1
|
Cannon CG, Klusener PAA, Brandon NP, Kucernak ARJ. Aqueous Redox Flow Batteries: Small Organic Molecules for the Positive Electrolyte Species. CHEMSUSCHEM 2023; 16:e202300303. [PMID: 37205628 DOI: 10.1002/cssc.202300303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/21/2023]
Abstract
There are a number of critical requirements for electrolytes in aqueous redox flow batteries. This paper reviews organic molecules that have been used as the redox-active electrolyte for the positive cell reaction in aqueous redox flow batteries. These organic compounds are centred around different organic redox-active moieties such as the aminoxyl radical (TEMPO and N-hydroxyphthalimide), carbonyl (quinones and biphenols), amine (e. g., indigo carmine), ether and thioether (e. g., thianthrene) groups. We consider the key metrics that can be used to assess their performance: redox potential, operating pH, solubility, redox kinetics, diffusivity, stability, and cost. We develop a new figure of merit - the theoretical intrinsic power density - which combines the first four of the aforementioned metrics to allow ranking of different redox couples on just one side of the battery. The organic electrolytes show theoretical intrinsic power densities which are 2-100 times larger than that of the VO2+ /VO2 + couple, with TEMPO-derivatives showing the highest performance. Finally, we survey organic positive electrolytes in the literature on the basis of their redox-active moieties and the aforementioned figure of merit.
Collapse
Affiliation(s)
- Christopher G Cannon
- Department of Chemistry, Imperial College London MSRH, White City, London, W12 0BZ, United Kingdom
| | - Peter A A Klusener
- Shell Global Solutions International B.V., Energy Transition Campus Amsterdam, Grasweg 31, 1031 HW Amsterdam, The Netherlands
| | - Nigel P Brandon
- Department of Earth Science and Engineering, Imperial College London South Kensington, London, SW7 2AZ, United Kingdom
| | - Anthony R J Kucernak
- Department of Chemistry, Imperial College London MSRH, White City, London, W12 0BZ, United Kingdom
| |
Collapse
|
2
|
Sorkun E, Zhang Q, Khetan A, Sorkun MC, Er S. RedDB, a computational database of electroactive molecules for aqueous redox flow batteries. Sci Data 2022; 9:718. [PMID: 36443329 PMCID: PMC9705518 DOI: 10.1038/s41597-022-01832-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/04/2022] [Indexed: 11/29/2022] Open
Abstract
An increasing number of electroactive compounds have recently been explored for their use in high-performance redox flow batteries for grid-scale energy storage. Given the vast and highly diverse chemical space of the candidate compounds, it is alluring to access their physicochemical properties in a speedy way. High-throughput virtual screening approaches, which use powerful combinatorial techniques for systematic enumerations of large virtual chemical libraries and respective property evaluations, are indispensable tools for an agile exploration of the designated chemical space. Herein, RedDB: a computational database that contains 31,618 molecules from two prominent classes of organic electroactive compounds, quinones and aza-aromatics, has been presented. RedDB incorporates miscellaneous physicochemical property information of the compounds that can potentially be employed as battery performance descriptors. RedDB's development steps, including: (i) chemical library generation, (ii) molecular property prediction based on quantum chemical calculations, (iii) aqueous solubility prediction using machine learning, and (iv) data processing and database creation, have been described.
Collapse
Affiliation(s)
- Elif Sorkun
- DIFFER - Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ, Eindhoven, the Netherlands
| | - Qi Zhang
- DIFFER - Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ, Eindhoven, the Netherlands
| | - Abhishek Khetan
- DIFFER - Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ, Eindhoven, the Netherlands
| | - Murat Cihan Sorkun
- DIFFER - Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ, Eindhoven, the Netherlands
| | - Süleyman Er
- DIFFER - Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ, Eindhoven, the Netherlands.
