1
|
Kim D, You J, Lee DH, Hong H, Kim D, Park Y. Photocatalytic furan-to-pyrrole conversion. Science 2024; 386:99-105. [PMID: 39361748 DOI: 10.1126/science.adq6245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 10/05/2024]
Abstract
The identity of a heteroatom within an aromatic ring influences the chemical properties of that heterocyclic compound. Systematically evaluating the effect of a single atom, however, poses synthetic challenges, primarily as a result of thermodynamic mismatches in atomic exchange processes. We present a photocatalytic strategy that swaps an oxygen atom of furan with a nitrogen group, directly converting the furan into a pyrrole analog in a single intermolecular reaction. High compatibility was observed with various furan derivatives and nitrogen nucleophiles commonly used in drug discovery, and the late-stage functionalization furnished otherwise difficult-to-access pyrroles from naturally occurring furans of high molecular complexity. Mechanistic analysis suggested that polarity inversion through single electron transfer initiates the redox-neutral atom exchange processes at room temperature.
Collapse
Affiliation(s)
- Donghyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaehyun You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Da Hye Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hojin Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Yoonsu Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Lauridsen PJ, Kim YJ, Marron DP, Zhu JS, Waymouth RM, Du Bois J. Ligand Oxidation Activates a Ruthenium(II) Precatalyst for C-H Hydroxylation. J Am Chem Soc 2024; 146:23067-23074. [PMID: 39134028 DOI: 10.1021/jacs.4c04117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
A new class of Ru-sulfonamidate precatalysts for sp3 C-H hydroxylation is described along with a versatile process for assembling unique heteroleptic Ru(II) complexes. The latter has enabled structure-performance studies to identify an optimal precatalyst, 2h, bearing one 4,4'-di-tert-butylbipyridine (dtbpy) and one pyridylsulfonamidate ligand. Single-crystal X-ray analysis confirmed the structure and stereochemistry of this adduct. Catalytic hydroxylation reactions are conveniently performed in an aqueous, biphasic solvent mixture with 1 mol % 2h and ceric ammonium nitrate as the terminal oxidant and deliver oxidized products in yields ranging from 37 to 90%. A comparative mechanistic investigation of 2h against a related homoleptic precatalyst, [Ru(dtbpy)2(MeCN)2](OTf)2, convincingly establishes that the former generates one or more surprisingly long-lived active species under the reaction conditions, thus accounting for the high turnover numbers. Structure-performance, kinetics, mass spectrometric, and electrochemical analyses reveal that ligand oxidation is a prerequisite for catalyst activation. Our findings sharply contrast a large body of prior art showing that ligand oxidation is detrimental to catalyst function. We expect these results to stimulate future innovations in C-H oxidation research.
Collapse
Affiliation(s)
- Paul J Lauridsen
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Yeon Jung Kim
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Daniel P Marron
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Jie S Zhu
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - J Du Bois
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| |
Collapse
|
3
|
Chakraborty T, Naskar G, Jeganmohan M. Palladium-Catalyzed Selective Benzylic C-H Alkylation of Aromatic Sulfonamides with Maleimides. J Org Chem 2024; 89:10624-10638. [PMID: 38995675 DOI: 10.1021/acs.joc.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
An efficient method for the selective benzylic C-H alkylation of sulfonamides using maleimides has been developed. The reaction proceeds via the benzylic C(sp3)-H bond activation of sulfonamide in the presence of a Pd(II) catalyst without requiring any oxidant, additive, or external ligand. This methodology is highly compatible with a wide variety of substituted maleimides. A plausible reaction mechanism is also proposed to account for this alkylation reaction.
Collapse
Affiliation(s)
- Trisha Chakraborty
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Gouranga Naskar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
4
|
Keerthana MS, Jeganmohan M. Palladium-catalyzed site-selective functionalization of unactivated alkenes with vinylcyclopropanes aided by weakly coordinating native amides. Chem Commun (Camb) 2024; 60:7347-7350. [PMID: 38916280 DOI: 10.1039/d4cc01034e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Herein, we have demonstrated a palladium-catalyzed regioselective allylation of unactivated alkenes with vinylcyclopropanes assisted by weak-coordinating native amides. The reaction exhibits wide substrate scope and excellent β-selectivity. Substrate diversification was performed to demonstrate the synthetic utility of the reaction. Mechanistic investigations were carried out to provide an insight into the reaction mechanism.
