1
|
Möllers PV, Urban AJ, De Feyter S, Yamamoto HM, Zacharias H. Probing the Roles of Temperature and Cooperative Effects in Chirality-Induced Spin Selectivity: Photoelectron Spin Polarization in Helical Tetrapyrroles. J Phys Chem Lett 2024; 15:9620-9629. [PMID: 39277813 PMCID: PMC11440600 DOI: 10.1021/acs.jpclett.4c02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
We investigate the roles of molecular vibrations and intermolecular interactions in the mechanism underlying chirality-induced spin selectivity (CISS) in monolayers of helical tetrapyrrole (TPBT) molecules. The spin polarization of photoelectrons emitted from TPBT-functionalized Cu(111) surfaces was measured as a function of the temperature and the surface coverage. We employed DFT calculations to determine the energy and temperature-dependent population of vibrational modes which vary either the molecular pitch and/or the molecular radius. In combination, the data demonstrate that molecular vibrations do not play a significant role for CISS in the TPBT layers. Submonolayer coverages were created by gradual thermal desorption of the molecules from the surface during the spin polarization measurements. While the spin polarization scales nonlinearly with the surface coverage, this behavior can be rationalized entirely through changes of the photoelectron yield upon surface functionalization, and therefore represents no evidence for cooperative effects involved in CISS.
Collapse
Affiliation(s)
- Paul V. Möllers
- Center for
Soft Nanoscience (SoN), University of Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Adrian J. Urban
- Institute
for Molecular Science, Research Center of Integrative Molecular Systems, Division of Functional Molecular Systems, 38 Nishigonaka, Myodaiji Okazaki, Aichi Prefecture 444-8585, Japan
- Division
of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Steven De Feyter
- Division
of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Hiroshi M. Yamamoto
- Institute
for Molecular Science, Research Center of Integrative Molecular Systems, Division of Functional Molecular Systems, 38 Nishigonaka, Myodaiji Okazaki, Aichi Prefecture 444-8585, Japan
| | - Helmut Zacharias
- Center for
Soft Nanoscience (SoN), University of Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| |
Collapse
|
2
|
Wang C, Liang ZR, Chen XF, Guo AM, Ji G, Sun QF, Yan Y. Transverse Spin Selectivity in Helical Nanofibers Prepared without Any Chiral Molecule. PHYSICAL REVIEW LETTERS 2024; 133:108001. [PMID: 39303270 DOI: 10.1103/physrevlett.133.108001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/14/2024] [Accepted: 07/29/2024] [Indexed: 09/22/2024]
Abstract
In the last decade, chirality-induced spin selectivity (CISS) has undergone intensive study. However, there remain several critical issues, such as the microscopic mechanism of CISS, especially transverse CISS where electrons are injected perpendicular to the helix axis of chiral molecules, quantitative agreement between experiments and theory, and at which level the molecular handedness is key to the CISS. Here, we address these issues by performing a combined experimental and theoretical study on conducting polyaniline helical nanofibers which are synthesized in the absence of any chiral species. Large spin polarization is measured in both left- and right-handed nanofibers for electrons injected perpendicular to their helix axis, and it will be reversed by switching the nanofiber handedness. We first develop a theoretical model to study this transverse CISS and quantitatively explain the experiment. Our results reveal that our theory provides a unifying scheme to interpret a number of CISS experiments, quantitative agreement between experiments and numerical calculations can be achieved by weak spin-orbit coupling, and the supramolecular handedness is sufficient for spin selectivity without any chiral species.
