1
|
Zhang ZF, Su MD. Mechanistic Insights into the Reactivity and Activation Barrier Origins for CO 2 Capture by Heavy Group-14 Imine Analogues. Inorg Chem 2024; 63:19687-19700. [PMID: 39385624 DOI: 10.1021/acs.inorgchem.4c02874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Using M06-2X-D3/def2-TZVP, the [2 + 2] cycloaddition reactions of carbon dioxide with the heavy imine analogues G14=N-Rea (G14 = Group 14 element) were investigated. The theoretical evidence reveals that the nature of the doubly bonded G14=N moiety in heavy imine analogues, G14=N-Rea (L1L2G14=N-L3), is characterized by the electron-sharing interaction between triplet L1L2G14 and triplet N-L3 fragments. Based on our theoretical studies, except for the carbon-based imine, all four heavy imine analogues with Si=N, Ge=N, Sn=N, and Pb=N groups can easily engage in [2 + 2] cycloaddition reactions with CO2. Energy decomposition analysis-natural orbitals for chemical valence analyses and the FMO theory strongly suggest that in the CO2 capture reaction by heavy imine analogues G14=N-Rea, the primary bonding interaction is the occupied p-π orbital (G14=N-Rea) → vacant p-π* orbital (CO2) interaction, instead of the empty p-π* orbital (G14=N-Rea) ← filled p-π orbital (CO2) interaction. The activation barrier of the CO2 capture reactions by G14=N-Rea molecules is primarily determined by the deformation energy of CO2. Shaik's valence bond state correlation diagram model, used to rationalize the computed results, indicates that the singlet-triplet energy splitting of G14=N-Rea is a key factor in determining the reaction barrier for the current CO2 capture reactions.
Collapse
Affiliation(s)
- Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
2
|
Evans MJ, Parr JM, Nguyen DT, Jones C. An isolable stannaimine and its cycloaddition/metathesis reactions with carbon dioxide. Chem Commun (Camb) 2024; 60:10350-10353. [PMID: 39219473 DOI: 10.1039/d4cc04006f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An N-heterocyclic stannylene :Sn(NONAd) (NONAd = [O(SiMe2NAd)2]2-, Ad = 1-adamantyl), reacts rapidly with 2,4,6-tricyclohexylphenyl azide (TCHP)N3, affording a stannaimine, (NONAd)SnN(TCHP). Solutions of (NONAd)SnN(TCHP) react immediately with carbon dioxide (CO2) to give a [2+2]-cycloaddition product, which, upon heating, subsequently engages in a metathesis process to give [Sn(NONAd)(μ-O)]2 and the bulky isocyanate, (TCHP)NCO.
Collapse
Affiliation(s)
- Matthew J Evans
- School of Chemistry, Monash University, Melbourne, PO Box 23, Victoria, 3800, Australia.
| | - Joseph M Parr
- School of Chemistry, Monash University, Melbourne, PO Box 23, Victoria, 3800, Australia.
| | - Dat T Nguyen
- School of Chemistry, Monash University, Melbourne, PO Box 23, Victoria, 3800, Australia.
| | - Cameron Jones
- School of Chemistry, Monash University, Melbourne, PO Box 23, Victoria, 3800, Australia.
| |
Collapse
|
3
|
Chen H, Chen Y, Li T, Wang D, Xu L, Tan G. Synthesis and Reactivity of N-Heterocyclic Carbene Coordinated Formal Germanimidoyl-Phosphinidenes. Inorg Chem 2023; 62:20906-20912. [PMID: 38095884 DOI: 10.1021/acs.inorgchem.3c03353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Treatment of N-heterocyclic carbene (NHC) ligated germylidenylphosphinidene MsFluidtBu-GeP(NHCiPr) (where MsFluidtBu is a bulky hydrindacene substituent, and NHCiPr is 1,3-diisopropyl-4,5-dimethyl-imidazolin-2-ylidene) with mesityl azide and 4-tertbutylphenyl azide afforded NHC coordinated formal germanimidoyl-phosphinidenes, which represent the first compounds bearing both Ge═N double bond and phosphinidene functionalities. Studies of the chemical properties revealed that the reactions preferred to occur at the Ge═N double bond, which underwent [2 + 2] cycloadditions with CO2 and ethyl isocyanate, and coordinated with coinage metals through the nitrogen atom.
