1
|
Saptal VB, Ranjan P, Zbořil R, Nowicki M, Walkowiak J. Magnetically Recyclable Borane Lewis Acid Catalyst for Hydrosilylation of Imines and Reductive Amination of Carbonyls. CHEMSUSCHEM 2024; 17:e202400058. [PMID: 38630961 DOI: 10.1002/cssc.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Fluorinated arylborane-based Lewis acid catalysts have shown remarkable activity and serve as ideal examples of transition metal-free catalysts for diverse organic transformations. However, their homogeneous nature poses challenges in terms of recyclability and separation from reaction mixtures. This work presents an efficient technique for the heterogenization of boron Lewis acid catalysts by anchoring Piers' borane to allyl-functionalized iron oxide. This catalyst demonstrates excellent activity in the hydrosilylation of imines and the reductive amination of carbonyls using various silanes as reducing agents under mild reaction conditions. The catalyst exhibits broad tolerance towards a wide range of functional substrates. Furthermore, it exhibits good recyclability and can be easily separated from the products using an external magnetic field. This work represents a significant advance in the development of sustainable heterogenous metal-free catalysts for organic transformations.
Collapse
Affiliation(s)
- Vitthal B Saptal
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego Poznań, 10, 61-614, Poznan, Poland
| | - Prabodh Ranjan
- Department of Chemistry, Indian Institute of Technology, Kanpur, India, 208016
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00, Olomouc, Czech Republic
- CEET, Nanotechnology Centre, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Marek Nowicki
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego Poznań, 10, 61-614, Poznan, Poland
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965, Poznan, Poland
| | - Jędrzej Walkowiak
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego Poznań, 10, 61-614, Poznan, Poland
| |
Collapse
|
2
|
Svatunek D. Computational Organic Chemistry: The Frontier for Understanding and Designing Bioorthogonal Cycloadditions. Top Curr Chem (Cham) 2024; 382:17. [PMID: 38727989 PMCID: PMC11087259 DOI: 10.1007/s41061-024-00461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/06/2024] [Indexed: 05/13/2024]
Abstract
Computational organic chemistry has become a valuable tool in the field of bioorthogonal chemistry, offering insights and aiding in the progression of this branch of chemistry. In this review, I present an overview of computational work in this field, including an exploration of both the primary computational analysis methods used and their application in the main areas of bioorthogonal chemistry: (3 + 2) and [4 + 2] cycloadditions. In the context of (3 + 2) cycloadditions, detailed studies of electronic effects have informed the evolution of cycloalkyne/1,3-dipole cycloadditions. Through computational techniques, researchers have found ways to adjust the electronic structure via hyperconjugation to enhance reactions without compromising stability. For [4 + 2] cycloadditions, methods such as distortion/interaction analysis and energy decomposition analysis have been beneficial, leading to the development of bioorthogonal reactants with improved reactivity and the creation of orthogonal reaction pairs. To conclude, I touch upon the emerging fields of cheminformatics and machine learning, which promise to play a role in future reaction discovery and optimization.
Collapse
Affiliation(s)
- Dennis Svatunek
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060, Vienna, Austria.
| |
Collapse
|
3
|
Maharana R, Bhanja R, Mal P, Samanta K. Investigation of the Effect of Solvents on the Synthesis of Aza-flavanone from Aminochalcone Facilitated by Halogen Bonding. ACS OMEGA 2023; 8:33785-33793. [PMID: 37744869 PMCID: PMC10515354 DOI: 10.1021/acsomega.3c04207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023]
Abstract
It has been recognized that CBr4 can give rise to a noncovalent interaction known as halogen bond (XB). CBr4 was found to catalyze, in terms of XB formation, the transformation of 2'-aminochalcone to aza-flavanone through an intramolecular Michael addition reaction. The impact of XB and the resulting yield of aza-flavanone exhibited a pronounced dependence on the characteristics of the solvent. Notably, yields of 88% in ethanol and 33% in DMSO were achieved, while merely a trace amount of the product was detected in benzene. In this work, we use a computational modeling study to understand this variance in yield. The reaction is modeled at the level of density functional theory (based on the M06-2X exchange-correlation functional) with all-electron basis sets of triple-ζ quality. Grimme's dispersion correction is incorporated to account for the noncovalent interactions accurately. Harmonic frequency calculations are carried out to establish the character of the optimized structures (minimum or saddle point). Our calculations confirm the formation of an XB between CBr4 and the reacting species and its role in lowering the activation energy barrier. Stronger orbital interactions and significant lowering of the steric repulsion were found to be important in lowering the activation barrier. The negligible yield in the nonpolar solvent benzene may be attributed to the high activation energy as well as the inadequate stabilization of the zwitterionic intermediate. In ethanol, a protic solvent, additional H-bonding contributes to further lowering of the activation barrier and better stabilization of the zwitterionic intermediate. The combined effects of solvent polarity, XB, and H-bond are likely to give rise to an excellent yield of aza-flavanone in ethanol.
