1
|
Wang Y, Yue X, Zhao H, Ma L, Zhou L, Liu Y, Zheng X, He Y, Liu G, Jiang Y. Heteroatom Structural Engineering of Conjugated Porous Polymers Enhances Photocatalytic Nicotinamide Cofactor Regeneration. CHEMSUSCHEM 2024; 17:e202301868. [PMID: 38342756 DOI: 10.1002/cssc.202301868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
Photocatalysis is an eco-friendly method to regenerate nicotinamide (NADH) cofactors, which is essential for biotransformation over oxidoreductases. Organic polymers exhibit high stability, biocompatibility and functional designability as photocatalysts, but still suffering from rapid charge recombination. Herewith the heteroatom structural engineering of donor-π-acceptor (D-π-A) conjugated porous polymers were conducted to promote charge transfer and photocatalytic NADH regeneration. The electron delocalization of polymer photocatalysts can be readily tuned by changing the electron density of the donor unit, leading to faster charge separation and better photocatalytic performance. The optimum sulfur-doped polymer exhibits the highest NADH regeneration yield of 47.4 % in 30 min and 94.1 % in 4 h, which can drive the biocatalytic C=C bond reduction of 2-cyclohexen-1-one by ene-reductase, giving the corresponding cyclohexanone yield of 96.7 % in 10 h. Moreover, the oxygen-doped polymer, from biomass derived 2,5-diformylfuran, exhibits comparable photocatalytic activity to the sulfur-doped CPP, suggesting the potential of furan as alternative donor unit to thiophene.
Collapse
Affiliation(s)
- Yujie Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xiaoyang Yue
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Hao Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Li Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Liya Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Yunting Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xiaobing Zheng
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Ying He
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Guanhua Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, P. R. China
| |
Collapse
|
2
|
Liu Y, Pulignani C, Webb S, Cobb SJ, Rodríguez-Jiménez S, Kim D, Milton RD, Reisner E. Electrostatic [FeFe]-hydrogenase-carbon nitride assemblies for efficient solar hydrogen production. Chem Sci 2024; 15:6088-6094. [PMID: 38665532 PMCID: PMC11040649 DOI: 10.1039/d4sc00640b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
The assembly of semiconductors as light absorbers and enzymes as redox catalysts offers a promising approach for sustainable chemical synthesis driven by light. However, achieving the rational design of such semi-artificial systems requires a comprehensive understanding of the abiotic-biotic interface, which poses significant challenges. In this study, we demonstrate an electrostatic interaction strategy to interface negatively charged cyanamide modified graphitic carbon nitride (NCNCNX) with an [FeFe]-hydrogenase possessing a positive surface charge around the distal FeS cluster responsible for electron uptake into the enzyme. The strong electrostatic attraction enables efficient solar hydrogen (H2) production via direct interfacial electron transfer (DET), achieving a turnover frequency (TOF) of 18 669 h-1 (4 h) and a turnover number (TON) of 198 125 (24 h). Interfacial characterizations, including quartz crystal microbalance (QCM), photoelectrochemical impedance spectroscopy (PEIS), intensity-modulated photovoltage spectroscopy (IMVS), and transient photocurrent spectroscopy (TPC) have been conducted on the semi-artificial carbon nitride-enzyme system to provide a comprehensive understanding for the future development of photocatalytic hybrid assemblies.
Collapse
Affiliation(s)
- Yongpeng Liu
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Carolina Pulignani
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Sophie Webb
- Department of Inorganic and Analytical Chemistry, University of Geneva Geneva 41211 Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva Geneva 41211 Switzerland
| | - Samuel J Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | | | - Dongseok Kim
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Ross D Milton
- Department of Inorganic and Analytical Chemistry, University of Geneva Geneva 41211 Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva Geneva 41211 Switzerland
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
3
|
Shen J, Salmon S. Biocatalytic Membranes for Carbon Capture and Utilization. MEMBRANES 2023; 13:membranes13040367. [PMID: 37103794 PMCID: PMC10146961 DOI: 10.3390/membranes13040367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 05/12/2023]
Abstract
Innovative carbon capture technologies that capture CO2 from large point sources and directly from air are urgently needed to combat the climate crisis. Likewise, corresponding technologies are needed to convert this captured CO2 into valuable chemical feedstocks and products that replace current fossil-based materials to close the loop in creating viable pathways for a renewable economy. Biocatalytic membranes that combine high reaction rates and enzyme selectivity with modularity, scalability, and membrane compactness show promise for both CO2 capture and utilization. This review presents a systematic examination of technologies under development for CO2 capture and utilization that employ both enzymes and membranes. CO2 capture membranes are categorized by their mode of action as CO2 separation membranes, including mixed matrix membranes (MMM) and liquid membranes (LM), or as CO2 gas-liquid membrane contactors (GLMC). Because they selectively catalyze molecular reactions involving CO2, the two main classes of enzymes used for enhancing membrane function are carbonic anhydrase (CA) and formate dehydrogenase (FDH). Small organic molecules designed to mimic CA enzyme active sites are also being developed. CO2 conversion membranes are described according to membrane functionality, the location of enzymes relative to the membrane, which includes different immobilization strategies, and regeneration methods for cofactors. Parameters crucial for the performance of these hybrid systems are discussed with tabulated examples. Progress and challenges are discussed, and perspectives on future research directions are provided.