Collapse
Affiliation(s)
| | | | | | | | | | - Qing-Feng Sun
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Hefei National Laboratory, Hefei 230088, China
| | - Yong Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Wang H, Yin F, Li L, Li M, Fang Z, Sun C, Li B, Shi J, Li J, Wang L, Song S, Zuo X, Liu X, Fan C. Twisted DNA Origami-Based Chiral Monolayers for Spin Filtering. J Am Chem Soc 2024; 146:5883-5893. [PMID: 38408317 DOI: 10.1021/jacs.3c11566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
DNA monolayers with inherent chirality play a pivotal role across various domains including biosensors, DNA chips, and bioelectronics. Nonetheless, conventional DNA chiral monolayers, typically constructed from single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), often lack structural orderliness and design flexibility at the interface. Structural DNA nanotechnology has emerged as a promising solution to tackle these challenges. In this study, we present a strategy for crafting highly adaptable twisted DNA origami-based chiral monolayers. These structures exhibit distinct interfacial assembly characteristics and effectively mitigate the structural disorder of dsDNA monolayers, which is constrained by a limited persistence length of ∼50 nm of dsDNA. We highlight the spin-filtering capabilities of seven representative DNA origami-based chiral monolayers, demonstrating a maximal one-order-of-magnitude increase in spin-filtering efficiency per unit area compared with conventional dsDNA chiral monolayers. Intriguingly, our findings reveal that the higher-order tertiary chiral structure of twisted DNA origami further enhances the spin-filtering efficiency. This work paves the way for the rational design of DNA chiral monolayers.
Collapse
Affiliation(s)
- Haozhi Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingyun Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Fang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenyun Sun
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bochen Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiye Shi
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiang Li
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Lihua Wang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shiping Song
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Bloom BP, Paltiel Y, Naaman R, Waldeck DH. Chiral Induced Spin Selectivity. Chem Rev 2024; 124:1950-1991. [PMID: 38364021 PMCID: PMC10906005 DOI: 10.1021/acs.chemrev.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024]
Abstract
Since the initial landmark study on the chiral induced spin selectivity (CISS) effect in 1999, considerable experimental and theoretical efforts have been made to understand the physical underpinnings and mechanistic features of this interesting phenomenon. As first formulated, the CISS effect refers to the innate ability of chiral materials to act as spin filters for electron transport; however, more recent experiments demonstrate that displacement currents arising from charge polarization of chiral molecules lead to spin polarization without the need for net charge flow. With its identification of a fundamental connection between chiral symmetry and electron spin in molecules and materials, CISS promises profound and ubiquitous implications for existing technologies and new approaches to answering age old questions, such as the homochiral nature of life. This review begins with a discussion of the different methods for measuring CISS and then provides a comprehensive overview of molecules and materials known to exhibit CISS-based phenomena before proceeding to identify structure-property relations and to delineate the leading theoretical models for the CISS effect. Next, it identifies some implications of CISS in physics, chemistry, and biology. The discussion ends with a critical assessment of the CISS field and some comments on its future outlook.
Collapse
Affiliation(s)
- Brian P. Bloom
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yossi Paltiel
- Applied
Physics Department and Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute, Rehovot 76100, Israel
| | - David H. Waldeck
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Gajapathy H, Bandaranayake S, Hruska E, Vadakkayil A, Bloom BP, Londo S, McClellan J, Guo J, Russell D, de Groot FMF, Yang F, Waldeck DH, Schultze M, Baker LR. Spin polarized electron dynamics enhance water splitting efficiency by yttrium iron garnet photoanodes: a new platform for spin selective photocatalysis. Chem Sci 2024; 15:3300-3310. [PMID: 38425509 PMCID: PMC10901523 DOI: 10.1039/d3sc03016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
This work presents a spectroscopic and photocatalytic comparison of water splitting using yttrium iron garnet (Y3Fe5O12, YIG) and hematite (α-Fe2O3) photoanodes. Despite similar electronic structures, YIG significantly outperforms widely studied hematite, displaying more than an order of magnitude increase in photocurrent density. Probing the charge and spin dynamics by ultrafast, surface-sensitive XUV spectroscopy reveals that the enhanced performance arises from (1) reduced polaron formation in YIG compared to hematite and (2) an intrinsic spin polarization of catalytic photocurrents in YIG. Ultrafast XUV measurements show a reduction in the formation of surface electron polarons compared to hematite due to site-dependent electron-phonon coupling. This leads to spin polarized photocurrents in YIG where efficient charge separation occurs on the Td sub-lattice compared to fast trapping and electron/hole pair recombination on the Oh sub-lattice. These lattice-dependent dynamics result in a long-lived spin aligned hole population at the YIG surface, which is directly observed using XUV magnetic circular dichroism. Comparison of the Fe M2,3 and O L1-edges show that spin aligned holes are hybridized between O 2p and Fe 3d valence band states, and these holes are responsible for highly efficient, spin selective water oxidation by YIG. Together, these results point to YIG as a new platform for highly efficient, spin selective photocatalysis.
