1
|
Olshin PK, Park WW, Kim YJ, Choi YJ, Mamonova DV, Kolesnikov IE, Afanaseva EV, Kwon OH. Boltzmann-Distribution-Driven Cathodoluminescence Thermometry in In Situ Transmission Electron Microscopy. ACS NANO 2024; 18:33441-33451. [PMID: 39604087 DOI: 10.1021/acsnano.4c10126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Nanothermometry in in situ transmission electron microscopy (TEM) is useful for comprehending the functioning mechanisms of the heterogeneous matter through real-time observations. Herein, we introduce a Boltzmann-distribution-driven cathodoluminescence (CL) nanothermometry for in situ local temperature probing in TEM. The population distribution across the close-lying Stark sublevels of dysprosium ions in an yttrium vanadate matrix follows the Boltzmann distribution, enabling the use of the CL-intensity ratio as a thermometry over a wide temperature range of 103-435 K with a relative sensitivity exceeding 3% K-1 and precision of ±2%. Superior to other CL-based thermometries, the present approach is independent of electron-beam parameters and dopant concentration, extending the robustness and applicability of CL-based nanothermometry in electron microscopy. We further demonstrate the real-time mapping of the temperature distribution across a TEM grid under laser irradiation.
Collapse
Affiliation(s)
- Pavel K Olshin
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Won-Woo Park
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ye-Jin Kim
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ye-Jin Choi
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Daria V Mamonova
- Department of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Ilya E Kolesnikov
- Center for Optical and Laser Materials Research, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Elena V Afanaseva
- Department of Chemistry, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Oh-Hoon Kwon
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Liu M, Sun Y, Teh DBL, Zhang Y, Cao D, Mei Q. Nanothermometry for cellular temperature monitoring and disease diagnostics. INTERDISCIPLINARY MEDICINE 2024; 2. [DOI: 10.1002/inmd.20230059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/17/2024] [Indexed: 01/05/2025]
Abstract
AbstractBody temperature variations, including the generation, transfer, and dissipation of heat, play an important role throughout life and participate in all biological events. Cellular temperature information is an indispensable link in the comprehensive understanding of life science processes, but traditional testing strategies cannot provide sufficient information due to their low precision and inefficient cellular‐entrance. In recent years, with the help of luminescent nanomaterials, a variety of new thermometers have been developed to achieve real‐time temperature measurement at the micro/nano scale. In this review, we summarized the latest advances in several nanoparticles for cellular temperature detection and their related applications in revealing cell metabolism and disease diagnosis. Furthermore, this review proposed a few challenges for the nano‐thermometry, expecting to spark novel thought to push forward its preclinical and translational uses.
Collapse
Affiliation(s)
- Meilin Liu
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| | - Yaru Sun
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| | - Daniel Boon Loong Teh
- Departments of Ophthalmology Anatomy Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Yi Zhang
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| | - Donglin Cao
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University Guangzhou China
- Department of Laboratory Medicine Guangdong Second Provincial General Hospital Guangzhou China
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology School of Medicine Jinan University Guangzhou China
| |
Collapse
|
3
|
Brites CDS, Marin R, Suta M, Carneiro Neto AN, Ximendes E, Jaque D, Carlos LD. Spotlight on Luminescence Thermometry: Basics, Challenges, and Cutting-Edge Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302749. [PMID: 37480170 DOI: 10.1002/adma.202302749] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Indexed: 07/23/2023]
Abstract
Luminescence (nano)thermometry is a remote sensing technique that relies on the temperature dependency of the luminescence features (e.g., bandshape, peak energy or intensity, and excited state lifetimes and risetimes) of a phosphor to measure temperature. This technique provides precise thermal readouts with superior spatial resolution in short acquisition times. Although luminescence thermometry is just starting to become a more mature subject, it exhibits enormous potential in several areas, e.g., optoelectronics, photonics, micro- and nanofluidics, and nanomedicine. This work reviews the latest trends in the field, including the establishment of a comprehensive theoretical background and standardized practices. The reliability, repeatability, and reproducibility of the technique are also discussed, along with the use of multiparametric analysis and artificial-intelligence algorithms to enhance thermal readouts. In addition, examples are provided to underscore the challenges that luminescence thermometry faces, alongside the need for a continuous search and design of new materials, experimental techniques, and analysis procedures to improve the competitiveness, accessibility, and popularity of the technology.