Collapse
Affiliation(s)
- Rajat
Rajiv Maharana
- School
of Basic Sciences, Indian Institute of Technology
Bhubaneswar, Argul, Odisha 752050, India
| | - Rosalin Bhanja
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), An OCC of Homi Bhabha National
Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), An OCC of Homi Bhabha National
Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Kousik Samanta
- School
of Basic Sciences, Indian Institute of Technology
Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
4
|
Rodríguez H, Cruz DA, Padrón JI, Fernández I. Lewis Acid-Catalyzed Carbonyl-Ene Reaction: Interplay between Aromaticity, Synchronicity, and Pauli Repulsion. J Org Chem 2023; 88:11102-11110. [PMID: 37485981 PMCID: PMC10407925 DOI: 10.1021/acs.joc.3c01059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Indexed: 07/25/2023]
Abstract
The physical factors governing the catalysis in Lewis acid-promoted carbonyl-ene reactions have been explored in detail quantum chemically. It is found that the binding of a Lewis acid to the carbonyl group directly involved in the transformation greatly accelerates the reaction by decreasing the corresponding activation barrier up to 25 kcal/mol. The Lewis acid makes the process much more asynchronous and the corresponding transition state less in-plane aromatic. The remarkable acceleration induced by the catalyst is ascribed, by means of the activation strain model and the energy decomposition analysis methods, mainly to a significant reduction of the Pauli repulsion between the key occupied π-molecular orbitals of the reactants and not to the widely accepted stabilization of the LUMO of the enophile.
Collapse
Affiliation(s)
- Humberto
A. Rodríguez
- Instituto
de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IPNA-CSIC), Avda. Astrofísico Francisco
Sánchez 3, 38206 La Laguna, Tenerife, Islas Canarias, Spain
- Departamento
de Química Orgánica I and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Daniel A. Cruz
- Instituto
de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IPNA-CSIC), Avda. Astrofísico Francisco
Sánchez 3, 38206 La Laguna, Tenerife, Islas Canarias, Spain
| | - Juan I. Padrón
- Instituto
de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IPNA-CSIC), Avda. Astrofísico Francisco
Sánchez 3, 38206 La Laguna, Tenerife, Islas Canarias, Spain
| | - Israel Fernández
- Departamento
de Química Orgánica I and Centro de Innovación
en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Ikeda K, Kojima R, Kawai K, Murakami T, Kikuchi T, Kojima M, Yoshino T, Matsunaga S. Formation of Isolable Dearomatized [4 + 2] Cycloadducts from Benzenes, Naphthalenes, and N-Heterocycles Using 1,2-Dihydro-1,2,4,5-tetrazine-3,6-diones as Arenophiles under Visible Light Irradiation. J Am Chem Soc 2023; 145:9326-9333. [PMID: 37055373 DOI: 10.1021/jacs.3c02556] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
We report that the dearomative [4 + 2] cycloaddition between 1,2-dihydro-1,2,4,5-tetrazine-3,6-diones (TETRADs) and benzenes, naphthalenes, or N-heteroaromatic compounds under visible light irradiation affords the corresponding isolable cycloadducts. Several synthetic transformations including transition-metal-catalyzed allylic substitution reactions using the isolated cycloadducts at room temperature or above were demonstrated. Computational studies revealed that the retro-cycloaddition of the benzene-TETRAD adduct proceeds via an asynchronous concerted mechanism, while that of the benzene-MTAD adduct (MTAD = 4-methyl-1,2,4-triazoline-3,5-dione) proceeds via a synchronous mechanism.