Collapse
Affiliation(s)
- Harshad Gajapathy
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Savini Bandaranayake
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Emily Hruska
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Aravind Vadakkayil
- Department of Chemistry, University of Pittsburgh 15260 Pittsburgh Pennsylvania USA
| | - Brian P Bloom
- Department of Chemistry, University of Pittsburgh 15260 Pittsburgh Pennsylvania USA
| | - Stephen Londo
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Jackson McClellan
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Jason Guo
- Department of Physics, The Ohio State University Columbus Ohio 43210 USA
| | - Daniel Russell
- Department of Physics, The Ohio State University Columbus Ohio 43210 USA
| | - Frank M F de Groot
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University 3584CG Utrecht The Netherlands
| | - Fengyuan Yang
- Department of Physics, The Ohio State University Columbus Ohio 43210 USA
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh 15260 Pittsburgh Pennsylvania USA
| | - Martin Schultze
- Institute of Experimental Physics, Graz University of Technology Petersgasse 16 Graz 8010 Austria
| | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| |
Collapse
|
6
|
Spilsbury MJ, Feito A, Delgado A, Capitán MJ, Álvarez J, de Miguel JJ. Enantiosensitive growth dynamics of chiral molecules on ferromagnetic substrates and the origin of the CISS effect. J Chem Phys 2023; 159:114706. [PMID: 37728205 DOI: 10.1063/5.0160011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
The recent demonstration of the existence of an intimate relationship between the chiral structure of some materials and the spin polarization of electrons transmitted through them, what has been called the chirality-induced spin selectivity (CISS) effect, is sparking interest in many related phenomena. One of the most notorious is the possibility of using magnetic materials to apply enantioselective interactions on chiral molecules and chemical reactions involving them. In this work, x-ray photoelectron spectroscopy has been used to characterize the adsorption and growth kinetics of enantiopure organic molecules on magnetic (Co) and non-magnetic (Cu) substrates. While on these latter, no significant enantiosensitive effects are found, on spin-polarized, in-plane magnetized Co surfaces, the two enantiomers have been found to deposit differently. The observed effects have been interpreted as the result of one of the enantiomers being adsorbed in a transient, weakly bound physisorbed-like state with higher mobility due to limited, spin-selective charge transfer between it and the substrate. The study of these phenomena can provide insight into the fundamental mechanisms responsible for the CISS effect.
