1
|
Manna S, Sreedhara RH, Prabhu KR. Visible light-mediated radical addition cascade cyclization of aryl isocyanides with tricarbonyls: rapid access to substituted phenanthridines and isoquinolines. Org Biomol Chem 2024; 22:7786-7790. [PMID: 39235450 DOI: 10.1039/d4ob01405g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
A visible light-mediated synthesis of substituted phenanthridines and isoquinolines from ortho-substituted aryl isocyanides and tricarbonyl compounds is unveiled via the radical addition cascade cyclization (RACC) strategy. This acid/base-free method involves an oxidant (a persulphate salt) and a Ru-photocatalyst. This protocol avoids the use of halogenated compounds as pre-functionalized carbonyl precursors. The products can be easily post-modified to other important small molecules. The functional group tolerance of the reaction and the yields of the products are good without any scalability issues. The mechanistic investigation suggested the presence of a radical pathway during the reaction.
Collapse
Affiliation(s)
- Sabyasachi Manna
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India.
| | - Rahul Halanuru Sreedhara
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India.
| | - Kandikere Ramaiah Prabhu
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India.
| |
Collapse
|
2
|
Russo C, Volpe C, Santoro F, Brancaccio D, Di Porzio A, Carotenuto A, Randazzo A, Grimaud L, Vitale MR, Protti S, Giustiniano M. Visible Light-promoted C(sp 3)-H α-Carbamoylation of Cyclic Ethers with Isocyanides. Chemistry 2024; 30:e202401997. [PMID: 38873846 DOI: 10.1002/chem.202401997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/15/2024]
Abstract
A protocol exploiting isocyanides as carbamoylating agents for the α-C(sp3)-H functionalization of cyclic ethers has been optimized via a combined visible light-driven hydrogen atom transfer/Lewis acid-catalyzed approach. The isocyanide substrate scope revealed an exquisite functional group compatibility (18 examples, with yields up to 99 %). Both radical and polar trapping, kinetic isotopic effect and real-time NMR studies support the mechanistic hypothesis and provide insightful details for the design of new chemical processes involving the generation of oxocarbenium ions.
Collapse
Affiliation(s)
- Camilla Russo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Carmine Volpe
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Federica Santoro
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Laurence Grimaud
- Laboratoire des Biomolécules (LBM), Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Maxime R Vitale
- Laboratoire des Biomolécules (LBM), Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Stefano Protti
- PhotoGreenLab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100, Pavia, Italy
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
3
|
Ogawa A, Yamamoto Y. Efficacy of radical reactions of isocyanides with heteroatom radicals in organic synthesis. Beilstein J Org Chem 2024; 20:2114-2128. [PMID: 39224232 PMCID: PMC11368054 DOI: 10.3762/bjoc.20.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Isocyanide is a promising synthetic reagent not only as a one-carbon homologation reagent but also as a nitrogen source for nitrogen-containing molecules. Because of their isoelectronic structure with carbon monoxide, isocyanides also react with nucleophiles, electrophiles, carbon radicals, and transition metal reagents, and are widely used in organic synthesis. On the other hand, the use of isocyanides in reactions with heteroatom radicals is limited. However, the reaction of isocyanides with heteroatom radicals is a promising synthetic tool for the construction of nitrogen-containing organic molecules modified with a variety of heteroatoms. In this Perspective, we review the addition and cyclization reactions of heteroatom radicals with isocyanides and discuss the synthetic prospects of the reaction of isocyanides with heteroatom radicals.
Collapse
Affiliation(s)
- Akiya Ogawa
- Organization for Research Promotion, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yuki Yamamoto
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| |
Collapse
|
4
|
Govor EV, Naumchyk V, Nestorak I, Radchenko DS, Dudenko D, Moroz YS, Kachkovsky OD, Grygorenko OO. Generation of multimillion chemical space based on the parallel Groebke-Blackburn-Bienaymé reaction. Beilstein J Org Chem 2024; 20:1604-1613. [PMID: 39076290 PMCID: PMC11285076 DOI: 10.3762/bjoc.20.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Parallel Groebke-Blackburn-Bienaymé reaction was evaluated as a source of multimillion chemically accessible chemical space. Two most popular classical protocols involving the use of Sc(OTf)3 and TsOH as the catalysts were tested on a broad substrate scope, and prevalence of the first method was clearly demonstrated. Furthermore, the scope and limitations of the procedure were established. A model 790-member library was obtained with 85% synthesis success rate. These results were used to generate a 271-Mln. readily accessible (REAL) heterocyclic chemical space mostly containing unique chemotypes, which was confirmed by comparative analysis with commercially available compound collections. Meanwhile, this chemical space contained 432 compounds that already showed biological activity according to the ChEMBL database.
