1
|
Tan L, Kang H, Liu M, Su H, Han JT, Li CJ. Photocatalytic Decarboxylative Minisci Reaction Catalyzed by Palladium-Loaded Gallium Nitride. PRECISION CHEMISTRY 2023; 1:437-442. [PMID: 37771514 PMCID: PMC10523576 DOI: 10.1021/prechem.3c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 09/30/2023]
Abstract
The decarboxylative Minisci reaction is a versatile tool for the direct C-H alkylation of heteroarenes, where stoichiometric amounts of oxidants or expensive, precious metal reagents are commonly used. Herein, we reported a photodriven decarboxylative Minisci reaction enabled by a gallium nitride-based heterogeneous photocatalyst under mild conditions. This method can be effectively applied to a broad substrate scope of acids, including primary, secondary, and tertiary carboxylic acids and N-heteroarenes effectively. The practicability and robustness of the approach are demonstrated for the functionalization of biologically active compounds.
Collapse
Affiliation(s)
- Lida Tan
- Department
of Chemistry, and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Hyotaik Kang
- Department
of Chemistry, and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Mingxin Liu
- Department
of Chemistry, and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Chengguan
District, Lanzhou, Gansu 730000, China
| | - Hui Su
- Department
of Chemistry, and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Jing-Tan Han
- Department
of Chemistry, and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Chao-Jun Li
- Department
of Chemistry, and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
2
|
Romero AH. C-H Bond Functionalization of N-Heteroarenes Mediated by Selectfluor. Top Curr Chem (Cham) 2023; 381:29. [PMID: 37736818 DOI: 10.1007/s41061-023-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Herein, recent developments for Selectfluor-mediated C-H functionalization of N-heteroarenes are described. This type of C-H bond activation is an attractive and competitive alternative to traditional methodologies, allowing the functionalization of a variety of chemical functions. In addition, Selectfluor is a more sustainable and economically accessible oxidant compared with expensive/toxic metals or hazardous peroxides. For a practical understanding, the current review classified systematically the reported strategies in four subsections as follows: (1) carbon-carbon formation, (2) carbon-nitrogen bond formation, (3) carbon-chalcogen bond, and (4) carbon-halogen bond formation. Mechanistic aspects and reaction conditions are fully discussed to provide an understanding of the aspects that govern C-H functionalization in N-heteroarenes mediated by Selectfluor.
Collapse
Affiliation(s)
- Angel H Romero
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
3
|
Degradation and Stabilization of Resin-Dentine Interfaces in Polymeric Dental Adhesives: An Updated Review. COATINGS 2022. [DOI: 10.3390/coatings12081094] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Instability of the dentine-resin interface is owed to the partial/incomplete penetration of the resin adhesives in the collagen fibrils. However, interfacial hydrolysis of the resin-matrix hybrid layer complex activates the collagenolytic and esterase enzymes that cause the degradation of the hybrid layer. Adequate hybridization is often prevented due to the water trapped between the interfibrillar spaces of the collagen network. Cyclic fatigue rupture and denaturation of the exposed collagen fibrils have been observed on repeated application of masticatory forces. To prevent interfacial microstructure, various approaches have been explored. Techniques that stabilize the resin–dentine bond have utilized endogenous proteases inhibitors, cross linking agents’ incorporation in the exposed collagen fibrils, an adhesive system free of water, and methods to increase the monomer penetration into the adhesives interface. Therefore, it is important to discover and analyze the causes of interfacial degradation and discover methods to stabilize the hybrid layer to execute new technique and materials. To achieve a predictable and durable adhesive resin, restoration is a solution to the many clinical problems arising due to microleakage, loss of integrity of the restoration, secondary caries, and postoperative sensitivity. To enhance the longevity of the resin-dentine bond strength, several experimental strategies have been carried out to improve the resistance to enzymatic degradation by inhibiting intrinsic collagenolytic activity. In addition, biomimetic remineralization research has advanced considerably to contemporary approaches of both intrafibrillar and extrafibrillar remineralization of dental hard tissues. Thus, in the presence of biomimetic analog complete remineralization of collagen, fibers are identified.