Collapse
Affiliation(s)
- M J Spilsbury
- Dpto. Física de la Materia Condensada, Univ. Autónoma de Madrid, 29049 Madrid, Spain
- Dpto. Física. Univ. Nacional Autónoma de Honduras, Escuela de Biología, San Pedro Sula, Honduras
| | - A Feito
- Dpto. Física de la Materia Condensada, Univ. Autónoma de Madrid, 29049 Madrid, Spain
| | - A Delgado
- Dpto. Física de la Materia Condensada, Univ. Autónoma de Madrid, 29049 Madrid, Spain
| | - M J Capitán
- Instituto de Estructura de la Materia IEM-CSIC, c/ Serrano 119, 28006 Madrid, Spain
- Física de Sistemas Crecidos con Baja Dimensionalidad, UAM, Unidad Asociada al CSIC por el IEM, DP, Madrid, Spain
| | - J Álvarez
- Dpto. Física de la Materia Condensada, Univ. Autónoma de Madrid, 29049 Madrid, Spain
- Física de Sistemas Crecidos con Baja Dimensionalidad, UAM, Unidad Asociada al CSIC por el IEM, DP, Madrid, Spain
- Instituto de Ciencia de Materiales "Nicolás Cabrera," Univ. Autónoma de Madrid, 28049 Madrid, Spain
- Instituto de Física de la Materia Condensada IFIMAC, Univ. Autónoma de Madrid, 28049 Madrid, Spain
| | - J J de Miguel
- Dpto. Física de la Materia Condensada, Univ. Autónoma de Madrid, 29049 Madrid, Spain
- Física de Sistemas Crecidos con Baja Dimensionalidad, UAM, Unidad Asociada al CSIC por el IEM, DP, Madrid, Spain
- Instituto de Ciencia de Materiales "Nicolás Cabrera," Univ. Autónoma de Madrid, 28049 Madrid, Spain
- Instituto de Física de la Materia Condensada IFIMAC, Univ. Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
7
|
Baljozović M, Arnoldi B, Grass S, Lacour J, Aeschlimann M, Stadtmüller B, Ernst KH. Spin- and angle-resolved photoemission spectroscopy study of heptahelicene layers on Cu(111) surfaces. J Chem Phys 2023; 159:044701. [PMID: 37486054 DOI: 10.1063/5.0156581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
It has been demonstrated previously that electrons interact differently with chiral molecules depending on their polarization. For enantiomeric pure monolayers of heptahelicene, opposite asymmetries in spin polarization were reported and attributed to the so-called chirality-induced spin selectivity effect. However, these promising proof-of-concept photoemission experiments lack the angular and energy resolution that could provide the necessary insights into the mechanism of this phenomenon. In order to fill in the missing gaps, we provide a detailed spin- and angle-resolved photoemission spectroscopy study of heptahelicene layers on a Cu(111) substrate. Throughout the large accessible energy and angle range, no chirality induced spin asymmetry in photoemission could be observed. Possible reasons for the absence of signatures of the spin-dependent electron transmission through the chiral molecular layer are briefly discussed.
Collapse
Affiliation(s)
- M Baljozović
- Molecular Surface Science Group, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - B Arnoldi
- Department of Physics and Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - S Grass
- Department of Organic Chemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - J Lacour
- Department of Organic Chemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - M Aeschlimann
- Department of Physics and Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - B Stadtmüller
- Department of Physics and Research Center OPTIMAS, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
- Institute of Physics Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
| | - K-H Ernst
- Molecular Surface Science Group, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Nanosurf Laboratory, Institute of Physics, The Czech Academy of Sciences, 16200 Prague, Czech Republic
- Department of Chemistry, University of Zurich, 8057 Zürich, Switzerland
| |
Collapse
|
8
|
Xu Y, Mi W. Chiral-induced spin selectivity in biomolecules, hybrid organic-inorganic perovskites and inorganic materials: a comprehensive review on recent progress. MATERIALS HORIZONS 2023; 10:1924-1955. [PMID: 36989068 DOI: 10.1039/d3mh00024a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The two spin states of electrons are degenerate in nonmagnetic materials. The chiral-induced spin selectivity (CISS) effect provides a new strategy for manipulating electron's spin and a deeper understanding of spin selective processes in organisms. Here, we summarize the important discoveries and recent experiments performed during the development of the CISS effect, analyze the spin polarized transport in various types of materials and discuss the mechanisms, theoretical calculations, experimental techniques and biological significance of the CISS effect. The first part of this review concisely presents a general overview of the discoveries and importance of the CISS effect, laws and underlying mechanisms of which are discussed in the next section, where several classical experimental methods for detecting the CISS effect are also introduced. Based on the organic and inorganic properties of materials, the CISS effect of organic biomolecules, hybrid organic-inorganic perovskites and inorganic materials are reviewed in the third, fourth and fifth sections, especially the chiral transfer mechanism of hybrid materials and the relationship between the CISS effect and life science. In addition, conclusions and prospective future of the CISS effect are outlined at the end, where the development and applications of the CISS effect in spintronics are directly described, which is helpful for designing promising chiral spintronic devices and understanding the natural status of chirality from a new perspective.
