PMCID: PMC8261719 DOI: 10.1039/d1sc01662h] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
The current investigation demonstrates highly efficient photochemical upconversion (UC) where a long-lived Zr(iv) ligand-to-metal charge transfer (LMCT) complex serves as a triplet photosensitizer in concert with well-established 9,10-diphenylanthracene (DPA) along with newly conceived DPA-carbazole based acceptors/annihilators in THF solutions. The initial dynamic triplet-triplet energy transfer (TTET) processes (ΔG ∼ -0.19 eV) featured very large Stern-Volmer quenching constants (K SV) approaching or achieving 105 M-1 with bimolecular rate constants between 2 and 3 × 108 M-1 s-1 as ascertained using static and transient spectroscopic techniques. Both the TTET and subsequent triplet-triplet annihilation (TTA) processes were verified and throughly investigated using transient absorption spectroscopy. The Stern-Volmer metrics support 95% quenching of the Zr(iv) photosensitizer using modest concentrations (0.25 mM) of the various acceptor/annihilators, where no aggregation took place between any of the chromophores in THF. Each of the upconverting formulations operated with continuous-wave linear incident power dependence (λ ex = 514.5 nm) down to ultralow excitation power densities under optimized experimental conditions. Impressive record-setting η UC values ranging from 31.7% to 42.7% were achieved under excitation conditions (13 mW cm-2) below that of solar flux integrated across the Zr(iv) photosensitizer's absorption band (26.7 mW cm-2). This study illustrates the importance of supporting the continued development and discovery of molecular-based triplet photosensitizers based on earth-abundant metals.
Collapse
Affiliation(s)
- Mo Yang
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695-8204 USA
| | - Sara Sheykhi
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695-8204 USA
| | - Yu Zhang
- C. Eugene Bennett Department of Chemistry, West Virginia University Morgantown West Virginia 26506 USA
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University Morgantown West Virginia 26506 USA
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695-8204 USA
| |
Collapse
|