1
|
Zaz MZ, Chin WK, Viswan G, Subedi A, Mishra E, McElveen KA, Tamang B, Shapiro D, N'Diaye AT, Lai RY, Dowben PA. Chiral effects at the metal center in Fe(III) spin crossover coordination salts. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:10LT01. [PMID: 39719127 DOI: 10.1088/1361-648x/ada338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/24/2024] [Indexed: 12/26/2024]
Abstract
Evidence of chirality was observed at the Fe metal center in Fe(III) spin crossover coordination salts [Fe(qsal)2][Ni(dmit)2] and [Fe(qsal)2](TCNQ)2from x-ray absorption (XAS) spectroscopy at the Fe 2p3/2core threshold. Based on the circularly polarized XAS data, the x-ray natural circular dichroism for [Fe(qsal)2][Ni(dmit)2] and [Fe(qsal)2](TCNQ)2is far stronger than seen for [Fe(qsal)2]Cl suggesting this natural circular dichroism signature is a ligand effect rather than a result of just a loss of octahedral symmetry on the Fe core. The larger the chiral effects in the Fe 2p core to bound XAS, the greater the perturbation of the Fe 2p3/2to 2p1/2spin-orbit splitting seen in the XAS spectra.
Collapse
Affiliation(s)
- M Zaid Zaz
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0299, United States of America
| | - Wai Kiat Chin
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0299, United States of America
| | - Gauthami Viswan
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0299, United States of America
| | - Arjun Subedi
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0299, United States of America
| | - Esha Mishra
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0299, United States of America
- Department of Physics, Berry College, 2277 Martha Berry Hwy. NW., Mount Berry, GA 30149, United States of America
| | - Kayleigh A McElveen
- Department of Chemistry, Hamilton Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States of America
| | - Binny Tamang
- Department of Chemistry, Hamilton Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States of America
| | - David Shapiro
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Alpha T N'Diaye
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Rebecca Y Lai
- Department of Chemistry, Hamilton Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, United States of America
| | - Peter A Dowben
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska-Lincoln, Lincoln, NE 68588-0299, United States of America
| |
Collapse
|
2
|
Regueiro A, García-López V, Forment-Aliaga A, Clemente-León M. Chiral spin-crossover complexes based on an enantiopure Schiff base ligand with three chiral carbon centers. Dalton Trans 2024; 53:10637-10643. [PMID: 38860297 PMCID: PMC11197010 DOI: 10.1039/d4dt00924j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
The preparation of Fe(II) complexes combining monodentate NCX- (X = S or Se) and the tetradentate Schiff base chiral ligands RR-L1 and SS-L1 = (RR- or SS-L1 = 1R,2R or 1S,2S)-N1,N2-bis(pyridin-2-ylmethylen)cyclohexane-1,2-diamine in acetone results in an unexpected reaction. Thus, four enantiomerically pure compounds of formulas [Fe(RR-S-L2)(NCX)2] and [Fe(SS-R-L2)(NCX)2] (X = S or Se) are formed by the new asymmetrical ligand L2. In L2, one acetone solvent molecule is incorporated into the ligand forming a bond with the C atom of one of the two CN imine groups of L1, which is transformed into an amine (Mannich reaction). This reaction is diastereoselective as the incorporation of acetone leads to an asymmetric C adjacent to the NH group with opposite chirality S- or R- to that of the cyclohexane carbons (RR- or SS-, respectively). Therefore, L2 contains three C chiral centers. Structural and magnetic characterization of these compounds demonstrates that they show in the bulk a gradual spin-crossover behavior and LIESST effect. Interestingly, the presence of an intramolecular hydrogen bond between the integrated acetone molecule and the NH group can trigger a secondary stimuli-responsive behavior in the system. Therefore, by changing the solvent polarity, the color of the complex in solution can be easily tuned.
Collapse
Affiliation(s)
- Alejandro Regueiro
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Víctor García-López
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Alicia Forment-Aliaga
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Miguel Clemente-León
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| |
Collapse
|
3
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Kelly CT, Jordan R, Felton S, Müller‐Bunz H, Morgan GG. Spontaneous Chiral Resolution of a Mn III Spin-Crossover Complex with High Temperature 80 K Hysteresis. Chemistry 2023; 29:e202300275. [PMID: 37037023 PMCID: PMC10946779 DOI: 10.1002/chem.202300275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Non-centrosymmetric spin-switchable systems are of interest for their prospective applications as magnetically active non-linear optical materials and in multiferroic devices. Chiral resolution of simple spin-crossover chelate complexes into the Δ and Λ forms offers a facile route to homochiral magnetic switches, which could be easily enantiomerically enriched. Here, we report the spontaneous resolution of a new hysteretic spin-crossover complex, [MnIII (sal2 323)]SCN ⋅ EtOH (1), into Δ and Λ forms, without the use of chiral reagents, where sal2 323 is a Schiff base resulting from condensation of 1,2-bis(3-aminopropylamino)ethane with 2-hydroxybenzaldehyde. The enantiopurity of the Δ and Λ isomers was confirmed by single crystal X-ray diffraction and circular dichroism. Quantum chemistry calculations were used to investigate the electronic structure. The opening of a wide 80 K thermal hysteresis window at high temperature highlights the potential for good magneto-optical function at ambient temperature for materials of this type.