Collapse
Affiliation(s)
- Yingdan Xu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China.
| | - Wenbo Mi
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
9
|
Metzger T, Batchu H, Kumar A, Fedotov DA, Goren N, Bhowmick DK, Shioukhi I, Yochelis S, Schapiro I, Naaman R, Gidron O, Paltiel Y. Optical Activity and Spin Polarization: The Surface Effect. J Am Chem Soc 2023; 145:3972-3977. [PMID: 36765468 PMCID: PMC11139380 DOI: 10.1021/jacs.2c10456] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Indexed: 02/12/2023]
Abstract
Chirality ('handedness') is a property that underlies a broad variety of phenomena in nature. Chiral molecules appear in two forms, and each is a mirror image of the other, the two enantiomers. The chirality of molecules is associated with their optical activity, and circular dichroism is commonly applied to identify the handedness of chiral molecules. Recently, the chiral induced spin selectivity (CISS) effect was established, according to which transfer of electrons within chiral molecules depends on the electron's spin. Which spin is preferred depends on the handedness of the chiral molecule and the direction of motion of the electron. Several experiments in the past indicated that there may be a relation between the optical activity of the molecules and their spin selectivity. Here, we show that for a molecule containing several stereogenic axes, when adsorbed on a metal substrate, the peaks in the CD spectra have the same signs for the two enantiomers. This is not the case when the molecules are adsorbed on a nonmetallic substrate or dissolved in solution. Quantum chemical simulations are able to explain the change in the CD spectra upon adsorption of the molecules on conductive and nonconductive surfaces. Surprisingly, the CISS properties are similar for the two enantiomers when adsorbed on the metal substrate, while when the molecules are adsorbed on nonmetallic surface, the preferred spin depends on the molecule handedness. This correlation between the optical activity and the CISS effect indicates that the CISS effect relates to the global polarizability of the molecule.
Collapse
Affiliation(s)
- Tzuriel
S. Metzger
- Department
of Applied Physics and Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Harikrishna Batchu
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew
University, Jerusalem 9190401, Israel
| | - Anil Kumar
- Department
of Chemical and Biological Physics, Weizmann
Institute, Rehovot 76100, Israel
| | - Daniil A. Fedotov
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew
University, Jerusalem 9190401, Israel
| | - Naama Goren
- Department
of Applied Physics and Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Deb Kumar Bhowmick
- Department
of Chemical and Biological Physics, Weizmann
Institute, Rehovot 76100, Israel
| | - Israa Shioukhi
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew
University, Jerusalem 9190401, Israel
| | - Shira Yochelis
- Department
of Applied Physics and Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Igor Schapiro
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew
University, Jerusalem 9190401, Israel
| | - Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute, Rehovot 76100, Israel
| | - Ori Gidron
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew
University, Jerusalem 9190401, Israel
| | - Yossi Paltiel
- Department
of Applied Physics and Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
10
|
Roy G, Gupta R, Ranjan Sahoo S, Saha S, Asthana D, Chandra Mondal P. Ferrocene as an iconic redox marker: From solution chemistry to molecular electronic devices. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Wade J, Salerno F, Kilbride RC, Kim DK, Schmidt JA, Smith JA, LeBlanc LM, Wolpert EH, Adeleke AA, Johnson ER, Nelson J, Mori T, Jelfs KE, Heutz S, Fuchter MJ. Controlling anisotropic properties by manipulating the orientation of chiral small molecules. Nat Chem 2022; 14:1383-1389. [PMID: 36302869 DOI: 10.1038/s41557-022-01044-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/22/2022] [Indexed: 01/04/2023]
Abstract
