1
|
Kuang Y, Zhai J, Xiao Q, Zhao S, Li C. Polysaccharide/mesoporous silica nanoparticle-based drug delivery systems: A review. Int J Biol Macromol 2021; 193:457-473. [PMID: 34710474 DOI: 10.1016/j.ijbiomac.2021.10.142] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) have been well-researched in the design and fabrication of advanced drug delivery systems (DDSs) due to their advantages such as good biocompatibility, large specific surface area and pore volume for drug loading, easily surface modification, adjusted size and good thermal/chemical stability. For MSN-based DDSs, gate materials are also necessary. And natural polysaccharides, one kind of the most abundant natural resource, have been widely applied as the "gatekeepers" in MSN-based DDSs. Polysaccharides are cheap and rich in sources with good biocompatibility, and some of them have important biological functions. In this review article, polysaccharides including chitosan, hyaluronic acid, sodium alginate and dextran, et al. are briefly introduced. And the preparation processes and properties such as controlled drug release, cancer targeting and disease diagnosis of functional polysaccharide/MSN-based DDSs are discussed.
Collapse
Affiliation(s)
- Ying Kuang
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Junjun Zhai
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Qinjian Xiao
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Si Zhao
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Cao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China.
| |
Collapse
|
2
|
Xu H, Yu T, Fu Y, Dang Z, Wang L, Xie S, Chang F, Shen H, Ren Q. Biosynthesis of Ag nanoparticles and two-dimensional element distribution in Arabidopsis. IET Nanobiotechnol 2020; 14:325-330. [PMID: 32463023 DOI: 10.1049/iet-nbt.2019.0282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metallic nanoparticles can be synthesised in living plants, which provide a friendly approach. In this work, the authors aimed to study the synthesis of silver nanoparticles (AgNPs) in Arabidopsis and the two-dimensional (2D) distribution of Ag and other elements (Ca, P, S, Mg, and CI) in the Arabidopsis plant tissues. The concentrations of Ag in the plant tissues were determined by inductively coupled plasma-atomic emission spectrometer, showing that the majority of Ag was retained in the roots. Transmission electron micrographs showed the morphology of AgNPs and the location in plant cells. The distributions of Cl and Ag were consistent in plant tissues by 2D proton-induced X-ray emission. In conclusion, this is the first report of the AgNP synthesis in Arabidopsis living plants and its 2D distribution of important elements, which provide a new clue for further research.
Collapse
Affiliation(s)
- Huanhuan Xu
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China
| | - Tao Yu
- Modern Physics Research Center, Fudan University, Shanghai, People's Republic of China
| | - Ying Fu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Zhiyan Dang
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China
| | - Li Wang
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China
| | - Songhai Xie
- Department of Chemistry, Fudan University, Shanghai, People's Republic of China
| | - Fang Chang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Hao Shen
- Modern Physics Research Center, Fudan University, Shanghai, People's Republic of China
| | - Qingguang Ren
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
3
|
Dang Z, Yu T, Xu H, Zhang H, Ren Q, Shen H. Investigation on the 2D-Distribution of Metallic Elements after Hair Dyeing. Biol Trace Elem Res 2020; 193:348-356. [PMID: 31020515 DOI: 10.1007/s12011-019-01722-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
Long-term use of hair dyes has potential effects on metal content in hair. However, little research dissects the specific distribution and composition variations of the metal after dyeing. In this study, we investigated the morphological change and metallic elements content variation after dyeing. The results showed that the concentration of essential metal elements decreased, among which the Ca, K, and Na decreased sharply even above 50%. As for the heavy metal, the most significant observation is that Pb increased almost by five times after dyeing. Besides, it revealed, using scanning electron microscope coupled with energy-dispersive X-ray spectroscopy (SEM-EDS), that Pb concentrated at the outer layer of the hair. In addition, two-dimensional proton-induced X-ray emission (2D-PIXE) was applied to analyze the distribution of metallic elements along the longitudinal and cross section of the hair. The results showed that Ca and Zn distributed evenly in the hair along the longitudinal and cross section. It is the first time that 2D-PIXE is applied to analyze the metallic distribution in the hair. This method exhibits high sensitivity and can be widely used in the environmental and medical field to analyze the distribution of metallic elements.
