1
|
Zhai YJ, Zhou ZZ, Gao LL, Li JN, Pescitelli G, Gao JM, Han WB. Ethylidene-Tethered Chromene-Pyrone Hybrids as Potential Plant-Growth Regulators from an Endolichenic Phaeosphaeria Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4615-4624. [PMID: 36945879 DOI: 10.1021/acs.jafc.2c08710] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phaeosphaeria sp., a lichen-associated fungus, produced six skeletally new dimeric spiciferones (1-6) and four known metabolites (7-10). The new structures were elucidated by spectroscopic analysis, and their absolute configurations were determined by electronic circular dichroism calculations. Compounds 1 and 3-6 represent the first examples of ethylidene-bridged dimers from the building blocks 4H-chromene-4,7(8H)-dione and α-pyrone, and 2 is a unique homodimer of spiciferone. Compounds 1, 2, and 5-9 significantly inhibited the growth of weed-like dicot Arabidopsis thaliana at 100.0 μM. Notably, 8 showed the strongest inhibitory activity against the fresh weight and root elongation of A. thaliana with the IC50 values of 32.04 and 26.78 μM, respectively, whereas 1, 8, and 9 stimulated the growth of A. thaliana at lower concentrations. Meanwhile, compounds 2 and 6 exhibited weak inhibitory effects on the root elongation of monocot rice, while 1 and 8 exhibited growth-promoting effects on the shoot and root elongation of rice in a roughly dose-dependent manner.
Collapse
Affiliation(s)
- Yi-Jie Zhai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi, People's Republic of China
| | - Zhen-Zhen Zhou
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China
| | - Lin-Lin Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi, People's Republic of China
| | - Jian-Nan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi, People's Republic of China
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via Moruzzi 13, 56124 Pisa, Italy
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi, People's Republic of China
| | - Wen-Bo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi, People's Republic of China
| |
Collapse
|
2
|
Uiterweerd M, Minnaard AJ. Racemic Total Synthesis of Elmonin and Pratenone A, from Streptomyces, Using a Common Intermediate Prepared by peri-Directed C-H Functionalization. Org Lett 2022; 24:9361-9365. [PMID: 36533980 PMCID: PMC9806855 DOI: 10.1021/acs.orglett.2c03449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Indexed: 12/23/2022]
Abstract
The first total synthesis of elmonin and pratenone A, two complex rearranged angucyclinones from Streptomyces, is reported. Using peri-directed C-H functionalization, the key naphthalene fragment present in both synthetic targets was efficiently prepared. Coupling to two anisole-derived fragments gave access to the natural products, in which elmonin was prepared using a biomimetic spiro-ketalization.
Collapse
Affiliation(s)
- Michiel
T. Uiterweerd
- University of Groningen, Stratingh Institute for Chemistry, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Adriaan J. Minnaard
- University of Groningen, Stratingh Institute for Chemistry, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|
3
|
Fu XZ, Zhang SM, Wang GF, Yang QL, Guo L, Pescitelli G, Xie ZP. Atypical Angucyclinones with Ring Expansion and Cleavage from a Marine Streptomyces sp. J Org Chem 2022; 87:15998-16010. [PMID: 36395479 DOI: 10.1021/acs.joc.2c02134] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A unique ring C-expanded angucyclinone, oxemycin A (1), and seven new ring-cleavage derivatives (2-5 and 9-11) were isolated from the marine actinomycete Streptomyces pratensis KCB-132, together with eight known analogues (6-8 and 12-16). Their structures were elucidated by spectroscopic analyses, single-crystal X-ray diffractions, and NMR and ECD calculations. Among these atypical angucyclinones, compound 1 represented the first seven-membered ketoester in the angucyclinone family, which sheds light on the origin of fragmented angucyclinones with C-ring cleavage at C-12/C-12a in the Baeyer-Villiger hypothesis, such as 2-4, while the related "nonoxidized" analogues 5-8 seem to originate from a diverse pathway within the Grob fragmentation hypothesis. Additionally, we have succeeded in the challenging separation of elmenols E and F (12) into their four stereoisomers, which remained stable in aprotic solvents but rapidly racemized under protic conditions. Furthermore, the absolute configurations of LS1924 and its isomers (14 and 15) were assigned by ECD calculations for the first time. Surprisingly, these two bicyclic acetals are susceptible to hydrolysis in solution, resulting in fragmented derivatives 17 and 18 with C-ring cleavage between C-6a and C-7. Compared with ring C-modified angucyclinones, ring A-cleaved 11 was more active to multiple resistant "ESKAPE" pathogens with MIC values ranging from 4.7 to 37.5 μg/mL.