Collapse
Affiliation(s)
- Haonan Chen
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yizhen Chen
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tong Li
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Dongmin Wang
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lei Xu
- Jiangsu Key Lab of Data Engineering and Knowledge Service, Key Laboratory of Data Intelligence and Interdisciplinary Innovation, Nanjing University, Nanjing 210023, China
| | - Gengwen Tan
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
4
|
Guthardt R, Jacob HL, Bruhn C, Siemeling U. A complete series of N-heterocyclic tetrylenes (Si-Pb) with a 1,1'-ferrocenediyl backbone enabled by 1,3,2-diazaborolyl N-substituents. Dalton Trans 2023; 52:14380-14389. [PMID: 37781741 DOI: 10.1039/d3dt02684a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The use of bulky 1,3,2-diazaborolyl N-substituents has allowed the synthesis of the complete series of ferrocene-based N-heterocyclic tetrylenes fc[(N{B})2E] (fc = 1,1'-ferrocenediyl, {B} = (HCNC6H3-2,6-iPr2)2B, E = Si-Pb). The silylene fc[(N{B})2Si] is inert towards NH3, CO2 or N2O under ambient conditions and thus significantly less reactive than the N-aryl homologue fc[(NC6H3-2,6-iPr2)2Si]. In accord with its higher reactivity, computational results indicate a more pronounced ambiphilicity of fc[(NC6H3-2,6-iPr2)2Si]. Our computational investigation of the model compound fc[(NBMe2)2Si] suggests that silylenes of this type may be superior to fc[(NC6H3-2,6-iPr2)2Si] in terms of ambiphilicity.
Collapse
Affiliation(s)
- Robin Guthardt
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Hannes L Jacob
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Clemens Bruhn
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Ulrich Siemeling
- Institute of Chemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
| |
Collapse
|
5
|
Feng Z, Wang L, Mohammed SNBS, Rao B, Kinjo R. Reactivity of Cyclic (Alkyl)(amino)germylene towards Copper(I) and Gold(I) Complexes. Chem Asian J 2023; 18:e202300634. [PMID: 37641951 DOI: 10.1002/asia.202300634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
The reactions of cyclic (alkyl)(amino)germylenes (CAAGe) with copper(I) and gold(I) complexes were investigated. CAAGe (1) reacts with CuBr(SMe2 ) leading to a tetrameric germylene complex [CAAGeCuBr]4 (2), whereas CAAGe (3) undergoes Au-Cl bond insertion with LAuCl (L=phosphine or N-heterocyclic carbene) to afford germanium gold(I) complexes (5 and 6). Chlorine abstraction of 6 gives the cationic germylene gold(I) complex 7.
Collapse
Affiliation(s)
- Zhongtao Feng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang Link 21, Singapore, 637371, Singapore
| | - Liliang Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang Link 21, Singapore, 637371, Singapore
| | | | - Bin Rao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang Link 21, Singapore, 637371, Singapore
| | - Rei Kinjo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang Link 21, Singapore, 637371, Singapore
| |
Collapse
|
6
|
Zhu L, Kinjo R. Reactions of main group compounds with azides forming organic nitrogen-containing species. Chem Soc Rev 2023; 52:5563-5606. [PMID: 37519098 DOI: 10.1039/d3cs00290j] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Since the seminal discovery of phenyl azide by Grieß in 1864, a variety of organic azides (R-N3) have been developed and extensively studied. The amenability of azides to a number of reactions has expanded their utility as building blocks not only in organic synthesis but also in bioorthogonal chemistry and materials science. Over the decades, it has been demonstrated that the reactions of main group compounds with azides lead to diverse N-containing main group molecules. In view of the pronounced progress in this area, this review summarizes the reactions of main group compounds with azides, emphatically introducing their reaction patterns and mechanisms. The reactions of forming inorganic nitrogen species are not included in this review.