Collapse
Affiliation(s)
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
5
|
Mohamadpour F, Amani AM. Photocatalytic systems: reactions, mechanism, and applications. RSC Adv 2024; 14:20609-20645. [PMID: 38952944 PMCID: PMC11215501 DOI: 10.1039/d4ra03259d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The photocatalytic field revolves around the utilization of photon energy to initiate various chemical reactions using non-adsorbing substrates, through processes such as single electron transfer, energy transfer, or atom transfer. The efficiency of this field depends on the capacity of a light-absorbing metal complex, organic molecule, or substance (commonly referred to as photocatalysts or PCs) to execute these processes. Photoredox techniques utilize photocatalysts, which possess the essential characteristic of functioning as both an oxidizing and a reducing agent upon activation. In addition, it is commonly observed that photocatalysts exhibit optimal performance when irradiated with low-energy light sources, while still retaining their catalytic activity under ambient temperatures. The implementation of photoredox catalysis has resuscitated an array of synthesis realms, including but not limited to radical chemistry and photochemistry, ultimately affording prospects for the development of the reactions. Also, photoredox catalysis is utilized to resolve numerous challenges encountered in medicinal chemistry, as well as natural product synthesis. Moreover, its applications extend across diverse domains encompassing organic chemistry and catalysis. The significance of photoredox catalysts is rooted in their utilization across various fields, including biomedicine, environmental pollution management, and water purification. Of course, recently, research has evaluated photocatalysts in terms of cost, recyclability, and pollution of some photocatalysts and dyes from an environmental point of view. According to these new studies, there is a need for critical studies and reviews on photocatalysts and photocatalytic processes to provide a solution to reduce these limitations. As a future perspective for research on photocatalysts, it is necessary to put the goals of researchers on studies to overcome the limitations of the application and efficiency of photocatalysts to promote their use on a large scale for the development of industrial activities. Given the significant implications of the subject matter, this review seeks to delve into the fundamental tenets of the photocatalyst domain and its associated practical use cases. This review endeavors to demonstrate the prospective of a powerful tool known as photochemical catalysis and elucidate its underlying tenets. Additionally, another goal of this review is to expound upon the various applications of photocatalysts.
Collapse
Affiliation(s)
- Farzaneh Mohamadpour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
6
|
Uvarova ES, Kutasevich AV, Lipatov ES, Pytskii IS, Raitman OA, Selivantev YM, Mityanov VS. Three-component cascade reaction of 3-ketonitriles, 2-unsubstituted imidazole N-oxides, and aldehydes. Org Biomol Chem 2024; 22:4297-4308. [PMID: 38717323 DOI: 10.1039/d4ob00353e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A three-component condensation of 2-unsubstituted imidazole N-oxides, 3-ketonitriles, and aldehydes is described. The reaction proceeds via sequential Knoevenagel condensation/Michael addition under mild, catalyst-free conditions with various substrates. Furthermore, the corresponding 2-functionalized imidazole N-oxides can be further dehydrated to (Z)-2-aroyl-3-(1H-imidazol-2-yl)-acrylonitriles, which may also be directly prepared by changing the reaction conditions as a cascade of Knoevenagel condensation/Michael addition/dehydration.
Collapse
Affiliation(s)
- Ekaterina S Uvarova
- Mendeleev University of Chemical Technology, Miusskaya Sq., 9, Moscow 125047, Russian Federation.
| | - Anton V Kutasevich
- Mendeleev University of Chemical Technology, Miusskaya Sq., 9, Moscow 125047, Russian Federation.
| | - Egor S Lipatov
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, Vavilov str. 28/1, 119334 Moscow, Russian Federation
- Higher Chemical College of Russian Academy of Sciences, D.I. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russian Federation
| | - Ivan S Pytskii
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Academy of Sciences, Leninsky Prospect 31 bldg. 4, 119071 Moscow, Russian Federation
| | - Oleg A Raitman
- Mendeleev University of Chemical Technology, Miusskaya Sq., 9, Moscow 125047, Russian Federation.
| | - Yuriy M Selivantev
- Mendeleev University of Chemical Technology, Miusskaya Sq., 9, Moscow 125047, Russian Federation.
| | - Vitaly S Mityanov
- Mendeleev University of Chemical Technology, Miusskaya Sq., 9, Moscow 125047, Russian Federation.
| |
Collapse
|
7
|
Suzuki H, Kiyobe S, Matsuda T. Rhodium-catalysed additive-free carbonylation of benzamides with diethyl dicarbonate as a carbonyl source. Org Biomol Chem 2024; 22:2744-2748. [PMID: 38470370 DOI: 10.1039/d4ob00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Phthalimides are prevalent in numerous pharmaceuticals, prompting various phthalimide syntheses through C-H activation. Nevertheless, the necessity for stoichiometric additives limits their practicality and versatility. Herein, we introduced diethyl dicarbonate as a carbonyl source for an additive-free carbonylation of benzamides. This transformation signifies an operationally simple and CO-free phthalimide synthesis.