| |
Collapse
|
3
|
Rohland P, Schröter E, Nolte O, Newkome GR, Hager MD, Schubert US. Redox-active polymers: The magic key towards energy storage – a polymer design guideline progress in polymer science. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Pinheiro D, Pineiro M, de Melo JSS. Sulfonated tryptanthrin anolyte increases performance in pH neutral aqueous redox flow batteries. Commun Chem 2021; 4:89. [PMID: 36697575 PMCID: PMC9814137 DOI: 10.1038/s42004-021-00523-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/14/2021] [Indexed: 01/28/2023] Open
Abstract
Aqueous organic redox flow batteries (AORFBs) hold great promise as low-cost, environmentally friendly and safe alternative energy storage media. Here we present aqueous organometallic and all-organic active materials for RFBs with a water-soluble active material, sulfonated tryptanthrin (TRYP-SO3H), working at a neutral pH and showing long-term stability. Electrochemical measurements show that TRYP-SO3H displays reversible peaks at neutral pH values, allowing its use as an anolyte combined with potassium ferrocyanide or 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt monohydrate as catholytes. Single cell tests show reproducible charge-discharge cycles for both catholytes, with significantly improved results for the aqueous all-organic RFB reaching high cell voltage (0.94 V) and high energy efficiencies, stabilized during at least 50 working cycles.
Collapse
Affiliation(s)
- Daniela Pinheiro
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, Coimbra, Portugal
| | - Marta Pineiro
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, Coimbra, Portugal
| | | |
Collapse
|
5
|
Schwan S, Schröder D, Wegner HA, Janek J, Mollenhauer D. Substituent Pattern Effects on the Redox Potentials of Quinone-Based Active Materials for Aqueous Redox Flow Batteries. CHEMSUSCHEM 2020; 13:5480-5488. [PMID: 32798240 PMCID: PMC7702104 DOI: 10.1002/cssc.202000454] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/13/2020] [Indexed: 05/04/2023]
Abstract
Quinone-based, aqueous redox flow batteries are a promising technology for large-scale, low-cost energy storage. To understand the influence of substituent and substituent pattern effects of quinone-based derivatives on the redox potential, a screening study was performed that included benzoquinone, naphtaquinone, and anthraquinone derivatives. The order of substituent influence is -OH>-Me/-OMe for decreasing the redox potential and -F<-SO3 - <-CN, -NO2 for increasing the redox potential, which is in agreement with general expectations. We found that the consideration of resonance and inductive effects design strategies of redox-active materials can be extended by the ability of intramolecular hydrogen bond formation, steric hindrance, and energetic differences of conformers for oxidized and reduced species. Due to the complexity and overlap of these effects, theoretical screening studies can provide guidance for the design of new molecular materials. In addition to the redox potential, other parameters such as stability, solubility, and kinetic rate constant or synthetic accessibility are crucial to consider.
Collapse
Affiliation(s)
- S. Schwan
- Institute of Physical ChemistryJustus Liebig University GiessenHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Materials Research (ZfM/LaMa)Justus-Liebig University GiessenHeinrich-Buff-Ring 1635392GiessenGermany
| | - D. Schröder
- Institute of Physical ChemistryJustus Liebig University GiessenHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Materials Research (ZfM/LaMa)Justus-Liebig University GiessenHeinrich-Buff-Ring 1635392GiessenGermany
| | - H. A. Wegner
- Center for Materials Research (ZfM/LaMa)Justus-Liebig University GiessenHeinrich-Buff-Ring 1635392GiessenGermany
- Institute of Organic ChemistryJustus Liebig University GiessenHeinrich-Buff-Ring 1735392GiessenGermany
| | - J. Janek
- Institute of Physical ChemistryJustus Liebig University GiessenHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Materials Research (ZfM/LaMa)Justus-Liebig University GiessenHeinrich-Buff-Ring 1635392GiessenGermany
| | - D. Mollenhauer
- Institute of Physical ChemistryJustus Liebig University GiessenHeinrich-Buff-Ring 1735392GiessenGermany
- Center for Materials Research (ZfM/LaMa)Justus-Liebig University GiessenHeinrich-Buff-Ring 1635392GiessenGermany
| |
Collapse
|
6
|
Huang J, Dong X, Guo Z, Wang Y. Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion. Angew Chem Int Ed Engl 2020; 59:18322-18333. [PMID: 32329546 DOI: 10.1002/anie.202003198] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/17/2020] [Indexed: 12/16/2022]
Abstract
Aqueous batteries using inorganic compounds as electrode materials are considered a promising solution for grid-scale energy storage, while wide application is limited by the short life and/or high cost of electrodes. Organics with carbonyl groups are being investigated as the alternative to inorganic electrode materials because they offer the advantages of tunable structures, renewability, and they are environmentally benign. Furthermore, the wide internal space of such organic materials enables flexible storage of various charged ions (for example, H+ , Li+ , Na+ , K+ , Zn2+ , Mg2+ , and Ca2+ , and so on). We offer a comprehensive overview of the progress of organics containing carbonyls for energy storage and conversion in aqueous electrolytes, including applications in aqueous batteries as solid-state electrodes, in flow batteries as soluble redox species, and in water electrolysis as redox buffer electrodes. The advantages of organic electrodes are summarized, with a discussion of the challenges remaining for their practical application.