Collapse
Affiliation(s)
- Carlos D S Brites
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Riccardo Marin
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Markus Suta
- Inorganic Photoactive Materials, Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Albano N Carneiro Neto
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Erving Ximendes
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Daniel Jaque
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Luís D Carlos
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
4
|
Fan Q, Sun C, Hu B, Wang Q. Recent advances of lanthanide nanomaterials in Tumor NIR fluorescence detection and treatment. Mater Today Bio 2023; 20:100646. [PMID: 37214552 PMCID: PMC10195989 DOI: 10.1016/j.mtbio.2023.100646] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Lanthanide nanomaterials have garnered significant attention from researchers among the main near-infrared (NIR) fluorescent nanomaterials due to their excellent chemical and fluorescence stability, narrow emission band, adjustable luminescence color, and long lifetime. In recent years, with the preparation, functional modification, and fluorescence improvement of lanthanide materials, great progress has been made in their application in the biomedical field. This review focuses on the latest progress of lanthanide nanomaterials in tumor diagnosis and treatment, as well as the interaction mechanism between fluorescence and biological tissues. We introduce a set of efficient strategies for improving the fluorescence properties of lanthanide nanomaterials and discuss some representative in-depth research work in detail, showcasing their superiority in early detection of ultra-small tumors, phototherapy, and real-time guidance for surgical resection. However, lanthanide nanomaterials have only realized a portion of their potential in tumor applications so far. Therefore, we discuss promising methods for further improving the performance of lanthanide nanomaterials and their future development directions.
Collapse
Affiliation(s)
- Qi Fan
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
| | - Chao Sun
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
| | - Bingliang Hu
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
| | - Quan Wang
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
| |
Collapse
|
5
|
Pretto T, Franca M, Zani V, Gross S, Pedron D, Pilot R, Signorini R. A Sol-Gel/Solvothermal Synthetic Approach to Titania Nanoparticles for Raman Thermometry. SENSORS (BASEL, SWITZERLAND) 2023; 23:2596. [PMID: 36904800 PMCID: PMC10007076 DOI: 10.3390/s23052596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The accurate determination of the local temperature is one of the most important challenges in the field of nanotechnology and nanomedicine. For this purpose, different techniques and materials have been extensively studied in order to identify both the best-performing materials and the techniques with greatest sensitivity. In this study, the Raman technique was exploited for the determination of the local temperature as a non-contact technique and titania nanoparticles (NPs) were tested as nanothermometer Raman active material. Biocompatible titania NPs were synthesized following a combination of sol-gel and solvothermal green synthesis approaches, with the aim of obtaining pure anatase samples. In particular, the optimization of three different synthesis protocols allowed materials to be obtained with well-defined crystallite dimensions and good control over the final morphology and dispersibility. TiO2 powders were characterized by X-ray diffraction (XRD) analyses and room-temperature Raman measurements, to confirm that the synthesized samples were single-phase anatase titania, and using SEM measurements, which clearly showed the nanometric dimension of the NPs. Stokes and anti-Stokes Raman measurements were collected, with the excitation laser at 514.5 nm (CW Ar/Kr ion laser), in the temperature range of 293-323 K, a range of interest for biological applications. The power of the laser was carefully chosen in order to avoid possible heating due to the laser irradiation. The data support the possibility of evaluating the local temperature and show that TiO2 NPs possess high sensitivity and low uncertainty in the range of a few degrees as a Raman nanothermometer material.
Collapse
Affiliation(s)
- Thomas Pretto
- Department of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Marina Franca
- Department of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, I-50121 Firenze, Italy
| | - Veronica Zani
- Department of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, I-50121 Firenze, Italy
| | - Silvia Gross
- Department of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, I-50121 Firenze, Italy
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Danilo Pedron
- Department of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, I-50121 Firenze, Italy
| | - Roberto Pilot
- Department of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, I-50121 Firenze, Italy
| | - Raffaella Signorini
- Department of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, I-50121 Firenze, Italy
| |
Collapse
|