Collapse
Affiliation(s)
- Kazuki Ikeda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Riku Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kentaro Kawai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takayasu Murakami
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Kikuchi
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
6
|
Tiekink EH, Vermeeren P, Hamlin TA. Not antiaromaticity gain, but increased asynchronicity enhances the Diels-Alder reactivity of tropone. Chem Commun (Camb) 2023; 59:3703-3706. [PMID: 36880301 DOI: 10.1039/d3cc00512g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Tropone is an unreactive diene in normal electron demand Diels-Alder reactions, but it can be activated via carbonyl umpolung by using hydrazone ion analogs. Recently, the higher reactivity of hydrazone ion analogs was ascribed to a raised HOMO energy induced by antiaromaticity (L. J. Karas, A. T. Campbell, I. V. Alabugin and J. I. Wu, Org. Lett., 2020, 22, 7083). We show that this is incorrect, and that the activation barrier is lowered by increased asynchronicity.
Collapse
Affiliation(s)
- Eveline H Tiekink
- Department of Theoretical Chemistry, Amsterdam Institute of Molecfular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands.
| | - Pascal Vermeeren
- Department of Theoretical Chemistry, Amsterdam Institute of Molecfular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands.
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecfular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands.
| |
Collapse
|
7
|
Vermeersch L, De Proft F, Faulkner V, De Vleeschouwer F. Unravelling the Mechanism and Governing Factors in Lewis Acid and Non-Covalent Diels-Alder Catalysis: Different Perspectives. Int J Mol Sci 2023; 24:ijms24054938. [PMID: 36902369 PMCID: PMC10003447 DOI: 10.3390/ijms24054938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
In the current literature, many non-covalent interaction (NCI) donors have been proposed that can potentially catalyze Diels-Alder (DA) reactions. In this study, a detailed analysis of the governing factors in Lewis acid and non-covalent catalysis of three types of DA reactions was carried out, for which we selected a set of hydrogen-, halogen-, chalcogen-, and pnictogen-bond donors. We found that the more stable the NCI donor-dienophile complex, the larger the reduction in DA activation energy. We also showed that for active catalysts, a significant part of the stabilization was caused by orbital interactions, though electrostatic interactions dominated. Traditionally, DA catalysis was attributed to improved orbital interactions between the diene and dienophile. Recently, Vermeeren and co-workers applied the activation strain model (ASM) of reactivity, combined with the Ziegler-Rauk-type energy decomposition analysis (EDA), to catalyzed DA reactions in which energy contributions for the uncatalyzed and catalyzed reaction were compared at a consistent geometry. They concluded that reduced Pauli repulsion energy, and not enhanced orbital interaction energy, was responsible for the catalysis. However, when the degree of asynchronicity of the reaction is altered to a large extent, as is the case for our studied hetero-DA reactions, the ASM should be employed with caution. We therefore proposed an alternative and complementary approach, in which EDA values for the catalyzed transition-state geometry, with the catalyst present or deleted, can be compared one to one, directly measuring the effect of the catalyst on the physical factors governing the DA catalysis. We discovered that enhanced orbital interactions are often the main driver for catalysis and that Pauli repulsion plays a varying role.
Collapse
|
8
|
Yu S, Tiekink EH, Vermeeren P, Bickelhaupt FM, Hamlin TA. How Bases Catalyze Diels-Alder Reactions. Chemistry 2023; 29:e202203121. [PMID: 36330879 PMCID: PMC10108159 DOI: 10.1002/chem.202203121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
We have quantum chemically studied the base-catalyzed Diels-Alder (DA) reaction between 3-hydroxy-2-pyrone and N-methylmaleimide using dispersion-corrected density functional theory. The uncatalyzed reaction is slow and is preceded by the extrusion of CO2 via a retro-DA reaction. Base catalysis, for example, by triethylamine, lowers the reaction barrier up to 10 kcal mol-1 , causing the reaction to proceed smoothly at low temperature, which quenches the expulsion of CO2 , yielding efficient access to polyoxygenated natural compounds. Our activation strain analyses reveal that the base accelerates the DA reaction via two distinct electronic mechanisms: i) by the HOMO-raising effect, which enhances the normal electron demand orbital interaction; and ii) by donating charge into 3-hydroxy-2-pyrone which accumulates in its reactive region and promotes strongly stabilizing secondary electrostatic interactions with N-methylmaleimide.