Collapse
|
4
|
Zhao J, Qian K, Tong M, Yuan Q, Zhang Y. Mild and Metal‐Free Cross‐Dehydrogenative Coupling of Nitrogen Heteroarenes with Aldehydes Enabled by Structural Hybridization of Promoting Reagents. ChemistrySelect 2022. [DOI: 10.1002/slct.202104172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jianhong Zhao
- Laboratory of Green Pharmaceutical Process & Technology School of Pharmacy East China University of Science and Technology Shanghai 200237 P. R. China
| | - Kun Qian
- Shanghai Pharmaceutical School Shanghai 200135 P. R. China
| | - Mengchao Tong
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology Shanghai 200237 P. R. China
| | - Qiyang Yuan
- Laboratory of Green Pharmaceutical Process & Technology School of Pharmacy East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yongqiang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
5
|
Pan P, Yuan Q, Liu S, Zhao J, Zhang Y. Research of Quinuclidine-Promoted C—H Silylation of Electron- Deficient Nitrogen Heteroarenes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Zhang Y, Huang Y, Yu K, Zhang X, Yu W, Tang J, Tian Y, Wei W, Zhang Z, Liang T. Iron–iodine co-catalysis towards tandem C–N/C–C bond formation: one-pot regioselective synthesis of 2-amino-3-alkylindoles. Org Chem Front 2022. [DOI: 10.1039/d2qo01329k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient intermolecular C2,3-H aminoalkylation of indoles with 9H-xanthenes and azoles via iron–iodine co-catalyzed tandem C–N/C–C bond formation has been developed.
Collapse
Affiliation(s)
- Yingying Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yating Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Kewei Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Xiaoxiang Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wenhua Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jiale Tang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yiran Tian
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wanxing Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
7
|
Ouyang YN, Yue X, Peng J, Zhu J, Shen Q, Li W. Organic-acid catalysed Minisci-type arylation of heterocycles with aryl acyl peroxides. Org Biomol Chem 2022; 20:6619-6629. [DOI: 10.1039/d2ob01187e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal-free method for the Minisci-type arylation of heterocycles with aryl acyl peroxides has been reported. This strategy enables the rapid and simple synthesis of a series of Minisci-type adducts...
Collapse
|
8
|
Wang D, Zhang L, Xiao F, Mao GJ, Deng GJ. Electrochemical Selective C3-Thiolation of Quinolines. Org Chem Front 2022. [DOI: 10.1039/d2qo00148a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical method has been developed to achieve C3-thiolation of quinoline compounds. This new strategy highlights the maximum atom economy, direct conversion and also the use of simple and readily...
Collapse
|
9
|
One-pot synthesis of heteroaromatic acetals via selectfluor-mediated tandem reaction of methyl quinoline-2-carboxylate and methanol. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Dong J, Liu J, Song H, Liu Y, Wang Q. Metal-, Photocatalyst-, and Light-Free Minisci C-H Acetylation of N-Heteroarenes with Vinyl Ethers. Org Lett 2021; 23:4374-4378. [PMID: 34024106 DOI: 10.1021/acs.orglett.1c01310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a mild, operationally simple method for Minisci C-H acetylation of N-heteroarenes using vinyl ethers as robust, inexpensive acetyl sources. The reactions do not require a conventional photocatalysis, electrocatalysis, metal catalysis, light activation, or high temperature. This method is thus significantly more sustainable than previously reported methods in terms of cost, reagent toxicity, and waste generation. This protocol can be expected to obtain medically relevant molecules from abundant feedstock materials.
Collapse
Affiliation(s)
- Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianhua Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People's Republic of China
| |
Collapse
|
11
|
|
12
|
Dong J, Liu Y, Wang Q. Recent Advances in Visible-Light-Mediated Minisci Reactions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
McDonald TR, Mills LR, West MS, Rousseaux SAL. Selective Carbon–Carbon Bond Cleavage of Cyclopropanols. Chem Rev 2020; 121:3-79. [DOI: 10.1021/acs.chemrev.0c00346] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tyler R. McDonald
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - L. Reginald Mills
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Michael S. West
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Sophie A. L. Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
14
|
Dantas JA, Echemendía R, Santos MS, Paixão MW, Ferreira MAB, Corrêa AG. Green Approach for Visible-Light-Induced Direct Functionalization of 2-Methylquinolines. J Org Chem 2020; 85:11663-11678. [PMID: 32852210 DOI: 10.1021/acs.joc.0c01203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A transition metal- and oxidant-free visible light-photoinduced protocol for direct functionalization of 2-methylquinolines has been developed. This protocol enabled the C-H functionalization of substituted 2-methylquinolines with diacetyl or ethyl pyruvate, under environmentally friendly conditions. A mechanistic investigation based on density functional theory (DFT) calculations provided details about the origins of reactivity and selectivity.