Collapse
|
4
|
Zhao H, Qi Y, Zhan P, Zhu Q, Liu X, Guan X, Zhang C, Su C, Qin P, Cai D. Artificial Photoenzymatic Reduction of Carbon Dioxide to Methanol by Using Electron Mediator and Co-factorAssembled ZnIn 2 S 4 Nanoflowers. CHEMSUSCHEM 2023:e202300061. [PMID: 36847586 DOI: 10.1002/cssc.202300061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Increased absorption of visible light, low electron-hole recombination, and fast electron transfer are the major objectives for highly effective photocatalysts in biocatalytic artificial photosynthetic systems. In this study, a polydopamine (PDA) layer containing electron mediator, [M], and NAD+ cofactor was assembled on the outer surface of ZnIn2 S4 nanoflower, and the as-prepared nanoparticle, ZnIn2 S4 /PDA@poly/[M]/NAD+ , was used for photoenzymatic methanol production from CO2 . Because of effective capturing of visible light, reduced distance of electron transfer, and elimination of electron-holes recombination, a high NADH regeneration of 80.7±1.43 % could be obtained using the novel ZnIn2 S4 /PDA@poly/[M]/NAD+ . In the artificial photosynthesis system, a maximum methanol production of 116.7±11.8 μm was obtained. The enzymes and nanoparticles in the hybrid bio-photocatalysis system could be easily recovered using the ultrafiltration membrane at the bottom of the photoreactor. This is due to the successful immobilization of the small blocks including the electron mediator and cofactor on the surface of the photocatalyst. The ZnIn2 S4 /PDA@poly/[M]/NAD+ photocatalyst exhibited good stability and recyclability for methanol production. The novel concept presented in this study shows great promise for other sustainable chemical productions through artificial photoenzymatic catalysis.
Collapse
Affiliation(s)
- Hongqing Zhao
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yanou Qi
- School of International Education, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Peng Zhan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qian Zhu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiangshi Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinyao Guan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chenxi Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Changsheng Su
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peiyong Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
5
|
Yang XT, Wang ZW, Tan X, Yin XY, Sun Y, Zhu YZ, Wang HF. Cr 3+-ZnGa 2O 4@Pt for Light-Triggered Dark Catalytic Regeneration of Nicotinamide Coenzymes without Other Electron Mediators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5273-5282. [PMID: 36648244 DOI: 10.1021/acsami.2c19907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Photocatalysts for regeneration of reduced nicotinamide adenine dinucleotide (NADH) usually work with continuous lighting and electron mediators, which causes impracticability under dark conditions, risk of NADH reoxidation, and complex separation. To solve these problems, we present a new catalyst of tiny Pt nanoparticles photodeposited on chromium-doped zinc gallate (CZGO@Pt). Upon being light-triggered, the photogenerated electrons are stored in the traps of CZGO and then gradually released and transferred by Pt to directly reduce NAD+ after stoppage of illumination. Three lighting modes are compared to demonstrate the feasibility and advantage of this light-triggered dark catalysis. Within 4 h of reaction, the in-the-dark NADH yield reaches 75.0% under prelighting CZGO@5%Pt and it reaches 80.0% under prelighting CZGO@5%Pt and triethanolamine (TEOA). However, the NADH yield is only 53.5% under continuous lighting of CZGO@5%Pt, TEOA, and NAD+. Consequently, the light-triggered dark catalytic regeneration of NADH not only saves energy and operates easily but also significantly elevates the NADH yield. It thus would secure wide interests and applications in places where no light or only intermittent light is available.
Collapse
Affiliation(s)
- Xiao-Ting Yang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
| | - Zheng-Wu Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
| | - Xin Tan
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
| | - Xia-Yin Yin
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
| | - Yang Sun
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
| | - Yi-Zhou Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - He-Fang Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
| |
Collapse
|
6
|
Li W, Zhang C, Zheng Z, Zhang X, Zhang L, Kuhn A. Fine-Tuning the Electrocatalytic Regeneration of NADH Cofactor Using [Rh(Cp*)(bpy)Cl] +-Functionalized Metal-Organic Framework Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46673-46681. [PMID: 36215128 DOI: 10.1021/acsami.2c13631] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical regeneration of the reduced form of the nicotinamide adenine dinucleotide (NADH) cofactor catalyzed by immobilized [Rh(Cp*)(bpy)Cl]+ is a promising approach for the enzymatic synthesis of many valuable chemicals with NAD-dependent dehydrogenases. However, rational control of the efficiency is often limited by the irregular structure of the electrode/electrolyte interface and the accessibility of the molecular catalyst. Here, we propose an electrochemical system for NADH cofactor regeneration, based on highly ordered three- dimensional (3D) metal-organic framework (NU-1000) films. [Rh(Cp*)(bpy)Cl]+ is incorporated at the zirconium nodes of NU-1000 via solvent-assisted ligand incorporation (SALI), leading to a diffusion-controlled behavior, associated with an electron hopping mechanism. Varying the ratio of redox-active [Rh(Cp*)(bpy)Cl]+ and inactive postgrafting agents enables the elaboration of functional electrodes with tunable electrocatalytic activity for NADH regeneration. The exceptionally high faradic efficiency of 97%, associated with a very high turnover frequency (TOF) of ∼1400 h-1 for NADH regeneration, and the total turnover number (TTN) of over 20000 for the enzymatic conversion from pyruvate to l-lactate, when coupled with l-lactate dehydrogenases (LDH) as a model reaction, open up promising perspectives for employing these electrodes in various alternative bioelectrosynthesis approaches.
Collapse
Affiliation(s)
- Weiwei Li
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| | - Chunhua Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| | - Ziman Zheng
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| | - Xiaoyu Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| | - Lin Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| | - Alexander Kuhn
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
- University Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, Site ENSCBP, Pessac 33400, France
| |
Collapse
|