1
|
Liu YQ, Huang S, Leng JD, Lin WQ. 1D Lead Bromide Hybrids Directed by Complex Cations: Syntheses, Structures, Optical and Photocatalytic Properties. Molecules 2024; 29:4217. [PMID: 39275065 PMCID: PMC11397344 DOI: 10.3390/molecules29174217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 09/16/2024] Open
Abstract
This study presents the synthesis, structural characterization, and evaluation of the photocatalytic performance of two novel one-dimensional (1D) lead(II) bromide hybrids, [Co(2,2'-bpy)3][Pb2Br6CH3OH] (1) and [Fe(2,2'-bpy)3][Pb2Br6] (2), synthesized via solvothermal reactions. These compounds incorporate transition metal complex cations as structural directors, contributing to the unique photophysical and photocatalytic properties of the resulting materials. Single-crystal X-ray diffraction analysis reveals that both compounds crystallize in monoclinic space groups with distinct 1D lead bromide chain configurations influenced by the nature of the complex cations. Optical property assessments show band gaps of 3.04 eV and 2.02 eV for compounds 1 and 2, respectively, indicating their potential for visible light absorption. Photocurrent measurements indicate a significantly higher electron-hole separation efficiency in compound 2, correlated with its narrower band gap. Additionally, photocatalytic evaluations demonstrate that while both compounds degrade organic dyes effectively, compound 2 also exhibits notable hydrogen evolution activity under visible light, a property not observed in 1. These findings highlight the role of metal complex cations in tuning the electronic and structural properties of lead(II) bromide hybrids, enhancing their applicability in photocatalytic and optoelectronic devices.
Collapse
Affiliation(s)
- Ya-Qi Liu
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Sen Huang
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Ji-Dong Leng
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Wei-Quan Lin
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, China
| |
Collapse
|
2
|
Gui LA, Zhang YF, Peng Y, Hu ZB, Song Y. Synergetic Responses of Multiple Functions Induced by Phase Transition in Molecular Materials. Chemphyschem 2024; 25:e202400297. [PMID: 38797706 DOI: 10.1002/cphc.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Materials that integrate magnetism, electricity and luminescence can not only improve the operational efficiency of devices, but also potentially generate new functions through their coupling. Therefore, multifunctional synergistic effects have broad application prospects in fields such as optoelectronic devices, information storage and processing, and quantum computing. However, in the research field of molecular materials, there are few reports on the synergistic multifunctional properties. The main reason is that there is insufficient awareness of how to obtain such material. In this brief review, we summarized the molecular materials with this characteristic. The structural phase transition of substances will cause changes in their physical properties, as the electronic configurations of the active unit in different structural phases are different. Therefore, we will classify and describe the multifunctional synergistic complexes based on the structural factors that cause the first-order phase transition of the complexes. This enables us to quickly screen complexes with synergistic responses to these properties through structural phase transitions, providing ideas for studying the synergistic response of physical properties in molecular materials.
Collapse
Affiliation(s)
- Ling-Ao Gui
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, China
| | - Yi-Fan Zhang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, China
| | - Yan Peng
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, China
| | - Zhao-Bo Hu
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, China
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, China
| | - You Song
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Chen J, Zhang X, Cai Z, Zhang Y, Song Q, Hua XN, Sun B. Intermolecular Forces Regulating the Phase-Transition Temperatures in Organic-Inorganic Hybrid Materials. Inorg Chem 2024; 63:7770-7779. [PMID: 38608286 DOI: 10.1021/acs.inorgchem.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Organic-inorganic hybrid phase-transition materials have attracted widespread attention in energy storage and sensor applications due to their structural adaptability and facile synthesis. However, increasing the phase-transition temperature (Tc) effectively remains a formidable challenge. In this study, we employed a strategy to regulate intermolecular interactions (different types of hydrogen bonds and other weak interactions), utilizing bismuth chloride as an inorganic framework and azetidine, 3,3-difluoro azetidine, and 3-carboxyl azetidine as organic components to synthesize three compounds with different Tc values: [C3H8N]2BiCl5 (1, 234 K), [C3H6NF2]3BiCl6 (2, 256 K), and [C4H8O2N]3BiCl6 (3, 350 K). 1 is a one-dimensional chain structure and 2 and 3 are zero-dimensional structures. Analysis of the crystal structure and the Hirshfeld surface and 2D fingerprints further suggests that the intermolecular forces are efficiently modulated. These findings emphasize the efficacy of our strategy in enhancing Tc and may facilitate further research in this area.
Collapse
Affiliation(s)
- Jian Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xiang Zhang
- Jiangyan High School of Jiangsu Province, Taizhou 225599, P. R. China
| | - Zhuoer Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yinan Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Qi Song
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Xiu-Ni Hua
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
4
|
Li QL, Zhao M, Hao RJ, Wei J, Wang XX, Yang C, Zhao M, Tan YH, Tang YZ. High-Temperature Phase Transition with Switchable Dielectric Behavior and Significant Photoluminescence Changes in a Zero-Dimensional Hybrid SbBr 6 Perovskite. Inorg Chem 2024; 63:3411-3417. [PMID: 38311915 DOI: 10.1021/acs.inorgchem.3c04050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
In the past decade, metal halide materials have been favored by many researchers because of their excellent physical and chemical properties under thermal, electrical, and light stimuli, such as ferroelectricity, dielectric, nonlinearity, fluorescence, and semiconductors, greatly promoting their application in optoelectronic devices. In this study, we successfully constructed an unleaded organic-inorganic hybrid perovskite crystal: [Cl-C6H4-(CH2)2NH3]3SbBr6 (1), which underwent a high-temperature reversible phase transition near Tp = 368 K. The phase transition behavior of 1 was characterized by differential scanning calorimetry, accompanied by a thermal hysteresis of 6 K. In addition, variable-temperature Raman spectroscopy analysis and PXRD further verified the sensitivity of 1 to temperature and the phase transition from low symmetry to high symmetry. Temperature-dependent dielectric testing shows that 1 can be a sensitive switching dielectric constant switching material. Remarkably, 1 exhibits strong photoluminescence emission with a wavelength of 478 nm and a narrow band gap of 2.7 eV in semiconductors. As the temperature increases and decreases, fluorescence undergoes significant changes, especially near Tc, which further confirms the reversible phase transition of 1. All of these findings provide new avenues for designing and assembling new phase change materials with high Tp and photoluminescence properties.
Collapse
Affiliation(s)
- Qiao-Lin Li
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Meng Zhao
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Rong-Jie Hao
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Jing Wei
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Xi-Xi Wang
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Chun Yang
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Man Zhao
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Yu-Hui Tan
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| | - Yun-Zhi Tang
- School of Chemistry and Chemical Engineering, Jiangxi University of Technology, Ganzhou, Jiangxi Province 341000, China
| |
Collapse
|