Collapse
Affiliation(s)
- Juliana A Dantas
- Centre of Excellence for Research in Sustainable Chemistry, Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Radell Echemendía
- Centre of Excellence for Research in Sustainable Chemistry, Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Marilia S Santos
- Centre of Excellence for Research in Sustainable Chemistry, Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Márcio W Paixão
- Centre of Excellence for Research in Sustainable Chemistry, Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Marco Antonio B Ferreira
- Centre of Excellence for Research in Sustainable Chemistry, Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Arlene G Corrêa
- Centre of Excellence for Research in Sustainable Chemistry, Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
15
|
Liu Q, Wang Q, Xie G, Fang Z, Ding S, Wang X. Metal-Free Direct C-H β-Carbonyl Alkylation of Heteroarenes with Cyclopropanols Mediated by K2
S2
O8. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Qiang Liu
- School of Materials Science and Engineering; School of Environment and Civil Engineering; Dongguan University of Technology; 523808 Dongguan P. R. China
- Department of Applied Chemistry; School of Science; Xi'an Jiaotong University; 710049 Xi'an P. R. China
| | - Qiang Wang
- School of Materials Science and Engineering; School of Environment and Civil Engineering; Dongguan University of Technology; 523808 Dongguan P. R. China
- Department of Applied Chemistry; School of Science; Xi'an Jiaotong University; 710049 Xi'an P. R. China
| | - Guanqun Xie
- School of Materials Science and Engineering; School of Environment and Civil Engineering; Dongguan University of Technology; 523808 Dongguan P. R. China
| | - Zeyang Fang
- School of Materials Science and Engineering; School of Environment and Civil Engineering; Dongguan University of Technology; 523808 Dongguan P. R. China
| | - Shujiang Ding
- Department of Applied Chemistry; School of Science; Xi'an Jiaotong University; 710049 Xi'an P. R. China
| | - Xiaoxia Wang
- School of Materials Science and Engineering; School of Environment and Civil Engineering; Dongguan University of Technology; 523808 Dongguan P. R. China
| |
Collapse
|
16
|
Wiles RJ, Molander GA. Photoredox-Mediated Net-Neutral Radical/Polar Crossover Reactions. Isr J Chem 2020; 60:281-293. [PMID: 33986554 PMCID: PMC8115720 DOI: 10.1002/ijch.201900166] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Radical/Polar Crossover (RPC) chemistry is a rapidly growing subset of photoredox catalysis that is characterized by transformations featuring both radical and ionic modes of reactivity. Net-neutral RPC is particularly interesting in that both the single-electron oxidation and reduction steps occur through interaction with the photocatalyst, thus precluding the need for exogenous oxidants or reductants. As such, these transformations facilitate rapid incorporation of molecular complexity while maintaining mild reaction conditions. This review covers recent advances in photoredox-mediated net-neutral RPC synthetic methods, with a particular emphasis on C-C bond-forming reactions.
Collapse
Affiliation(s)
- Rebecca J Wiles
- Department of Chemistry, University of Pennsylvania, 231 S. 34 St. Philadelphia, PA 19104
| | - Gary A Molander
- Department of Chemistry, University of Pennsylvania, 231 S. 34 St. Philadelphia, PA 19104
| |
Collapse
|
17
|
Liu L, Jiang P, Liu Y, Du H, Tan J. Direct radical alkylation and acylation of 2H-indazoles using substituted Hantzsch esters as radical reservoirs. Org Chem Front 2020. [DOI: 10.1039/d0qo00507j] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A platform approach for the direct synthesis of 3-substituted 2H-indazole derivatives has been developed using a Ag(i)/Na2S2O8 system.