Collapse
Affiliation(s)
- Zhiyan Dang
- Center of Analysis and Measurement, Fudan University, 2005 Songhu Rd., Shanghai, 200438, China
| | - Tao Yu
- Modern Physics Research Center, Fudan University, 220 Handan Rd. (Handan Campus), Shanghai, 200433, China
| | - Huanhuan Xu
- Center of Analysis and Measurement, Fudan University, 2005 Songhu Rd., Shanghai, 200438, China
| | - Hailei Zhang
- Modern Physics Research Center, Fudan University, 220 Handan Rd. (Handan Campus), Shanghai, 200433, China
| | - Qingguang Ren
- Center of Analysis and Measurement, Fudan University, 2005 Songhu Rd., Shanghai, 200438, China.
| | - Hao Shen
- Modern Physics Research Center, Fudan University, 220 Handan Rd. (Handan Campus), Shanghai, 200433, China
| |
Collapse
|
4
|
Tong X, Guo N, Dang Z, Ren Q, Shen H. In vivo biosynthesis and spatial distribution of Ag nanoparticles in maize ( Zea mays L.). IET Nanobiotechnol 2018; 12:987-993. [PMID: 30247142 PMCID: PMC8676264 DOI: 10.1049/iet-nbt.2017.0230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 08/02/2023] Open
Abstract
Nanoparticles (NPs), especially biosynthesised in living plants by absorbing soluble salts and reducing metal ions, are extensively used in various fields. This work aimed at investigating the in vivo biosynthesis of silver NPs (Ag-NPs) in maize and the spatial distribution of the NPs and some important nutrient elements in the plant. The content of silver in plant was examined by inductively coupled plasma-atomic emission spectrometer showing that Ag can be absorbed by plant as soluble salts. The NPs in different parts of maize plant were detected and analysed by transmission electron microscopy, demonstrating the synthesis of NPs and their transport from the root to the shoots. Two-dimensional proton induced X-ray emission of silver, chlorine and several nutrient elements elucidated the possible relationship between synthesis of NPs and several nutrient elements in plant tissues. To their knowledge, this is the first report of possibility of synthesis of Ag-NPs in living plants maize (Zea mays L.). This study presents direct evidence for synthesis of NPs and distribution of related nutrient elements in maize, which has great significance for studying synthetic application of NPs in crop plants.
Collapse
Affiliation(s)
- Xiaoli Tong
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China
| | - Na Guo
- Modern Physics Research Center, Fudan University, Shanghai, People's Republic of China
| | - Zhiyan Dang
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China
| | - Qingguang Ren
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China.
| | - Hao Shen
- Modern Physics Research Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Miah AH, Champigny AC, Graves RH, Hodgson ST, Percy JM, Procopiou PA. Identification of pyrazolopyrimidine arylsulfonamides as CC-chemokine receptor 4 (CCR4) antagonists. Bioorg Med Chem 2017; 25:5327-5340. [PMID: 28801066 DOI: 10.1016/j.bmc.2017.07.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 02/02/2023]
Abstract
A novel 4-aminoindazole sulfonamide hit (13) was identified as a human CCR4 antagonists from testing a focussed library of compounds in the primary GTPγS assay. Replacing the indazole core with a pyrazolopyrimidine, and introduction of a methoxy group adjacent to the sulfonamide substituent, resulted in the identification of pyrazolopyrimidine 37a, which exhibited good binding affinity in the GTPγS assay (pIC50=7.2), low lipophilicity (clogP=2.2, chromlogD7.4=2.4), high LE (0.41), high solubility (CLND solubility ≥581µM), and an excellent PK profile in both the rat (F=62%) and the dog (F=100%). Further SAR investigation of the pyrazolopyrimidine suggested that substitution at N1 is tolerated, providing a suitable vector to modulate the properties, and increase the potency in a lead optimisation campaign.