Collapse
Affiliation(s)
- Song Yu
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam(TheNetherlands
| | - Eveline H. Tiekink
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam(TheNetherlands
| | - Pascal Vermeeren
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam(TheNetherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam(TheNetherlands
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegen (TheNetherlands
- Department of Chemical SciencesUniversity of JohannesburgAuckland ParkJohannesburg2006South Africa
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam(TheNetherlands
| |
Collapse
|
9
|
Das TK, Rodriguez Treviño AM, Pandiri S, Irvankoski S, Siito-Nen JH, Rodriguez SM, Yousufuddin M, Kürti L. Catalyst-Free Transfer Hydrogenation of Activated Alkenes Exploiting Isopropanol as the Sole and Traceless Reductant. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:746-754. [PMID: 37637778 PMCID: PMC10457099 DOI: 10.1039/d2gc04315g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Both metal-catalyzed and organocatalytic transfer hydrogenation reactions are widely employed for the reduction of C=O and C=N bonds. However, selective transfer hydrogenation reactions of C=C bonds remain challenging. Therefore, the chemoselective transfer hydrogenation of olefins under mild conditions and in the absence of metal catalysts, using readily available and inexpensive reducing agents (i.e. primary and secondary alcohols), will mark a significant advancement towards the development of green transfer hydrogenation strategies. Described herein is an unconventional catalyst-free transfer hydrogenation reaction of activated alkenes using isopropanol as an eco-friendly reductant and solvent. The reaction gives convenient synthetic access to a wide range of substituted malonic acid half oxyesters (SMAHOs) in moderate to good yields. Mechanistic investigations point towards an unprecedented hydrogen bond-assisted transfer hydrogenation process.
Collapse
Affiliation(s)
- Tamal Kanti Das
- Department of Chemistry, Rice University, Houston, Texas 77030, USA
| | | | - Sanjay Pandiri
- Department of Chemistry, Rice University, Houston, Texas 77030, USA
| | - Sini Irvankoski
- Department of Chemistry and Materials Science, Aalto University, FI-02150 Espoo, Finland
| | - Juha H Siito-Nen
- Department of Chemistry and Materials Science, Aalto University, FI-02150 Espoo, Finland
| | - Sara M Rodriguez
- Department of Natural Sciences, University of North Texas at Dallas, Dallas, Texas 75241, USA
| | - Muhammed Yousufuddin
- Department of Natural Sciences, University of North Texas at Dallas, Dallas, Texas 75241, USA
| | - László Kürti
- Department of Chemistry, Rice University, Houston, Texas 77030, USA
| |
Collapse
|
10
|
Labadie N, Pellegrinet SC. Diels–Alder Reactivity of Allenylboronic Acid Pinacol Ester and Related Dienophiles: Mechanistic Studies and Distortion/Interaction-Activation Strain Model Analysis. J Org Chem 2022; 87:16776-16784. [DOI: 10.1021/acs.joc.2c02445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natalia Labadie
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Silvina C. Pellegrinet
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| |
Collapse
|
11
|
Tortora C, Pisano L, Vergine V, Ghirga F, Iazzetti A, Calcaterra A, Marković V, Botta B, Quaglio D. Synthesis, Biosynthesis, and Biological Activity of Diels-Alder Adducts from Morus Genus: An Update. Molecules 2022; 27:7580. [PMID: 36364405 PMCID: PMC9657834 DOI: 10.3390/molecules27217580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/28/2023] Open
Abstract
The plants of the Moraceae family are producers of a great variety of polyphenolic natural products. Among these, the Diels-Alder type adducts (DAAs) are endowed with a unique cyclohexene scaffold, since they are biosynthesized from [4+2] cycloaddition of different polyphenolic precursors such as chalcones and dehydroprenyl polyphenols. To date, more than 150 DAAs have been isolated and characterized from Moraceous and related plants. The main source of DAAs is the mulberry root bark, also known as "Sang-Bai-Pi" in Traditional Chinese Medicine, but they have also been isolated from root bark, stem barks, roots, stems or twigs, leaves, and callus cultures of Moraceous and other related plants. Since 1980, many biological activities of DAAs have been identified, including anti-HIV, antimicrobial, anti-inflammatory, and anticancer ones. For these reasons, natural DAAs have been intensively investigated, and a lot of efforts have been made to study their biosynthesis and to establish practical synthetic access. In this review, we summarized all the updated knowledge on biosynthesis, chemoenzymatic synthesis, racemic and enantioselective total synthesis, and biological activity of natural DAAs from Moraceous and related plants.