Collapse
Affiliation(s)
- Li Liu
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
| | - Pengxing Jiang
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavour Chemistry
- Beijing Technology and Business University (BTBU)
- Beijing 100048
- China
| | - Hongguang Du
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
| | - Jiajing Tan
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
| |
Collapse
|
18
|
Tian WF, Hu CH, He KH, He XY, Li Y. Visible-Light Photoredox-Catalyzed Decarboxylative Alkylation of Heteroarenes Using Carboxylic Acids with Hydrogen Release. Org Lett 2019; 21:6930-6935. [DOI: 10.1021/acs.orglett.9b02539] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wan-Fa Tian
- Center for Organic Chemistry, Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, Jiangxi 330013, P. R. China
| | - Chun-Hong Hu
- Center for Organic Chemistry, Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Ke-Han He
- Center for Organic Chemistry, Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Xiao-Ya He
- Center for Organic Chemistry, Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Yang Li
- Center for Organic Chemistry, Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| |
Collapse
|
19
|
Cheng X, Shan J, Tian X, Ren YL, Zhu Y. Benzylation of Arenes with Benzyl Halides under Promoter-Free and Additive-Free Conditions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xinqiang Cheng
- School of Chemical Engineering & Pharmaceutics; Henan University of Science and Technology; Luoyang 471003 Henan P. R. China
| | - Jiankai Shan
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 Henan Province P.R. China
| | - Xinshe Tian
- School of Chemical Engineering & Pharmaceutics; Henan University of Science and Technology; Luoyang 471003 Henan P. R. China
| | - Yun-Lai Ren
- School of Chemical Engineering & Pharmaceutics; Henan University of Science and Technology; Luoyang 471003 Henan P. R. China
| | - Yanyan Zhu
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 Henan Province P.R. China
| |
Collapse
|
20
|
Evano G, Theunissen C. Beyond Friedel and Crafts: Innate Alkylation of C−H Bonds in Arenes. Angew Chem Int Ed Engl 2019; 58:7558-7598. [DOI: 10.1002/anie.201806631] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F.D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
21
|
Wang R, Luan Y, Ye M. Transition Metal–Catalyzed Allylic C(sp
3
)–H Functionalization
via η
3
‐Allylmetal Intermediate. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900140] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ronghua Wang
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Yuxin Luan
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
22
|
Evano G, Theunissen C. Jenseits von Friedel und Crafts: immanente Alkylierung von C‐H‐Bindungen in Arenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806631] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| | - Cédric Theunissen
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie OrganiquesUniversité libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brüssel Belgien
| |
Collapse
|
23
|
Samanta S, Hajra A. Mn(II)-Catalyzed C–H Alkylation of Imidazopyridines and N-Heteroarenes via Decarbonylative and Cross-Dehydrogenative Coupling. J Org Chem 2019; 84:4363-4371. [DOI: 10.1021/acs.joc.9b00366] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sadhanendu Samanta
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|
24
|
Dong J, Lyu X, Wang Z, Wang X, Song H, Liu Y, Wang Q. Visible-light-mediated Minisci C-H alkylation of heteroarenes with unactivated alkyl halides using O 2 as an oxidant. Chem Sci 2019; 10:976-982. [PMID: 30774891 PMCID: PMC6349069 DOI: 10.1039/c8sc04892d] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/26/2018] [Indexed: 01/07/2023] Open
Abstract
Herein, we report a protocol for direct visible-light-mediated Minisci C-H alkylation of heteroarenes with unactivated alkyl halides using molecular oxygen as an oxidant at room temperature. This mild protocol is compatible with a wide array of sensitive functional groups and has a broad substrate scope. Notably, functionalization of (iso)quinolines, pyridines, phenanthrolines, quinazoline, and other heterocyclic compounds with unactivated primary, secondary, and tertiary alkyl halides proceeds smoothly under the standard conditions. The robustness of this protocol is further demonstrated by the late-stage functionalization of complex nitrogen-containing natural products and drugs.
Collapse
Affiliation(s)
- Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry , Research Institute of Elemento-Organic Chemistry , College of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China .
| | - Xueli Lyu
- State Key Laboratory of Elemento-Organic Chemistry , Research Institute of Elemento-Organic Chemistry , College of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China .
| | - Zhen Wang
- State Key Laboratory of Elemento-Organic Chemistry , Research Institute of Elemento-Organic Chemistry , College of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China .
| | - Xiaochen Wang
- State Key Laboratory of Elemento-Organic Chemistry , Research Institute of Elemento-Organic Chemistry , College of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China .
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry , Research Institute of Elemento-Organic Chemistry , College of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China .
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry , Research Institute of Elemento-Organic Chemistry , College of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China .
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry , Research Institute of Elemento-Organic Chemistry , College of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China .
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071 , People's Republic of China
| |
Collapse
|
25
|
Qin Q, Wang W, Zhang C, Song S, Jiao N. A metal-free desulfurizing radical reductive C–C coupling of thiols and alkenes. Chem Commun (Camb) 2019; 55:10583-10586. [PMID: 31418430 DOI: 10.1039/c9cc05378f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An intermolecular reductive C–C coupling of electrophilic alkyl radicals and alkenes has been developed.