Chiral π-conjugated molecules bring new functionality to technological applications and represent an exciting, rapidly expanding area of research. Their functional properties, such as the absorption and emission of circularly polarized light or the transport of spin-polarized electrons, are highly anisotropic. As a result, the orientation of chiral molecules critically determines the functionality and efficiency of chiral devices. Here we present a strategy to control the orientation of a small chiral molecule (2,2'-dicyano[6]helicene) by the use of organic and inorganic templating layers. Such templating layers can either force 2,2'-dicyano[6]helicene to adopt a face-on orientation and self-assemble into upright supramolecular columns oriented with their helical axis perpendicular to the substrate, or an edge-on orientation with parallel-lying supramolecular columns. Through such control, we show that low- and high-energy chiroptical responses can be independently 'turned on' or 'turned off'. The templating methodologies described here provide a simple way to engineer orientational control and, by association, anisotropic functional properties of chiral molecular systems for a range of emerging technologies.
Collapse
Affiliation(s)
- Jessica Wade
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, UK.
- Centre for Processable Electronics, Imperial College London, London, UK.
| | - Francesco Salerno
- Centre for Processable Electronics, Imperial College London, London, UK
- Department of Chemistry and Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Rachel C Kilbride
- Department of Physics and Astronomy, The University of Sheffield, Sheffield, UK
| | - Dong Kuk Kim
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, UK
- Centre for Processable Electronics, Imperial College London, London, UK
| | - Julia A Schmidt
- Department of Chemistry and Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Joel A Smith
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK
| | - Luc M LeBlanc
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Emma H Wolpert
- Department of Chemistry and Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Adebayo A Adeleke
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Erin R Johnson
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jenny Nelson
- Centre for Processable Electronics, Imperial College London, London, UK
- Department of Physics, Imperial College London, London, UK
| | - Tadashi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Kim E Jelfs
- Centre for Processable Electronics, Imperial College London, London, UK
- Department of Chemistry and Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Sandrine Heutz
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, UK
- Centre for Processable Electronics, Imperial College London, London, UK
| | - Matthew J Fuchter
- Centre for Processable Electronics, Imperial College London, London, UK.
- Department of Chemistry and Molecular Sciences Research Hub, Imperial College London, London, UK.
| |
Collapse
|
12
|
Fransson J. The Chiral Induced Spin Selectivity Effect What It Is, What It Is Not, And Why It Matters. Isr J Chem 2022. [DOI: 10.1002/ijch.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Fransson
- Department of Physics and Astronomy Uppsala University Box 516, 751 21 Uppsala Sweden
| |
Collapse
|
13
|
Möllers PV, Göhler B, Zacharias H. Chirality Induced Spin Selectivity – the Photoelectron View. Isr J Chem 2022. [DOI: 10.1002/ijch.202200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Paul V. Möllers
- Center for Soft Nanoscience University of Münster Busso-Peus-Str. 10 48149 Münster Germany
| | - Benjamin Göhler
- Center for Soft Nanoscience University of Münster Busso-Peus-Str. 10 48149 Münster Germany
| | - Helmut Zacharias
- Center for Soft Nanoscience University of Münster Busso-Peus-Str. 10 48149 Münster Germany
| |
Collapse
|
14
|
Clever C, Wierzbinski E, Bloom BP, Lu Y, Grimm HM, Rao SR, Horne WS, Waldeck DH. Benchmarking Chiral Induced Spin Selectivity Measurements ‐ Towards Meaningful Comparisons of Chiral Biomolecule Spin Polarizations. Isr J Chem 2022. [DOI: 10.1002/ijch.202200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Caleb Clever
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Emil Wierzbinski
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Brian P. Bloom
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Yiyang Lu
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Haley M. Grimm
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Silpa R. Rao
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - W. Seth Horne
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - David H. Waldeck
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
15
|