Collapse
Affiliation(s)
- Conor T. Kelly
- School of ChemistryUniversity College DublinBelfield, Dublin 4Ireland
| | - Ross Jordan
- Centre for Quantum Materials and TechnologiesSchool of Mathematics and PhysicsQueen's University BelfastBelfastBT7 1NNUK
| | - Solveig Felton
- Centre for Quantum Materials and TechnologiesSchool of Mathematics and PhysicsQueen's University BelfastBelfastBT7 1NNUK
| | - Helge Müller‐Bunz
- School of ChemistryUniversity College DublinBelfield, Dublin 4Ireland
| | - Grace G. Morgan
- School of ChemistryUniversity College DublinBelfield, Dublin 4Ireland
| |
Collapse
|
5
|
Kulmaczewski R, Armstrong IT, Catchpole P, Ratcliffe ESJ, Vasili HB, Warriner SL, Cespedes O, Halcrow MA. Di-Iron(II) [2+2] Helicates of Bis-(Dipyrazolylpyridine) Ligands: The Influence of the Ligand Linker Group on Spin State Properties. Chemistry 2023; 29:e202202578. [PMID: 36382594 PMCID: PMC10108139 DOI: 10.1002/chem.202202578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Four bis[2-{pyrazol-1-yl}-6-{pyrazol-3-yl}pyridine] ligands have been synthesized, with butane-1,4-diyl (L1 ), pyrid-2,6-diyl (L2 ), benzene-1,2-dimethylenyl (L3 ) and propane-1,3-diyl (L4 ) linkers between the tridentate metal-binding domains. L1 and L2 form [Fe2 (μ-L)2 ]X4 (X- =BF4 - or ClO4 - ) helicate complexes when treated with the appropriate iron(II) precursor. Solvate crystals of [Fe2 (μ-L1 )2 ][BF4 ]4 exhibit three different helicate conformations, which differ in the torsions of their butanediyl linker groups. The solvates exhibit gradual thermal spin-crossover, with examples of stepwise switching and partial spin-crossover to a low-temperature mixed-spin form. Salts of [Fe2 (μ-L2 )2 ]4+ are high-spin, which reflects their highly twisted iron coordination geometry. The composition and dynamics of assembly structures formed by iron(II) with L1 -L3 vary with the ligand linker group, by mass spectrometry and 1 H NMR spectroscopy. Gas-phase DFT calculations imply the butanediyl linker conformation in [Fe2 (μ-L1 )2 ]4+ influences its spin state properties, but show anomalies attributed to intramolecular electrostatic repulsion between the iron atoms.
Collapse
Affiliation(s)
| | | | - Pip Catchpole
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
| | | | - Hari Babu Vasili
- School of Physics and Astronomy W. H. Bragg Building, University of LeedsLeedsLS2 9JTUK
| | | | - Oscar Cespedes
- School of Physics and Astronomy W. H. Bragg Building, University of LeedsLeedsLS2 9JTUK
| | | |
Collapse
|
6
|
Szymańska M, Kubicki M, Roviello GN, Consiglio G, Fik-Jaskółka MA, Patroniak V. New Cu( i) square grid-type and Ni( ii) triangle-type complexes: synthesis and characterization of effective binders of DNA and serum albumins. Dalton Trans 2022; 51:15648-15658. [DOI: 10.1039/d2dt02271k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metallosupramolecular square grid-type complex [Cu4L4]4+ and triangle-type complex [Ni3L3]6+ as a potential strategy for obtaining versatile metal-based DNA, Serum Albumin (SA) and DNA binders.
Collapse
Affiliation(s)
- Martyna Szymańska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging – CNR, Area di Ricerca site and Headquartes, Via Tommaso De Amicis, 95, 80145 Napoli, Italy
| | - Giuseppe Consiglio
- Dipartimento di Scienze Chimiche, Università degli studi di Catania, viale A. Doria 6, I-95125 Catania, Italy
| | - Marta A. Fik-Jaskółka
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Violetta Patroniak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
7
|
Bhar K, Guo W, Gonidec M, Nikhil Raj M V, Bhatt S, Perdih F, Guionneau P, Chastanet G, Sharma AK. High temperature spin crossover behaviour of mononuclear bis-(thiocyanato)iron( ii) complexes with judiciously designed bidentate N-donor Schiff bases with varying substituents. Dalton Trans 2022; 51:9302-9313. [DOI: 10.1039/d2dt00416j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present herein the solvent and substituent dependent diverse spin crossover behaviours of molecular bis-(thiocyanato)iron(ii) complexes with smartly designed bidentate Schiff bases above room temperature.
Collapse
Affiliation(s)
- Kishalay Bhar
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer Distt., Rajasthan-305817, India
| | - Wenbin Guo
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 87 avenue du Dr A. Schweitzer, F-33600 Pessac, France
| | - Mathieu Gonidec
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 87 avenue du Dr A. Schweitzer, F-33600 Pessac, France
| | - Venkata Nikhil Raj M
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer Distt., Rajasthan-305817, India
| | - Surabhi Bhatt
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer Distt., Rajasthan-305817, India
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, PO Box 537, SI-1000 Ljubljana, Slovenia
| | - Philippe Guionneau
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 87 avenue du Dr A. Schweitzer, F-33600 Pessac, France
| | - Guillaume Chastanet
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 87 avenue du Dr A. Schweitzer, F-33600 Pessac, France
| | - Anuj K. Sharma
- Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer Distt., Rajasthan-305817, India
| |
Collapse
|