Collapse
Affiliation(s)
- Qixue Qin
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Weijing Wang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Cheng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|
26
|
Dong J, Wang X, Wang Z, Song H, Liu Y, Wang Q. Metal-, photocatalyst-, and light-free late-stage C–H alkylation of N-heteroarenes with organotrimethylsilanes using persulfate as a stoichiometric oxidant. Org Chem Front 2019. [DOI: 10.1039/c9qo00690g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Minisci C–H alkylation of N-heteroarenes with readily available benzylsilanes and heteroatom substituted silanes was developed.
Collapse
Affiliation(s)
- Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Xiaochen Wang
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Zhen Wang
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| |
Collapse
|
27
|
Lu X, Zhang Z, Yu L, Zhang B, Wang B, Gong T, Tian C, Xiao B, Fu Y. Free Radical Pathway Cleavage of C—O Bonds for the Synthesis of Alkylboron Compounds. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800500] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xi Lu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEMUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Zhen‐Qi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEMUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Lu Yu
- High Magnetic Field LaboratoryChinese Academy of Sciences Hefei Anhui 230031 China
| | - Ben Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEMUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Bing Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEMUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Tian‐Jun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEMUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Chang‐Lin Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEMUniversity of Science and Technology of China Hefei Anhui 230026 China
- High Magnetic Field LaboratoryChinese Academy of Sciences Hefei Anhui 230031 China
- School of Life SciencesUniversity of Science and Technology of China Hefei Anhui 230027 China
| | - Bin Xiao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEMUniversity of Science and Technology of China Hefei Anhui 230026 China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEMUniversity of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
28
|
Farris PC, Wall AD, Chellali JE, Chittim CL, Landee CP, Turnbull MM, Wikaira JL. Copper(II) halide complexes of aminopyridines: Syntheses, structures and magnetic properties of [(5CAP)2CuX2] and [(5BAP)nCuX2] (X = Cl, Br). J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1499901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Penelope C. Farris
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| | - Alexander D. Wall
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| | - Jonathan E. Chellali
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| | - Carina L. Chittim
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| | | | - Mark M. Turnbull
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| | - Jan L. Wikaira
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch New Zealand
| |
Collapse
|
29
|
Kärkäs MD. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem Soc Rev 2018; 47:5786-5865. [PMID: 29911724 DOI: 10.1039/c7cs00619e] [Citation(s) in RCA: 605] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional methods for carrying out carbon-hydrogen functionalization and carbon-nitrogen bond formation are typically conducted at elevated temperatures, and rely on expensive catalysts as well as the use of stoichiometric, and perhaps toxic, oxidants. In this regard, electrochemical synthesis has recently been recognized as a sustainable and scalable strategy for the construction of challenging carbon-carbon and carbon-heteroatom bonds. Here, electrosynthesis has proven to be an environmentally benign, highly effective and versatile platform for achieving a wide range of nonclassical bond disconnections via generation of radical intermediates under mild reaction conditions. This review provides an overview on the use of anodic electrochemical methods for expediting the development of carbon-hydrogen functionalization and carbon-nitrogen bond formation strategies. Emphasis is placed on methodology development and mechanistic insight and aims to provide inspiration for future synthetic applications in the field of electrosynthesis.
Collapse
Affiliation(s)
- Markus D Kärkäs
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
30
|
Xia HM, Zhang FL, Ye T, Wang YF. Selective α-Monomethylation by an Amine-Borane/N
,N
-Dimethylformamide System as the Methyl Source. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hui-Min Xia
- Hefei National Laboratory for Physical Sciences at the Microscale; Center for Excellence in Molecular Synthesis of CAS, and; Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei Anhui 230026 China
| | - Feng-Lian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale; Center for Excellence in Molecular Synthesis of CAS, and; Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei Anhui 230026 China
| | - Tian Ye
- Hefei National Laboratory for Physical Sciences at the Microscale; Center for Excellence in Molecular Synthesis of CAS, and; Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei Anhui 230026 China
| | - Yi-Feng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale; Center for Excellence in Molecular Synthesis of CAS, and; Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei Anhui 230026 China
- State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
| |
Collapse
|
31
|
Xia HM, Zhang FL, Ye T, Wang YF. Selective α-Monomethylation by an Amine-Borane/N,N-Dimethylformamide System as the Methyl Source. Angew Chem Int Ed Engl 2018; 57:11770-11775. [PMID: 29968283 DOI: 10.1002/anie.201804794] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 12/13/2022]
Abstract
A new and practical α-monomethylation strategy using an amine-borane/N,N-dimethylformamide (R3 N-BH3 /DMF) system as the methyl source was developed. This protocol has been found to be effective in the α-monomethylation of arylacetonitriles and arylacetamides. Mechanistic studies revealed that the formyl group of DMF delivered the carbon and one hydrogen atoms of the methyl group, and R3 N-BH3 donated the remaining two hydrogen atoms. Such a unique reaction pathway enabled controllable assemblies of CDH2 -, CD2 H-, and CD3 - units using Me2 NH-BH3 /d7 -DMF, Me3 N-BD3 /DMF and Me3 N-BD3 /d7 -DMF systems, respectively. Further application of this method to the facile synthesis of anti-inflammatory flurbiprofen and its varied deuterium-labeled derivatives was demonstrated.