Collapse
Affiliation(s)
- Carola Tortora
- Department of Chemistry and Technology of Drugs, Department of Excellence 2018–2022, Sapienza—University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Luca Pisano
- Department of Chemistry and Technology of Drugs, Department of Excellence 2018–2022, Sapienza—University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Valeria Vergine
- Department of Chemistry and Technology of Drugs, Department of Excellence 2018–2022, Sapienza—University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Ghirga
- Department of Chemistry and Technology of Drugs, Department of Excellence 2018–2022, Sapienza—University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Antonia Iazzetti
- Dipartimento di Scienze Biotecnologiche di Base Cliniche Intensivologiche e Perioperatorie, Campus di Roma, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, Department of Excellence 2018–2022, Sapienza—University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Violeta Marković
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, Department of Excellence 2018–2022, Sapienza—University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, Department of Excellence 2018–2022, Sapienza—University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
12
|
Nouali F, Sousa JLC, Albuquerque HMT, Mendes RF, Paz FAA, Saher L, Kibou Z, Choukchou-Braham N, Talhi O, Silva AMS. Microwave-Assisted Synthesis of 4,6-Disubstituted Isoindoline-1,3-diones by Diels-Alder Reactions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Portela S, Fernández I. Origin of Catalysis and Selectivity in Lewis Acid-Promoted Diels-Alder Reactions Involving Vinylazaarenes as Dienophiles. J Org Chem 2022; 87:9307-9315. [PMID: 35794859 PMCID: PMC9295156 DOI: 10.1021/acs.joc.2c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The poorly understood factors controlling the catalysis and selectivity in Lewis acid-promoted Diels-Alder cycloaddition reactions involving vinylazaarenes as dienophiles have been quantitatively explored in detail by means of computational methods. With the help of the activation strain model and the energy decomposition analysis methods, it is found that the remarkable acceleration induced by the catalysis is mainly due to a significant reduction of the Pauli repulsion between the key occupied π-molecular orbitals of the reactants and not due to the proposed stabilization of the lowest unoccupied molecular orbital (LUMO) of the dienophile. This computational approach has also been helpful to understand the reasons behind the extraordinary regio- and diastereoselectivity observed experimentally. The insight gained in this work allows us to predict even more reactive vinylazaarene dienophiles, which may be useful in organic synthesis.
Collapse
Affiliation(s)
- Susana Portela
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
14
|
Zhao H, Caldora HP, Turner O, Douglas JJ, Leonori D. A Desaturative Approach for Aromatic Aldehyde Synthesis via Synergistic Enamine, Photoredox and Cobalt Triple Catalysis. Angew Chem Int Ed Engl 2022; 61:e202201870. [PMID: 35196413 PMCID: PMC9311220 DOI: 10.1002/anie.202201870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 11/05/2022]
Abstract
Aromatic aldehydes are fundamental intermediates that are widely utilised for the synthesis of important materials across the broad spectrum of chemical industries. Accessing highly substituted derivatives can often be difficult as their functionalizations are generally performed via electrophilic aromatic substitution, SEAr. Here we provide an alternative and mechanistically distinct approach whereby aromatic aldehydes are assembled from saturated precursors via a desaturative process. This novel strategy harnesses the high‐fidelity of Diels–Alder cycloadditions to quickly construct multi‐substituted cyclohexenecarbaldehyde cores which undergo desaturation via the synergistic interplay of enamine, photoredox and cobalt triple catalysis.