Collapse
Affiliation(s)
- Hirotsugu Suzuki
- Tenure-Track Program for Innovative Research, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan.
| | - Seigo Kiyobe
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| |
Collapse
|
8
|
Nolasco-Hernández Á, Quintero L, Cruz-Gregorio S, Sartillo-Piscil F. β-Alkenylation of Saturated N-Heterocycles via a C(sp 3)-O Bond Wittig-like Olefination. J Org Chem 2024; 89:1762-1768. [PMID: 38215398 PMCID: PMC10845111 DOI: 10.1021/acs.joc.3c02466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
Although the C-Hα functionalization of N-heterocycles is, in fact, an easy chemical transformation, the C-Hβ functionalization is, on the contrary, a quite difficult chemical process. Here, we present a two-step protocol that allows the ready conversion of pyrrolidines, piperidines, and an azepane into their corresponding 3-exo-alkenyl lactams via the transient formation of 3-alkoxyamino lactams followed by a Wittig-like C(sp3)-O bond olefination with stabilized ylides from phosphonium salts mediated by t-BuOK. Additionally, as a proof of the synthetic effectiveness of this novel methodology, the first synthesis of the natural product callylactam A was achieved through a TiCl4-catalyzed double bond isomerization of a 3-exo-alkenyl 2-piperidone to its endo-isomer.
Collapse
Affiliation(s)
- Ángel
A. Nolasco-Hernández
- Centro de Investigación
de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San
Manuel, 72570 Puebla, México
| | - Leticia Quintero
- Centro de Investigación
de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San
Manuel, 72570 Puebla, México
| | - Silvano Cruz-Gregorio
- Centro de Investigación
de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San
Manuel, 72570 Puebla, México
| | - Fernando Sartillo-Piscil
- Centro de Investigación
de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San
Manuel, 72570 Puebla, México
| |
Collapse
|
9
|
Pipaón Fernández N, Cruise O, Easton SEF, Kaplan JM, Woodard JL, Hruszkewycz DP, Leitch DC. Direct Heterocycle C-H Alkenylation via Dual Catalysis Using a Palladacycle Precatalyst: Multifactor Optimization and Scope Exploration Enabled by High-Throughput Experimentation. J Org Chem 2024. [PMID: 38206166 DOI: 10.1021/acs.joc.3c02311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
One of the major challenges in developing catalytic methods for C-C bond formation is the identification of generally applicable reaction conditions, particularly if multiple substrate structural classes are involved. Pd-catalyzed direct arylation reactions are powerful transformations that enable direct functionalization of C-H bonds; however, the corresponding direct alkenylation reactions, using vinyl (pseudo) halide electrophiles, are less well developed. Inspired by process development efforts toward GSK3368715, an investigational active pharmaceutical ingredient, we report that a Pd(II) palladacycle derived from tri-tert-butylphosphine and Pd(OAc)2 is an effective single-component precatalyst for a variety of direct alkenylation reactions. High-throughput experimentation identified optimal solvent/base combinations for a variety of HetAr-H substrate classes undergoing C-H activation without the need for cocatalysts or stoichiometric silver bases (e.g., Ag2CO3). We propose this reaction proceeds via a dual cooperative catalytic mechanism, where in situ-generated Pd(0) supports a canonical Pd(0)/(II) cross-coupling cycle and the palladacycle effects C-H activation via CMD in a redox-neutral cycle. In all, 192 substrate combinations were tested with a hit rate of approximately 40% and 24 isolated examples. Importantly, this method was applied to prepare a key intermediate in the synthesis of GSK3368715 on multigram scale.
