Abánades Lázaro I, Mazarakioti EC, Andres-Garcia E, Vieira BJC, Waerenborgh JC, Vitórica-Yrezábal IJ, Giménez-Marqués M, Mínguez Espallargas G. Ultramicroporous iron-isonicotinate MOFs combining size-exclusion kinetics and thermodynamics for efficient CO
2/N
2 gas separation.
JOURNAL OF MATERIALS CHEMISTRY. A 2023;
11:5320-5327. [PMID:
36911163 PMCID:
PMC9990143 DOI:
10.1039/d2ta08934c]
[Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Two ultramicroporous 2D and 3D iron-based Metal-Organic Frameworks (MOFs) have been obtained by solvothermal synthesis using different ratios and concentrations of precursors. Their reduced pore space decorated with pendant pyridine from tangling isonicotinic ligands enables the combination of size-exclusion kinetic gas separation, due to their small pores, with thermodynamic separation, resulting from the interaction of the linker with CO2 molecules. This combined separation results in efficient materials for dynamic breakthrough gas separation with virtually infinite CO2/N2 selectivity in a wide operando range and with complete renewability at room temperature and ambient pressure.
Collapse