Möllers PV, Wei J, Salamon S, Bartsch M, Wende H, Waldeck DH, Zacharias H. Spin-Polarized Photoemission from Chiral CuO Catalyst Thin Films. ACS NANO 2022; 16:12145-12155. [PMID: 35943911 PMCID: PMC9413420 DOI: 10.1021/acsnano.2c02709] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/18/2022] [Indexed: 06/07/2023]
Abstract
The chirality-induced spin selectivity (CISS) effect facilitates a paradigm shift for controlling the outcome and efficiency of spin-dependent chemical reactions, for example, photoinduced water splitting. While the phenomenon is established in organic chiral molecules, its emergence in chiral but inorganic, nonmolecular materials is not yet understood. Nevertheless, inorganic spin-filtering materials offer favorable characteristics, such as thermal and chemical stability, over organic, molecular spin filters. Chiral cupric oxide (CuO) thin films can spin polarize (photo)electron currents, and this capability is linked to the occurrence of the CISS effect. In the present work, chiral CuO films, electrochemically deposited on partially UV-transparent polycrystalline gold substrates, were subjected to deep-UV laser pulses, and the average spin polarization of photoelectrons was measured in a Mott scattering apparatus. By energy resolving the photoelectrons and changing the photoexcitation geometry, the energy distribution and spin polarization of the photoelectrons originating from the Au substrate could be distinguished from those arising from the CuO film. The findings reveal that the spin polarization is energy dependent and, furthermore, indicate that the measured polarization values can be rationalized as a sum of an intrinsic spin polarization in the chiral oxide layer and a contribution via CISS-related spin filtering of electrons from the Au substrate. The results support efforts toward a rational design of further spin-selective catalytic oxide materials.
Collapse
Affiliation(s)
- Paul V. Möllers
- Department
of Physics and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Jimeng Wei
- Chemistry
Department, University of Pittsburgh, 15260 Pittsburgh, Pennsylvania, United States
| | - Soma Salamon
- Faculty
of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, 47057 Duisburg, Germany
| | - Manfred Bartsch
- Department
of Physics and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Heiko Wende
- Faculty
of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, 47057 Duisburg, Germany
| | - David H. Waldeck
- Chemistry
Department, University of Pittsburgh, 15260 Pittsburgh, Pennsylvania, United States
| | - Helmut Zacharias
- Department
of Physics and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
16
|
Geyer M, Gutierrez R, Mujica V, Silva JFR, Dianat A, Cuniberti G. The contribution of intermolecular spin interactions to the London dispersion forces between chiral molecules. J Chem Phys 2022; 156:234106. [PMID: 35732515 DOI: 10.1063/5.0090266] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dispersion interactions are one of the components of van der Waals (vdW) forces that play a key role in the understanding of intermolecular interactions in many physical, chemical, and biological processes. The theory of dispersion forces was developed by London in the early years of quantum mechanics. However, it was only in the 1960s that it was recognized that for molecules lacking an inversion center, such as chiral and helical molecules, there are chirality-sensitive corrections to the dispersion forces proportional to the rotatory power known from the theory of circular dichroism and with the same distance scaling law R-6 as the London energy. The discovery of the chirality-induced spin selectivity effect in recent years has led to an additional twist in the study of chiral molecular systems, showing a close relation between spin and molecular geometry. Motivated by it, we propose in this investigation to describe the mutual induction of charge and spin-density fluctuations in a pair A-B of chiral molecules by a simple physical model. The model assumes that the same fluctuating electric fields responsible for vdW forces can induce a magnetic response via a Rashba-like term so that a spin-orbit field acting on molecule B is generated by the electric field arising from charge density fluctuations in molecule A (and vice versa). Within a second-order perturbative approach, these contributions manifest as an effective intermolecular exchange interaction. Although expected to be weaker than the standard London forces, these interactions display the same R-6 distance scaling.