Collapse
Affiliation(s)
- Nahiane Pipaón Fernández
- Department of Chemistry, University of Victoria, 3800 Finnerty Road., Victoria, Briish Columbia V8P 5C2, Canada
| | - Odhran Cruise
- Department of Chemistry, University of Victoria, 3800 Finnerty Road., Victoria, Briish Columbia V8P 5C2, Canada
| | - Sarah E F Easton
- Department of Chemistry, University of Victoria, 3800 Finnerty Road., Victoria, Briish Columbia V8P 5C2, Canada
| | - Justin M Kaplan
- Chemical Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - John L Woodard
- Chemical Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Damian P Hruszkewycz
- Chemical Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - David C Leitch
- Department of Chemistry, University of Victoria, 3800 Finnerty Road., Victoria, Briish Columbia V8P 5C2, Canada
| |
Collapse
|
10
|
Zhu M, Zhu M, Wei F, Shao C, Li X, Liu B. Synthesis of Bridged Cycloisoxazoline Scaffolds via Rhodium-Catalyzed Coupling of Nitrones with Cyclic Carbonate. J Org Chem 2023; 88:16330-16339. [PMID: 37966420 DOI: 10.1021/acs.joc.3c01840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bridged isoxazolidines were synthesized via Rh(III)-catalyzed C-H allylation of α-aryl nitrones with 5-methylene-1,3-dioxan-2-one. The nitrone group serves as a directing group and 1,3-dipole in the C-H activation/[3 + 2] cycloaddition cascade, exhibiting excellent chemo- and stereoselectivity along with good functional group compatibility. The resulting skeletal structure was conveniently modified to produce a range of important chemical frameworks, and the protocol was applied to biologically active molecules.
Collapse
Affiliation(s)
- Man Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengdie Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Fangjie Wei
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chongjing Shao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xingwei Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bingxian Liu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
11
|
Sinha SK, Ghosh P, Jain S, Maiti S, Al-Thabati SA, Alshehri AA, Mokhtar M, Maiti D. Transition-metal catalyzed C-H activation as a means of synthesizing complex natural products. Chem Soc Rev 2023; 52:7461-7503. [PMID: 37811747 DOI: 10.1039/d3cs00282a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Over the past few decades, the advent of C-H activation has led to a rethink among chemists about the synthetic strategies employed for multi-step transformations. Indeed, deploying innovative and masterful tricks against the numerous classical organic transformations has been the need of the hour. Despite this, the immense importance of C-H activation remains unfulfilled unless the methodology can be deployed for large-scale industrial processes and towards the concise, step-economic synthesis of prodigious natural products and pharmaceutical drugs. Lately, the growing potential of C-H activation methodology has indeed driven the pioneers of synthetic organic chemists into finding more efficient methods to accelerate the synthesis of such complex molecular scaffolds. This review aims to draw a general overview of the various C-H activation procedures that have been adopted for synthesizing these vast majority of structurally complicated natural products. Our objective lies in drawing a complete picture and taking the readers through the synthesis of a series of such complex organic compounds by simplified techniques, making it step-economic on a larger scale and thus instigating the readers to trigger the use of such methodology and uncover new, unique patterns for future synthesis of such natural products.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Pintu Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Shubhanshu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Biosciences, Engineering and Technology, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh - 466114, India
| | - Shaeel A Al-Thabati
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Abdulmohsen Ali Alshehri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Mohamed Mokhtar
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
12
|
Arjun V, Jeganmohan M. Chiral Transient Ligand Enabled Enantioselective Synthesis of Atropisomers Decorated with Unactivated Olefins via a Palladium-Catalyzed C-H Olefination. Org Lett 2023; 25:7606-7611. [PMID: 37843003 DOI: 10.1021/acs.orglett.3c02721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Herein, atroposelective synthesis of axially chiral biaryls with unactivated olefins by a palladium-catalyzed C-H olefination using a chiral transient directing group strategy has been disclosed. This protocol is well compatible with a variety of biaryl-2-aldehydes as well as various olefins such as allyl sulfonamides and allyl sulfones to provide the atroposelective olefinated products in synthetically useful yields with excellent enantioselectivities up to >99% ee. In addition, a wide number of axially chiral biaryl alcohols were synthesized by the simple diversification of the products in excellent enantioselectivity.