Collapse
Affiliation(s)
- Jianhang Huang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.,School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xiaoli Dong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Zhaowei Guo
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| | - Yonggang Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China
| |
Collapse
|
7
|
Huang J, Dong X, Guo Z, Wang Y. Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003198] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jianhang Huang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
- School of Materials Science and Engineering Nanchang Hangkong University Nanchang 330063 China
| | - Xiaoli Dong
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Zhaowei Guo
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| | - Yonggang Wang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Fudan University Shanghai 200433 China
| |
Collapse
|
8
|
Chen R, Bresser D, Saraf M, Gerlach P, Balducci A, Kunz S, Schröder D, Passerini S, Chen J. A Comparative Review of Electrolytes for Organic-Material-Based Energy-Storage Devices Employing Solid Electrodes and Redox Fluids. CHEMSUSCHEM 2020; 13:2205-2219. [PMID: 31995281 PMCID: PMC7318708 DOI: 10.1002/cssc.201903382] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/29/2020] [Indexed: 05/04/2023]
Abstract
Electrolyte chemistry is critical for any energy-storage device. Low-cost and sustainable rechargeable batteries based on organic redox-active materials are of great interest to tackle resource and performance limitations of current batteries with metal-based active materials. Organic active materials can be used not only as solid electrodes in the classic lithium-ion battery (LIB) setup, but also as redox fluids in redox-flow batteries (RFBs). Accordingly, they have suitability for mobile and stationary applications, respectively. Herein, different types of electrolytes, recent advances for designing better performing electrolytes, and remaining scientific challenges are discussed and summarized. Due to different configurations and requirements between LIBs and RFBs, the similarities and differences for choosing suitable electrolytes are discussed. Both general and specific strategies for promoting the utilization of organic active materials are covered.
Collapse
Affiliation(s)
- Ruiyong Chen
- Transfercenter Sustainable ElectrochemistrySaarland University66123SaarbrückenGermany
| | - Dominic Bresser
- Helmholtz Institute Ulm (HIU)89081UlmGermany
- Karlsruhe Institute of Technology (KIT)76021KarlsruheGermany
| | - Mohit Saraf
- Helmholtz Institute Ulm (HIU)89081UlmGermany
- Karlsruhe Institute of Technology (KIT)76021KarlsruheGermany
| | - Patrick Gerlach
- Institute for Technical Chemistry and Environmental ChemistryCenter for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich-Schiller-Universität Jena07743JenaGermany
| | - Andrea Balducci
- Institute for Technical Chemistry and Environmental ChemistryCenter for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich-Schiller-Universität Jena07743JenaGermany
| | - Simon Kunz
- Institute of Physical ChemistryJustus Liebig University Giessen35392GießenGermany
- Center for Materials Research (LaMa)Justus Liebig University Giessen35392GießenGermany
| | - Daniel Schröder
- Institute of Physical ChemistryJustus Liebig University Giessen35392GießenGermany
- Center for Materials Research (LaMa)Justus Liebig University Giessen35392GießenGermany
| | - Stefano Passerini
- Helmholtz Institute Ulm (HIU)89081UlmGermany
- Karlsruhe Institute of Technology (KIT)76021KarlsruheGermany
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage CenterCollege of ChemistryNankai UniversityTianjin300071P. R. China
| |
Collapse
|