Collapse
Affiliation(s)
- Huaibo Zhao
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Henry P Caldora
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Oliver Turner
- Oncology R&DI Medicinal Chemistry, AstraZeneca, Darwin Building, Unit 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - James J Douglas
- Early Chemical Development, Pharmaceutical Sciences R&D, AstraZeneca, Macclesfield, UK
| | - Daniele Leonori
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| |
Collapse
|
15
|
Huo S, Meng L, Zeng Y, Li X. Mechanism, Stereoselectivity, and Role of O 2 in Aza-Diels-Alder Reactions Catalyzed by Dinuclear Molybdenum Complexes: A Theoretical Study. Inorg Chem 2022; 61:4714-4724. [PMID: 35271272 DOI: 10.1021/acs.inorgchem.2c00035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aza-Diels-Alder-type reaction between imines and functionalized alkenes is one of the most versatile approaches to obtain piperidine derivatives. When using the Lewis acid [Mo2(OAc)4] (CAT) as a catalyst, it was found that the activation of CAT by O2 was essential for an efficient reaction. In this paper, the mechanism and stereoselectivity of the aza-Diels-Alder reaction between aromatic acyl hydrozones 1 and Danishefsky diene 2 under uncatalyzed and catalyzed (CAT not activated by O2 and CAT activated by O2) conditions have been studied by density functional theory (DFT) calculation. The results show that the uncatalyzed reaction is difficult to proceed at room temperature due to the high energy barrier. The CAT not activated by molecular oxygen has catalytic activity but not too much. When CAT is activated by O2, CATO2 may be the correct catalytic species, which results in a dramatic increase of reaction activity. The reaction mechanisms with/without the catalyst are different. The uncatalyzed reaction is concerted for both the endo and exo pathways. For the CAT-catalyzed reaction, the endo pathway is concerted, but the exo pathway is nonconcerted and involves two steps. The endo product is the main product for the reaction catalyzed by CAT, while for reactions catalyzed by CATO1 and CATO2, the endo and exo products can be obtained. The reaction activity is directly correlated to the atomic charges of two coupling C atoms. Our work explains the experimental results, determines the structure of the O2-activated catalyst species, and provides predictions for the reaction activity and stereoselectivity controlling.
Collapse
Affiliation(s)
- Suhong Huo
- School of Safety Supervision, North China Institute of Science and Technology, No. 467 Academy Street, Sanhe Yanjiao Development Zone, Langfang 065201, China
| | - Lingpeng Meng
- Hebei Key Laboratory of Inorganic and Nano-Materials, College of Chemistry and Materials Science, Hebei Normal University, Road East of 2nd Ring South, Shijiazhuang 050024, China
| | - Yanli Zeng
- Hebei Key Laboratory of Inorganic and Nano-Materials, College of Chemistry and Materials Science, Hebei Normal University, Road East of 2nd Ring South, Shijiazhuang 050024, China
| | - Xiaoyan Li
- Hebei Key Laboratory of Inorganic and Nano-Materials, College of Chemistry and Materials Science, Hebei Normal University, Road East of 2nd Ring South, Shijiazhuang 050024, China
| |
Collapse
|
16
|
Zhao H, Caldora HP, Turner O, Douglas JJ, Leonori D. A Desaturative Approach for Aromatic Aldehyde Synthesis via Synergistic Enamine, Photoredox and Cobalt Triple Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huaibo Zhao
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Henry P. Caldora
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Oliver Turner
- Oncology R&DI Medicinal Chemistry, AstraZeneca Darwin Building, Unit 310, Cambridge Science Park, Milton Road Cambridge CB4 0WG UK
| | - James J. Douglas
- Early Chemical Development, Pharmaceutical Sciences R&D AstraZeneca Macclesfield UK
| | - Daniele Leonori
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52056 Aachen Germany
| |
Collapse
|
17
|
Wang JYJ, Blyth MT, Sherburn MS, Coote ML. Tuning Photoenolization-Driven Cycloadditions Using Theory and Spectroscopy. J Am Chem Soc 2022; 144:1023-1033. [PMID: 34991316 DOI: 10.1021/jacs.1c12174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first broad spectrum investigation into the photoenolization/Diels-Alder (PEDA) sequence was carried out using M06-2X/6-31+G(d,p) in conjunction with SMD solvation and supported by experimental UV-vis spectroscopy. A test set of 20 prodienes was chosen to examine the role of the H atom acceptor group (substituted and unsubstituted carbonyl, thiocarbonyl, and imine), the H atom donor group, and bystander ring substituents. As reaction partners for the photogenerated dienes, a diverse test set of 20 dienophiles was examined, comprising electron rich, electron poor, neutral, strain activated, hydrocarbon, and heteroatom-containing molecules including CO2 and CO. A key finding of this work is the demonstration that the PEDA sequence of carbonyl based prodienes is tolerant of most substitution patterns. Another is that thiocarbonyl derivatives should behave analogously to the carbonyls but are likely to do so much more slowly, due to an inefficient intersystem crossing, an endothermic 1,5-hydrogen atom transfer (HAT) step, and a [1,5] sigmatropic H shift to regenerate the starting material that outcompetes the [4 + 2]cycloaddition. In contrast, the T1 state of the ortho-alkyl imines displays the incorrect orbital symmetry for 1,5-HAT and is correspondingly accompanied by higher barriers, even in the excited state. However, provided these barriers can be overcome, the remaining steps in the PEDA sequence are predicted to be facile. The Diels-Alder reaction is predicted to be of much broader scope than reported synthetic literature: while electron poor dienophiles are expected to be the most reactive partners, ethylene and electron rich alkenes should react at a synthetically useful rate. CO is predicted to undergo a facile (4 + 1)cheletropic addition instead of the normal [4 + 2]cycloaddition pathway. This unique photoenolization/cheletropic addition (PECA) sequence could provide metal-free access to benzannelated cyclopentanones.