Collapse
Affiliation(s)
- Xin-Zhen Fu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shu-Min Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Guang-Fei Wang
- College of Life Sciences, Yantai University, Yantai 264003, China
| | - Qiao-Li Yang
- College of Life Sciences, Yantai University, Yantai 264003, China
| | - Lin Guo
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Ze-Ping Xie
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
4
|
Abstract
Covering: 2020This review covers the literature published in 2020 for marine natural products (MNPs), with 757 citations (747 for the period January to December 2020) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1407 in 420 papers for 2020), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. A meta analysis of bioactivity data relating to new MNPs reported over the last five years is also presented.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
5
|
Lacey HJ, Rutledge PJ. Recently Discovered Secondary Metabolites from Streptomyces Species. Molecules 2022; 27:molecules27030887. [PMID: 35164153 PMCID: PMC8838263 DOI: 10.3390/molecules27030887] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/13/2022] Open
Abstract
The Streptomyces genus has been a rich source of bioactive natural products, medicinal chemicals, and novel drug leads for three-quarters of a century. Yet studies suggest that the genus is capable of making some 150,000 more bioactive compounds than all Streptomyces secondary metabolites reported to date. Researchers around the world continue to explore this enormous potential using a range of strategies including modification of culture conditions, bioinformatics and genome mining, heterologous expression, and other approaches to cryptic biosynthetic gene cluster activation. Our survey of the recent literature, with a particular focus on the year 2020, brings together more than 70 novel secondary metabolites from Streptomyces species, which are discussed in this review. This diverse array includes cyclic and linear peptides, peptide derivatives, polyketides, terpenoids, polyaromatics, macrocycles, and furans, the isolation, chemical structures, and bioactivity of which are appraised. The discovery of these many different compounds demonstrates the continued potential of Streptomyces as a source of new and interesting natural products and contributes further important pieces to the mostly unfinished puzzle of Earth’s myriad microbes and their multifaceted chemical output.
Collapse
Affiliation(s)
- Heather J. Lacey
- School of Chemistry, The University of Sydney, Camperdown, Sydney, NSW 2006, Australia
- Microbial Screening Technologies, Smithfield, Sydney, NSW 2164, Australia
- Correspondence: (H.J.L.); (P.J.R.); Tel.: +61-2-9351-5020 (P.J.R)
| | - Peter J. Rutledge
- School of Chemistry, The University of Sydney, Camperdown, Sydney, NSW 2006, Australia
- Correspondence: (H.J.L.); (P.J.R.); Tel.: +61-2-9351-5020 (P.J.R)
| |
Collapse
|
6
|
Zhang L, Feng LL, Wang GF, Yang QL, Fu XZ, Li Z, Liu M, Kou LJ, Xu B, Xie ZP, Zhang SM, Guo L. Strepyrazinone, a tricyclic diketopiperazine derivative with cytotoxicity from a marine-derived actinobacterium. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:968-974. [PMID: 32819169 DOI: 10.1080/10286020.2020.1801649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Strepyrazinone (1), a tricyclic diketopiperazine derivative with a carbon skeleton unprecedented in natural products, was isolated from the marine-derived Streptomyces sp. B223. Its structure was elucidated by spectroscopic analyses and electronic circular dichroism calculation. Compound 1 showed cytotoxic activity against HCT-116 cancer cell lines with an IC50 value of 0.34 µM.
Collapse
Affiliation(s)
- Lu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Ling-Ling Feng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Guang-Fei Wang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Qiao-Li Yang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xin-Zhen Fu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Zhi Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Ming Liu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Li-Juan Kou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Bo Xu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Ze-Ping Xie
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- Shandong International Biotechnology Park, Yantai 264670, China
| | - Shu-Min Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- Shandong International Biotechnology Park, Yantai 264670, China
| | - Lin Guo
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
7
|
Mikhaylov AA, Ikonnikova VA, Solyev PN. Disclosing biosynthetic connections and functions of atypical angucyclinones with a fragmented C-ring. Nat Prod Rep 2021; 38:1506-1517. [PMID: 33480893 DOI: 10.1039/d0np00082e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review on atypical angucyclinones possessing an aromatic cleavage of the C-ring covers literature between 1995 and early 2020.The unusual framework of the middle C-ring, "broken" as a result of biotransformations and oxidations in vivo and bearing an sp3-C connection, is of interest for biosynthetic investigations. The reported 39 natural compounds (55 including stereoisomers) have been analyzed and arranged into three structural groups. The biosynthetic origin of all these compounds has been thoroughly reviewed and revised, based on the found connections with oxidized angucyclinone structures. The data on biological activities has been summarized. Careful consideration of the origin of the structure allowed us to outline a hypothesis on the biological function as well as prospective applications of such atypical angucyclinones.
Collapse
Affiliation(s)
- Andrey A Mikhaylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow, 117997, Russia.
| | | | | |
Collapse
|