Collapse
Affiliation(s)
- M Geyer
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - R Gutierrez
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - V Mujica
- Arizona State University, School of Molecular Sciences, P.O. Box 871604, Tempe, Arizona 85287-1604, USA
| | - J F Rivas Silva
- Instituto de Física Luis Rivera Terrazas, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J48, Col. San Manuel, Puebla Pue. C. P. 72570, Mexico
| | - A Dianat
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - G Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| |
Collapse
|
17
|
Fransson J. Charge and Spin Dynamics and Enantioselectivity in Chiral Molecules. J Phys Chem Lett 2022; 13:808-814. [PMID: 35068158 PMCID: PMC8802319 DOI: 10.1021/acs.jpclett.1c03925] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/12/2022] [Indexed: 05/29/2023]
Abstract
Charge and spin dynamics are addressed in chiral molecules immediately after their instantaneous coupling to an external metallic reservoir. This work describes how a spin polarization is induced in the chiral structure as a response to the charge dynamics. The dynamics indicate that chiral induced spin selectivity is an excited state phenomenon that in the transient regime can be partly captured using a simplistic single-particle description but in the stationary limit definitively shows that electron correlations, e.g., electron-vibration interactions, crucially contribute to sustain an intrinsic spin anisotropy that can lead to a nonvanishing spin selectivity. The dynamics, moreover, provide insight into enantiomer separation, due to different acquired spin polarizations.
Collapse
Affiliation(s)
- J. Fransson
- Department of Physics and
Astronomy, Uppsala University, Box 516, 751 21 Uppsala, Sweden
| |
Collapse
|
18
|
Garcia AM, Martínez G, Ruiz-Carretero A. The Importance of Spin State in Chiral Supramolecular Electronics. Front Chem 2021; 9:722727. [PMID: 34422770 PMCID: PMC8371180 DOI: 10.3389/fchem.2021.722727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022] Open
Abstract
The field of spintronics explores how magnetic fields can influence the properties of organic and inorganic materials by controlling their electron’s spins. In this sense, organic materials are very attractive since they have small spin-orbit coupling, allowing long-range spin-coherence over times and distances longer than in conventional metals or semiconductors. Usually, the small spin-orbit coupling means that organic materials cannot be used for spin injection, requiring ferromagnetic electrodes. However, chiral molecules have been demonstrated to behave as spin filters upon light illumination in the phenomenon described as chirality-induced spin selectivity (CISS) effect. This means that electrons of certain spin can go through chiral assemblies of molecules preferentially in one direction depending on their handedness. This is possible because the lack of inversion symmetry in chiral molecules couples with the electron’s spin and its linear momentum so the molecules transmit the one preferred spin. In this respect, chiral semiconductors have great potential in the field of organic electronics since when charge carriers are created, a preferred spin could be transmitted through a determined handedness structure. The exploration of the CISS effect in chiral supramolecular semiconductors could add greatly to the efforts made by the organic electronics community since charge recombination could be diminished and charge transport improved when the spins are preferentially guided in one specific direction. This review outlines the advances in supramolecular chiral semiconductors regarding their spin state and its influence on the final electronic properties.
Collapse
Affiliation(s)
- Ana M Garcia
- Institute Charles Sadron, University of Strasbourg, CNRS, Strasbourg, France
| | - Gabriel Martínez
- Institute Charles Sadron, University of Strasbourg, CNRS, Strasbourg, France
| | | |
Collapse
|
19
|
Xia Y, Ni W, Wang X, Yu Y, Zheng Q, Huang X. Exploring a molecular switch for dopamine oxidation induced by charge reversal using scanning electrochemical microscopy. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|