Collapse
Affiliation(s)
- Jiao Yu J Wang
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Mitchell T Blyth
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Michael S Sherburn
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Michelle L Coote
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
18
|
Frontera A, Bauza A. On the Importance of Pnictogen and Chalcogen Bonding Interactions in Supramolecular Catalysis. Int J Mol Sci 2021; 22:12550. [PMID: 34830432 PMCID: PMC8623369 DOI: 10.3390/ijms222212550] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
In this review, several examples of the application of pnictogen (Pn) (group 15) and chalcogen (Ch) bonding (group 16) interactions in organocatalytic processes are gathered, backed up with Molecular Electrostatic Potential surfaces of model systems. Despite the fact that the use of catalysts based on pnictogen and chalcogen bonding interactions is taking its first steps, it should be considered and used by the scientific community as a novel, promising tool in the field of organocatalysis.
Collapse
Affiliation(s)
| | - Antonio Bauza
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain;
| |
Collapse
|
19
|
Tiekink EH, Vermeeren P, Bickelhaupt FM, Hamlin TA. How Lewis Acids Catalyze Ene Reactions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Eveline H. Tiekink
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam, The Netherlands
| | - Pascal Vermeeren
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam, The Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam, The Netherlands
- Institute for Molecules and Materials Radboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen, The Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
20
|
Vermeeren P, Hamlin TA, Bickelhaupt FM. Origin of asynchronicity in Diels-Alder reactions. Phys Chem Chem Phys 2021; 23:20095-20106. [PMID: 34499069 PMCID: PMC8457343 DOI: 10.1039/d1cp02456f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/02/2021] [Indexed: 02/02/2023]
Abstract
Asynchronicity in Diels-Alder reactions plays a crucial role in determining the height of the reaction barrier. Currently, the origin of asynchronicity is ascribed to the stronger orbital interaction between the diene and the terminal carbon of an asymmetric dienophile, which shortens the corresponding newly formed C-C bond and hence induces asynchronicity in the reaction. Here, we show, using the activation strain model and Kohn-Sham molecular orbital theory at ZORA-BP86/TZ2P, that this rationale behind asynchronicity is incorrect. We, in fact, found that following a more asynchronous reaction mode costs favorable HOMO-LUMO orbital overlap and, therefore, weakens (not strengthens) these orbital interactions. Instead, it is the Pauli repulsion that induces asynchronicity in Diels-Alder reactions. An asynchronous reaction pathway also lowers repulsive occupied-occupied orbital overlap which, therefore, reduces the unfavorable Pauli repulsion. As soon as this mechanism of reducing Pauli repulsion dominates, the reaction begins to deviate from synchronicity and adopts an asynchronous mode. The eventual degree of asynchronicity, as observed in the transition state of a Diels-Alder reaction, is ultimately achieved when the gain in stability, as a response to the reduced Pauli repulsion, balances with the loss of favorable orbital interactions.