Collapse
Affiliation(s)
- Lizhao Zhu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang Link 21, Singapore 637371, Singapore.
| | - Rei Kinjo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang Link 21, Singapore 637371, Singapore.
| |
Collapse
|
7
|
Zaitsev KV, Trubachev AD, Poleshchuk OK. Germanium Complexes with ONO Tridentate Ligands: O-H Bond Activation Control According to DFT Calculations. Int J Mol Sci 2023; 24:10218. [PMID: 37373364 DOI: 10.3390/ijms241210218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Polydentate ligands are used for thermodynamic stabilization of tetrylenes-low-valent derivatives of Group 14 elements (E = Si, Ge, Sn, Pb). This work shows by DFT calculations how the structure (the presence or absence of substituents) and type (alcoholic, Alk, or phenolic, Ar) of tridentate ligands 2,6-pyridinobis(1,2-ethanols) [AlkONOR]H2 and 2,6-pyridinobis(1,2-phenols) [ArONOR]H2 (R = H, Me) may affect the reactivity or stabilization of tetrylene, indicating the unprecedented behavior of Main Group elements. This enables the unique control of the type of the occurring reaction. We found that unhindered [ONOH]H2 ligands predominantly led to hypercoordinated bis-liganded {[ONOH]}2Ge complexes, where an E(+2) intermediate was inserted into the ArO-H bond with subsequent H2 evolution. In contrast, substituted [ONOMe]H2 ligands gave [ONOMe]Ge: germylenes, which may be regarded as kinetic stabilized products; their transformation into E(+4) species is also thermodynamically favorable. The latter reaction is more probable for phenolic [ArONO]H2 ligands than for alcoholic [AlkONO]H2. The thermodynamics and possible intermediates of the reactions were also investigated.
Collapse
Affiliation(s)
- Kirill V Zaitsev
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskye Gory 1, 3, 119991 Moscow, Russia
| | - Andrey D Trubachev
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskye Gory 1, 3, 119991 Moscow, Russia
| | - Oleg Kh Poleshchuk
- Faculty of Chemistry, National Research Tomsk State University, Lenin Av., 36, 634050 Tomsk, Russia
- Department of Chemistry, Tomsk State Pedagogical University, Kievskaya Str., 60, 634061 Tomsk, Russia
| |
Collapse
|
8
|
Li T, Zhang L, He Y, Chen Y, Wang D, Liu J, Tan G. A germanimidoyl chloride: synthesis, characterization and reactivity. Chem Commun (Camb) 2023; 59:1533-1536. [PMID: 36661338 DOI: 10.1039/d2cc05970c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The first germanimidoyl chloride MsFluindtBu-Ge(Cl)NMes (2, where MsFluindtBu is a bulky hydrindacene skeleton) was synthesized through the reaction of MsFluindtBu-GeCl (1) and mesityl azide (MesN3). In contrast, treatment of 1 with a less bulky azide ArN3 (Ar = 4-tBuC6H4) produced a germatetrazole chloride MsFluindtBu-Ge(Cl)N4Ar2 (3), and a salt [MsFluindtBu-GeN4Ar2]+[BArF4]- (4; ArF = 3,5-(CF3)2C6H3) followed by chloride abstraction with NaBArF4, both bearing a five-membered GeN4 ring. Functionalization of 2 with Ar'Li (Ar' = 3,5-tBu2C6H3) or MeLi furnished a germanimine MsFluindtBu-Ge(Ar')NMes (5) or an amide lithium salt MsFluindtBu-Ge(Me)2-N(Mes)Li(thf) (6).
Collapse
Affiliation(s)
- Tong Li
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Li Zhang
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China
| | - Yuhao He
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Yizhen Chen
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Dongmin Wang
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jingjing Liu
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Gengwen Tan
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. .,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|