Collapse
Affiliation(s)
- Afjal H Miah
- Department of Medicinal Chemistry, Respiratory TAU, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom.
| | - Aurelie C Champigny
- Department of Medicinal Chemistry, Respiratory TAU, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Rebecca H Graves
- Department of Drug Metabolism and Pharmacokinetics, Respiratory TAU, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Simon T Hodgson
- Department of Medicinal Chemistry, Respiratory TAU, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Jonathan M Percy
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Panayiotis A Procopiou
- Department of Medicinal Chemistry, Respiratory TAU, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| |
Collapse
|
6
|
|
7
|
2,8-Diazaspiro[4.5]decan-8-yl)pyrimidin-4-amine potent CCR4 antagonists capable of inducing receptor endocytosis. Eur J Med Chem 2016; 115:14-25. [PMID: 26991939 DOI: 10.1016/j.ejmech.2016.02.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 11/23/2022]
Abstract
A number of potent 2,8-diazaspiro[4.5]decan-8-yl)pyrimidin-4-amine CCR4 antagonists binding to the extracellular allosteric site were synthesised. (R)-N-(2,4-Dichlorobenzyl)-2-(2-(pyrrolidin-2-ylmethyl)-2,8-diazaspiro[4.5]decan-8-yl)pyrimidin-4-amine (R)-(18a) has high affinity in both the [(125)I]-TARC binding assay with a pKi of 8.8, and the [(35)S]-GTPγS functional assay with a pIC50 of 8.1, and high activity in the human whole blood actin polymerisation assay (pA2 = 6.7). The most potent antagonists were also investigated for their ability to induce endocytosis of CCR4 and were found to internalise about 60% of the cell surface receptors, a property which is not commonly shared by small molecule antagonists of chemokine receptors.
Collapse
|
8
|
Aznar E, Oroval M, Pascual L, Murguía JR, Martínez-Máñez R, Sancenón F. Gated Materials for On-Command Release of Guest Molecules. Chem Rev 2016; 116:561-718. [DOI: 10.1021/acs.chemrev.5b00456] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elena Aznar
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Mar Oroval
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Lluís Pascual
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Jose Ramón Murguía
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- Departamento
de Biotecnología, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- Departamento
de Química, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- Departamento
de Química, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| |
Collapse
|
9
|
Hama Salih MA, Male L, Spencer N, Fossey JS. γ-Lactams and furan bispyrrolidines via iodine mediated cyclisation of homoallylamines. Org Chem Front 2015. [DOI: 10.1039/c5qo00183h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1,3,5-Substituted pyrrolidin-2-ones were synthesisedviaan iodine mediated cyclisation of 3-methyl substituted homoallylamines in good to excellent yield, as mixtures of diastereoisomers. Furan bispyrrolidines were formed as single diastereoisomers when 3-phenyl homoallylamines were employed in an analogous reaction.
Collapse
Affiliation(s)
| | - Louise Male
- X-Ray Crystallography Facility
- School of Chemistry
- University of Birmingham
- Birmingham
- UK
| | - Neil Spencer
- NMR Facility
- School of Chemistry
- University of Birmingham
- Birmingham
- UK
| | | |
Collapse
|
10
|
Jiang H, Tian C, Zhang L, Cheng Z, Zhu X. Facile and highly efficient “living” radical polymerization of hydrophilic vinyl monomers in water. RSC Adv 2014. [DOI: 10.1039/c4ra09439e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
11
|
Hu X, Xu J, Xu S, Wang J, Feng S. Enhanced Salt Tolerance of Polyurethane Based Multilayer Films. CHINESE J CHEM 2014. [DOI: 10.1002/cjoc.201400303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Cai C, Chen R, He J, Feng J, Zhang X. Special Chiral C2-Symmetric endo-Biarylnorbornane: Synthesis and Structure Illustration. CHINESE J CHEM 2014. [DOI: 10.1002/cjoc.201400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Liu W, Wang Y, Li Y, Wang F, Yang X, Sun T, Du J, Wang J. Multiresponsive Polymer Assemblies Achieved by a Subtle Chain Terminal Modification. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|