Collapse
Affiliation(s)
- Pascal Vermeeren
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| | - F Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
21
|
Vermeeren P, Tiezza MD, van Dongen M, Fernández I, Bickelhaupt FM, Hamlin TA. Lewis Acid-Catalyzed Diels-Alder Reactions: Reactivity Trends across the Periodic Table. Chemistry 2021; 27:10610-10620. [PMID: 33780068 PMCID: PMC8360170 DOI: 10.1002/chem.202100522] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 12/20/2022]
Abstract
The catalytic effect of various weakly interacting Lewis acids (LAs) across the periodic table, based on hydrogen (Group 1), pnictogen (Group 15), chalcogen (Group 16), and halogen (Group 17) bonds, on the Diels-Alder cycloaddition reaction between 1,3-butadiene and methyl acrylate was studied quantum chemically by using relativistic density functional theory. Weakly interacting LAs accelerate the Diels-Alder reaction by lowering the reaction barrier up to 3 kcal mol-1 compared to the uncatalyzed reaction. The reaction barriers systematically increase from halogen
Collapse
Affiliation(s)
- Pascal Vermeeren
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
| | - Marco Dalla Tiezza
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
| | - Michelle van Dongen
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Facultad de Ciencias QuímicasUniversidad Complutense de Madrid28040MadridSpain
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 AJNijmegen (TheNetherlands
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
| |
Collapse
|
22
|
Vermeeren P, Hamlin TA, Bickelhaupt FM. Chemical reactivity from an activation strain perspective. Chem Commun (Camb) 2021; 57:5880-5896. [PMID: 34075969 PMCID: PMC8204247 DOI: 10.1039/d1cc02042k] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Chemical reactions are ubiquitous in the universe, they are at the core of life, and they are essential for industrial processes. The drive for a deep understanding of how something occurs, in this case, the mechanism of a chemical reaction and the factors controlling its reactivity, is intrinsically valuable and an innate quality of humans. The level of insight and degree of understanding afforded by computational chemistry cannot be understated. The activation strain model is one of the most powerful tools in our arsenal to obtain unparalleled insight into reactivity. The relative energy of interacting reactants is evaluated along a reaction energy profile and related to the rigidity of the reactants' molecular structure and the strength of the stabilizing interactions between the deformed reactants: ΔE(ζ) = ΔEstrain(ζ) + ΔEint(ζ). Owing to the connectedness between the activation strain model and Kohn-Sham molecular orbital theory, one is able to obtain a causal relationship between both the sterics and electronics of the reactants and their mutual reactivity. Only when this is accomplished one can eclipse the phenomenological explanations that are commonplace in the literature and textbooks and begin to rationally tune and optimize chemical transformations. We showcase how the activation strain model is the ideal tool to elucidate fundamental organic reactions, the activation of small molecules by metallylenes, and the cycloaddition reactivity of cyclic diene- and dipolarophiles.
Collapse
Affiliation(s)
- Pascal Vermeeren
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| | - F Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands. and Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
23
|
Su G, Thomson CJ, Yamazaki K, Rozsar D, Christensen KE, Hamlin TA, Dixon DJ. A bifunctional iminophosphorane squaramide catalyzed enantioselective synthesis of hydroquinazolines via intramolecular aza-Michael reaction to α,β-unsaturated esters. Chem Sci 2021; 12:6064-6072. [PMID: 33996002 PMCID: PMC8098679 DOI: 10.1039/d1sc00856k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
An efficient synthesis of enantioenriched hydroquinazoline cores via a novel bifunctional iminophosphorane squaramide catalyzed intramolecular aza-Michael reaction of urea-linked α,β-unsaturated esters is described. The methodology exhibits a high degree of functional group tolerance around the forming hydroquinazoline aryl core and wide structural variance on the nucleophilic N atom of the urea moiety. Excellent yields (up to 99%) and high enantioselectivities (up to 97 : 3 er) using both aromatic and less acidic aliphatic ureas were realized. The potential industrial applicability of the transformation was demonstrated in a 20 mmol scale-up experiment using an adjusted catalyst loading of 2 mol%. The origin of enantioselectivity and reactivity enhancement provided by the squaramide motif has been uncovered computationally using density functional theory (DFT) calculations, combined with the activation strain model (ASM) and energy decomposition analysis (EDA). The activation of both aromatic and aliphatic ureas as N-centered nucleophiles in intramolecular Michael addition reactions to α,β-unsaturated esters was achieved under bifunctional iminophosphorane squaramide superbase catalysis.![]()
Collapse
Affiliation(s)
- Guanglong Su
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Connor J Thomson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK .,Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam De Boelelaan 1083, 1081 HV Amsterdam The Netherlands
| | - Daniel Rozsar
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Kirsten E Christensen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam De Boelelaan 1083, 1081 HV Amsterdam The Netherlands
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|