Collapse
Affiliation(s)
- Vadivel Arjun
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
13
|
Hirako N, Yasui T, Yamamoto Y. Rh(iii)-catalyzed highly site- and regio-selective alkenyl C-H activation/annulation of 4-amino-2-quinolones with alkynes via reversible alkyne insertion. Chem Sci 2023; 14:10971-10978. [PMID: 37829027 PMCID: PMC10566469 DOI: 10.1039/d3sc03987k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
3,4-Fused 2-quinolone frameworks are important structural motifs found in natural products and biologically active compounds. Intermolecular alkenyl C-H activation/annulation of 4-amino-2-quinolone substrates with alkynes is one of the most efficient methods for accessing such structural motifs. However, this is a formidable challenge because 4-amino-2-quinolones have two cleavable C-H bonds: an alkenyl C-H bond at the C3-position and an aromatic C-H bond at the C5-position. Herein, we report the Rh(iii)-catalyzed highly site-selective alkenyl C-H functionalization of 4-amino-2-quinolones to afford 3,4-fused 2-quinolones. This method has a wide substrate scope, including unsymmetrical internal alkynes, with complete regioselectivity. Several control experiments using an isolated key intermediate analog suggested that the annulation reaction proceeds via reversible alkyne insertion involving a binuclear Rh complex although alkyne insertion is generally recognized as an irreversible process due to the high activation barrier of the reverse process.
Collapse
Affiliation(s)
- Naohiro Hirako
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho Chikusa Nagoya 464-8603 Japan
| | - Takeshi Yasui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho Chikusa Nagoya 464-8603 Japan
| | - Yoshihiko Yamamoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho Chikusa Nagoya 464-8603 Japan
| |
Collapse
|
14
|
Baghel AS, Pratap R, Kumar A. Ru(II)-Catalyzed Weakly Coordinating Carbonyl-Assisted Dialkynylation of (Hetero)Aryl Ketones. J Org Chem 2023. [PMID: 37307505 DOI: 10.1021/acs.joc.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functionalized aryl(heteroaryl) ketones are present in many natural products as key structural components and serve as basic synthetic building blocks for various organic transformation reactions. Therefore, the development of an effective and sustainable route for making these classes of compounds remains challenging yet highly desirable. Herein, we report a simple and efficient catalytic system for dialkynylation of aromatic/heteroaromatic ketones via a double C-H bond activation in the presence of less expensive ruthenium(II)-salt as a catalyst using the weakly and native carbonyl group as the desired directing group. The developed protocol is highly compatible, tolerant, and sustainable toward various functional groups. The synthetic utility of the developed protocol has been demonstrated through the scale-up synthesis and functional group transformation. Control experiments support the involvement of the base-assisted internal electrophilic substitution (BIES) reaction pathway.
Collapse
Affiliation(s)
- Akanksha Singh Baghel
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Ramendra Pratap
- Department of Chemistry, Delhi University, Delhi 110007, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| |
Collapse
|
15
|
Liu X, Chu X. Metal-Free Synthesis of Functionalized Quinolines from 2-Styrylanilines and 2-Methylbenzothiazoles/2-Methylquinolines. ACS OMEGA 2023; 8:6940-6944. [PMID: 36844512 PMCID: PMC9948197 DOI: 10.1021/acsomega.2c07736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
A facile functionalization of C(sp3)-H bonds and tandem cyclization strategy to synthesize quinoline derivatives from 2-methylbenzothiazoles or 2-methylquinolines and 2-styrylanilines has been developed. This work avoids the requirement for transition metals, offering a mild approach to activation of C(sp3)-H bonds and formation of new C-C and C-N bonds. This strategy features excellent functional group tolerance and scaled-up synthetic capability, thus providing an efficient and environmentally friendly access to medicinally valuable quinolines.
Collapse
|
16
|
Dethe DH, Srivastava A, Nirpal AK, Beeralingappa NC, Kumar V, Bhat AA. Diversification of ( E,E)-1,6-Dioxo-2,4-Dienes for the Synthesis of (+)-Aspicillin, Isolaurepan, and β-Parinaric Acid. J Org Chem 2022; 87:11021-11030. [PMID: 35921130 DOI: 10.1021/acs.joc.2c01280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A divergent formal synthesis of polyhydroxylated macrocyclic lactone (+)-aspicillin and polyene bioactive natural product β-parinaric acid and the total synthesis of non-terpenoid metabolite isolaurepan have been achieved using a ruthenium-catalyzed stereo- and chemoselective oxidative coupling reaction of easily accessible vinyl ketones and acrylates. The crucial transformation involves the efficient synthesis and functionalization of stereodefined (E,E)-1,6-dioxo-2,4-dienes using simple reaction protocols, which enabled straightforward access to a diverse range of bioactive natural products.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Aparna Srivastava
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Appasaheb K Nirpal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | | - Vimlesh Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Arsheed A Bhat
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|