Asselman K, Vandenabeele D, Pellens N, Doppelhammer N, Kirschhock CE, Breynaert E. Structural Aspects Affecting Phase Selection in Inorganic Zeolite Synthesis.
CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022;
34:11081-11092. [PMID:
36590702 PMCID:
PMC9798827 DOI:
10.1021/acs.chemmater.2c03204]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Indexed: 05/25/2023]
Abstract
A guideline for zeolite phase selection in inorganic synthesis media is proposed, based on a systematic exploration of synthesis from inorganic media using liquid Na+, K+, and Cs+ aluminosilicate. Although the Si/Al ratio of the zeolites is a continuous function of the synthesis conditions, boundaries between topologies are sharp. The here-derived phase selection criterion relates the obtained zeolite topology to the Si/Al ratio imposed by the synthesis medium. For a given Si/Al ratio, the framework with the highest occupation of topologically available cation sites is favored. The large number of published zeolite syntheses supporting the observation provides strong indication that the concept is applicable in a larger context. The proposed criterion explains how minor variations in the composition of inorganic synthesis media induce the commonly occurring, abrupt changes in topology. It highlights underlying reasons causing the strict demarcation of stability fields of the as-synthesized zeolites experimentally observed in inorganic synthesis.
Collapse