Collapse
Affiliation(s)
- Evgen V Govor
- Enamine Ltd., Winston Churchill Street 78, Kyїv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv 01601, Ukraine
| | - Vasyl Naumchyk
- Enamine Ltd., Winston Churchill Street 78, Kyїv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv 01601, Ukraine
| | - Ihor Nestorak
- Enamine Ltd., Winston Churchill Street 78, Kyїv 02094, Ukraine
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, Akademik Kukhar Street 1, Kyїv 02094, Ukraine
| | | | - Dmytro Dudenko
- Enamine Ltd., Winston Churchill Street 78, Kyїv 02094, Ukraine
| | - Yurii S Moroz
- Enamine Ltd., Winston Churchill Street 78, Kyїv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv 01601, Ukraine
| | - Olexiy D Kachkovsky
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, Akademik Kukhar Street 1, Kyїv 02094, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Winston Churchill Street 78, Kyїv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv 01601, Ukraine
| |
Collapse
|
5
|
Wu M, Saya JM, Han P, Walia R, Pradhan B, Honing M, Ranjan P, Orru RVA. Shining light on tryptamine-derived isocyanides: access to constrained spirocylic scaffolds. Chem Sci 2024; 15:6867-6873. [PMID: 38725510 PMCID: PMC11077512 DOI: 10.1039/d3sc06304f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Dearomatization of indoles through a charge transfer complex constitutes a powerful tool for synthesizing three-dimensional constrained structures. However, the implementation of this strategy for the dearomatization of tryptamine-derived isocyanides to generate spirocyclic scaffolds remains underdeveloped. In this work, we have demonstrated the ability of tryptamine-derived isocyanides to form aggregates at higher concentration, enabling a single electron transfer step to generate carbon-based-radical intermediates. Optical, HRMS and computational studies have elucidated key aspects associated with the photophysical properties of tryptamine-derived isocyanides. The developed protocol is operationally simple, robust and demonstrates a novel approach to generate conformationally constrained spirocyclic scaffolds, compounds with high demand in various fields, including drug discovery.
Collapse
Affiliation(s)
- Minghui Wu
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University Urmonderbaan 22 6167 RD Geleen The Netherlands
| | - Jordy M Saya
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University Urmonderbaan 22 6167 RD Geleen The Netherlands
| | - Peiliang Han
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University Universiteitssingel 50 6229 ER Maastricht The Netherlands
| | - Rajat Walia
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR
| | - Bapi Pradhan
- Molecular Imaging and Photonics, Department of Chemistry KU Leuven, Celestijnenlaan 200F 3001 Leuven Belgium
| | - Maarten Honing
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University Universiteitssingel 50 6229 ER Maastricht The Netherlands
| | - Prabhat Ranjan
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University Urmonderbaan 22 6167 RD Geleen The Netherlands
| | - Romano V A Orru
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University Urmonderbaan 22 6167 RD Geleen The Netherlands
| |
Collapse
|
6
|
Brunelli F, Russo C, Giustiniano M, Tron GC. Exploiting the Different Nucleophilicity of the Isocyano Group: A Strategy for the Isocyanide Functionalization. J Org Chem 2024; 89:5833-5840. [PMID: 38581396 DOI: 10.1021/acs.joc.3c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
By exploiting the different nucleophilicity of aromatic and aliphatic isocyanides, we selectively react aliphatic isocyano groups while preserving aromatic ones in Passerini and Ugi multicomponent reactions. This simple approach allows the synthesis of α-acyloxy carboxamides or α-acylamino carboxamides possessing one or two isocyanide groups, which are challenging to achieve through traditional formylation and dehydration protocols. These analogues have the potential to serve as valuable building blocks with diverse applications.
Collapse
Affiliation(s)
- Francesca Brunelli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Camilla Russo
- Dipartimento di Farmacia, Università degli Studi Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Mariateresa Giustiniano
- Dipartimento di Farmacia, Università degli Studi Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Gian Cesare Tron
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
7
|
Ji HT, Jiang J, He WB, Lu YH, Liu YY, Li X, He WM. Electrochemical Multicomponent Cascade Reaction for the Synthesis of Selenazol-2-amines with Elemental Selenium. J Org Chem 2024; 89:4113-4119. [PMID: 38448366 DOI: 10.1021/acs.joc.3c02946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The first example of an electrochemical multicomponent synthesis of selenium-containing compounds with inexpensive and abundant elemental selenium as the selenating reagent was developed. A variety of selenazol-2-amines were constructed in high yields with good functional group tolerance under metal-free and chemical oxidant-free conditions.