Collapse
Affiliation(s)
- Hui-Min Xia
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Excellence in Molecular Synthesis of CAS, and, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Feng-Lian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Excellence in Molecular Synthesis of CAS, and, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Tian Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Excellence in Molecular Synthesis of CAS, and, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yi-Feng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Center for Excellence in Molecular Synthesis of CAS, and, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
32
|
Liu Y, Yi H, Lei A. Oxidation-Induced C-H Functionalization: A Formal Way for C-H Activation. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800106] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yichang Liu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences; Wuhan University; Wuhan Hubei 430072 China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences; Wuhan University; Wuhan Hubei 430072 China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences; Wuhan University; Wuhan Hubei 430072 China
| |
Collapse
|
33
|
Tan G, Wang X. Isolable Radical Ions of Main-Group Elements: Structures, Bonding and Properties. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201700802] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Gengwen Tan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing Jiangsu 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures; Nanjing University; Nanjing Jiangsu 210023 China
| |
Collapse
|
34
|
Wang J, Li GX, He G, Chen G. Photoredox-Mediated Minisci Alkylation of N-Heteroarenes using Carboxylic Acids and Hypervalent Iodine. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800197] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junhua Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry; College of chemistry; Nankai University; Tianjin 300071 China
| | - Guo-Xing Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry; College of chemistry; Nankai University; Tianjin 300071 China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry; College of chemistry; Nankai University; Tianjin 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry; College of chemistry; Nankai University; Tianjin 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 China
| |
Collapse
|
35
|
Pan J, Li X, Qiu X, Luo X, Jiao N. Copper-Catalyzed Oxygenation Approach to Oxazoles from Amines, Alkynes, and Molecular Oxygen. Org Lett 2018; 20:2762-2765. [PMID: 29664305 DOI: 10.1021/acs.orglett.8b00992] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel and efficient oxygenation approach to trisubstituted oxazoles via a copper-catalyzed aerobic oxidative dehydrogenative annulation of amines, alkynes, and O2 has been developed. This transformation combines dioxygen activation and oxidative C-H bond functionalization and provides a practical protocol for the preparation of oxazole derivatives, which are privileged units found in various bioactive compounds or other natural products. 18O-labeling experiments were conducted to reveal that oxygenation was involved in this chemistry.
Collapse
Affiliation(s)
- Jun Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China
| | - Xinyao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China
| | - Xiao Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes , East China Normal University , Shanghai 200062 , China
| |
Collapse
|
36
|
Gutiérrez-Bonet Á, Remeur C, Matsui JK, Molander GA. Late-Stage C-H Alkylation of Heterocycles and 1,4-Quinones via Oxidative Homolysis of 1,4-Dihydropyridines. J Am Chem Soc 2017; 139:12251-12258. [PMID: 28832137 PMCID: PMC5599171 DOI: 10.1021/jacs.7b05899] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Under oxidative conditions, 1,4-dihydropyridines (DHPs) undergo a homolytic cleavage, forming exclusively a Csp3-centered radical that can engage in the C-H alkylation of heterocyclic bases and 1,4-quinones. DHPs are readily prepared from aldehydes, and considering that aldehydes normally require harsh reaction conditions to take part in such transformations, with mixtures of alkylated and acylated products often being obtained, this net decarbonylative alkylation approach becomes particularly useful. The present method takes place under mild reaction conditions and requires only persulfate as a stoichiometric oxidant, making the procedure suitable for the late-stage C-H alkylation of complex molecules. Notably, structurally complex pharmaceutical agents could be functionalized or prepared with this protocol, such as the antimalarial Atovaquone and antitheilerial Parvaquone, thus evidencing its applicability. Mechanistic studies revealed a likely radical chain process via the formation of a dearomatized intermediate, providing a deeper understanding of the factors governing the reactivity of these radical forebears.
Collapse
Affiliation(s)
| | | | - Jennifer K. Matsui
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|