Collapse
Affiliation(s)
- Hong-Tao Ji
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Bao He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Yu-Han Lu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Yuan-Yuan Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xiao Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
8
|
Zhu WF, Empel C, Pelliccia S, Koenigs RM, Proschak E, Hernandez-Olmos V. Photochemistry in Medicinal Chemistry and Chemical Biology. J Med Chem 2024. [PMID: 38457829 DOI: 10.1021/acs.jmedchem.3c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Photochemistry has emerged as a transformative force in organic chemistry, significantly expanding the chemical space accessible for medicinal chemistry. Light-induced reactions enable the efficient synthesis of intricate organic structures and have found applications throughout the different stages of the drug discovery and development processes. Moreover, photochemical techniques provide innovative solutions in chemical biology, allowing precise spatiotemporal drug activation and targeted delivery. In this Perspective, we highlight the already numerous remarkable applications and the even more promising future of photochemistry in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- W Felix Zhu
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Sveva Pelliccia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
9
|
Liu Y, Ding C, Huang JJ, Zhou Q, Xiong BQ, Tang KW, Huang PF. Visible-light-induced synthesis of 2,4-disubstituted quinolines from o-vinylaryl isocyanides and oxime esters. Org Biomol Chem 2024; 22:1458-1465. [PMID: 38282546 DOI: 10.1039/d3ob02060f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
A visible-light-induced radical cyclization reaction of o-vinylaryl isocyanides and oxime esters to access various 2,4-disubstituted quinolines was disclosed. Oxime esters were employed as acyl radical precursors via the carbon-carbon bond cleavage. It provided an effective way for the synthesis of 2-acyl-4-arlysubstituted quinolines under mild conditions and exhibited good functional group tolerance and substrate applicability.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Chuan Ding
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jia-Jing Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Quan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
10
|
Chatziorfanou E, Romero AR, Chouchane L, Dömling A. Crystal Clear: Decoding Isocyanide Intermolecular Interactions through Crystallography. J Org Chem 2024; 89:957-974. [PMID: 38175810 PMCID: PMC10804414 DOI: 10.1021/acs.joc.3c02038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
The isocyanide group is the chameleon among the functional groups in organic chemistry. Unlike other multiatom functional groups, where the electrophilic and nucleophilic moieties are typically separated, isocyanides combine both functionalities in the terminal carbon. This unique feature can be rationalized using the frontier orbital concept and has significant implications for its intermolecular interactions and the reactivity of the functional group. In this study, we perform a Cambridge Crystallographic Database-supported analysis of isocyanide intramolecular interactions to investigate the intramolecular interactions of isocyanides in the solid state, excluding isocyanide-metal complexes. We discuss examples of different interaction classes, including the isocyanide as a hydrogen bond acceptor (RNC···HX), halogen bonding (RNC···X), and interactions involving the isocyanide and carbon atoms (RNC···C). The latter interaction serves as an intriguing illustration of a Bürgi-Dunitz trajectory and represents a crucial experimental detail in the well-known multicomponent reactions such as the Ugi- and Passerini-type mechanisms. Understanding the spectrum of intramolecular interactions that isocyanides can undergo holds significant implications in fields such as medicinal chemistry, materials science, and asymmetric catalysis.
Collapse
Affiliation(s)
- Eleftheria Chatziorfanou
- Innovative
Chemistry Group, Institute of Molecular and Translational Medicine,
Faculty of Medicine and Dentistry and Czech Advanced Technology and
Research Institute, Palacky University in
Olomouc, Olomouc 779 00, Czech Republic
| | - Atilio Reyes Romero
- Genetic
Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, P.O.
Box 24144, Doha, Qatar
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York 10021, United States
- Department
of Genetic Medicine, Weill Cornell Medicine, New York 10021, United States
| | - Lotfi Chouchane
- Genetic
Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, P.O.
Box 24144, Doha, Qatar
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York 10021, United States
- Department
of Genetic Medicine, Weill Cornell Medicine, New York 10021, United States
| | - Alexander Dömling
- Innovative
Chemistry Group, Institute of Molecular and Translational Medicine,
Faculty of Medicine and Dentistry and Czech Advanced Technology and
Research Institute, Palacky University in
Olomouc, Olomouc 779 00, Czech Republic
| |
Collapse
|
11
|
Li Y, He L, Qin H, Liu Y, Yang B, Xu Z, Yang D. A Facile Ugi/Ullmann Cascade Reaction to Access Fused Indazolo-Quinoxaline Derivatives with Potent Anticancer Activity. Molecules 2024; 29:464. [PMID: 38257377 PMCID: PMC10820152 DOI: 10.3390/molecules29020464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
A facile methodology for the construction of a complex heterocycle indazolo-fused quinoxalinone has been developed via an Ugi four-component reaction (U-4CR) followed by an intramolecular Ullmann reaction. The expeditious process features an operationally simple approach, time efficiency, and a broad substrate scope. Biological activity was evaluated and demonstrated that compound 6e inhibits human colon cancer cell HCT116 proliferation with an IC50 of 2.1 μM, suggesting potential applications for developing a drug lead in medicinal chemistry.
Collapse
Affiliation(s)
- Yong Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing 402160, China
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Liujun He
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Hongxia Qin
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yao Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Binxin Yang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhigang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Donglin Yang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
12
|
Russo C, Donati G, Giustiniano F, Amato J, Marinelli L, Whitby RJ, Giustiniano M. Isocyanides as Catalytic Electron Acceptors in the Visible Light Promoted Oxidative Formation of Benzyl and Acyl Radicals. Chemistry 2023; 29:e202301852. [PMID: 37505481 DOI: 10.1002/chem.202301852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/29/2023]
Abstract
The recent disclosure of the ability of aromatic isocyanides to harvest visible light and act as single electron acceptors when reacting with tertiary aromatic amines has triggered a renewed interest in their application to the development of green photoredox catalytic methodologies. Accordingly, the present work explores their ability to promote the generation of both alkyl and acyl radicals starting from radical precursors such as Hantzsch esters, potassium alkyltrifluoroborates, and α-oxoacids. Mechanistic studies involving UV-visible absorption and fluorescence experiments, electrochemical measurements of the ground-state redox potentials along with computational calculations of both the ground- and the excited-state redox potentials of a set of nine different aromatic isocyanides provide key insights to promote a rationale design of a new generation of isocyanide-based organic photoredox catalysts. Importantly, the green potential of the investigated chemistry is demonstrated by a direct and easy access to deuterium labeled compounds.
Collapse
Affiliation(s)
- Camilla Russo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Greta Donati
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Francesco Giustiniano
- School of Chemistry, University of Southampton, University Road, SO171BJ, Southampton, UK
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Richard John Whitby
- School of Chemistry, University of Southampton, University Road, SO171BJ, Southampton, UK
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
13
|
Ogawa A, Yamamoto Y. Multicomponent Reactions between Heteroatom Compounds and Unsaturated Compounds in Radical Reactions. Molecules 2023; 28:6356. [PMID: 37687185 PMCID: PMC10488953 DOI: 10.3390/molecules28176356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
In this mini-review, we present our concepts for designing multicomponent reactions with reference to a series of sequential radical reactions that we have developed. Radical reactions are well suited for the design of multicomponent reactions due to their high functional group tolerance and low solvent sensitivity. We have focused on the photolysis of interelement compounds with a heteroatom-heteroatom single bond, which readily generates heteroatom-centered radicals, and have studied the photoinduced radical addition of interelement compounds to unsaturated compounds. First, the background of multicomponent radical reactions is described, and basic concepts and methodology for the construction of multicomponent reactions are explained. Next, examples of multicomponent reactions involving two interelement compounds and one unsaturated compound are presented, as well as examples of multicomponent reactions involving one interelement compound and two unsaturated compounds. Furthermore, multicomponent reactions involving intramolecular cyclization processes are described.
Collapse
Affiliation(s)
- Akiya Ogawa
- Organization for Research Promotion, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yuki Yamamoto
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan;
| |
Collapse
|
14
|
Győrfi N, Tasnádi G, Gyuris M, Kotschy A. Visible-Light-Induced Synthesis of Branched Ethers via Multicomponent Reactions. J Org Chem 2023. [PMID: 37418511 DOI: 10.1021/acs.joc.3c00804] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
The Spin-Center Shift (SCS) elimination is a specific way for the generation of radicals with relevance in synthetic and biochemical pathways. The combination of SCS-mediated radical chemistry and atom-transfer radical addition (ATRA) offers new directions in diversity-oriented chemical synthesis. Herein, we report a photoredox three-component reaction of α-acyloxy-N-heterocycles as radical precursors, styrene derivatives as radical trapping agents, and alcohols as nucleophilic quenchers. The novel radical-polar crossover reaction provides access to a diverse set of branched ethers possessing high structural complexity. The utility of the transformation was also demonstrated by the synthesis of a complex drug derivative and it was easily scalable to the multigram level. The scope and limitations were also explored and a plausible mechanism was proposed.
Collapse
Affiliation(s)
- Nándor Győrfi
- Servier Research Institute of Medicinal Chemistry, Záhony u 7, 1031 Budapest, Hungary
- Eötvös Loránd University, Institute of Chemistry, Pázmány Péter s. 1/A, 1117 Budapest, Hungary
| | - Gábor Tasnádi
- Servier Research Institute of Medicinal Chemistry, Záhony u 7, 1031 Budapest, Hungary
| | - Márió Gyuris
- Servier Research Institute of Medicinal Chemistry, Záhony u 7, 1031 Budapest, Hungary
| | - Andras Kotschy
- Servier Research Institute of Medicinal Chemistry, Záhony u 7, 1031 Budapest, Hungary
| |
Collapse
|