1
|
Li M, Yang S, Zhang J, Gao Z, Zheng L, Lu F, Feng Y. Electrochemical oxidative selective halogenation of pyrazolones for the synthesis of 4-halopyrazolones. Org Biomol Chem 2024. [PMID: 39034644 DOI: 10.1039/d4ob00982g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
An efficient and environmentally friendly electrochemical oxidative selective halogenation of pyrazolones has been developed under conditions free of metals, external oxidants, and external supporting electrolytes. The reaction demonstrates good functional group tolerance and maintains high efficiency in large-scale synthesis, yielding moderate to excellent yields of the desired 4-halopyrazolones. This method provides a green and convenient route for the direct installation of a halogen moiety into bioactive pyrazolone derivatives, which can be utilized in a myriad of applications.
Collapse
Affiliation(s)
- Minghan Li
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang 330006, P. R. China.
| | - Shilin Yang
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang 330006, P. R. China.
| | - Jingyi Zhang
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang 330006, P. R. China.
| | - Zixun Gao
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang 330006, P. R. China.
| | - Linyu Zheng
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang 330006, P. R. China.
| | - Fangling Lu
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang 330006, P. R. China.
| | - Yulin Feng
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, 56 Yangming Road, Jiangxi, Nanchang 330006, P. R. China.
| |
Collapse
|
2
|
Li X, Yuan X, Wu Y, Guo H, Liu Q, Huang S. Synthesis of 3,4,5-Trisubstituted 1,2,4-Triazoles via I 2-Catalyzed Cycloaddition of Amidines with Hydrazones. J Org Chem 2024; 89:5277-5286. [PMID: 38587487 DOI: 10.1021/acs.joc.3c02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A general and practical method for the construction of various 3,4,5-trisubstituted 1,2,4-triazoles via I2-catalyzed cycloaddition of N-functionalized amidines with hydrazones is reported. This strategy features cheap and readily available catalyst and starting materials, broader substrate scope, and moderate-to-good yields. The mechanism study shows that the existence of hydrogen on the nitrogen of hydrazones is crucial for this transformation.
Collapse
Affiliation(s)
- Xing Li
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Xinyufei Yuan
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Yuting Wu
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Honghong Guo
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Qiang Liu
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| | - Shuangping Huang
- College of Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, People's Republic of China
| |
Collapse
|
3
|
Garai B, Das A, Kumar DV, Sundararaju B. Enantioselective C-H bond functionalization under Co(III)-catalysis. Chem Commun (Camb) 2024; 60:3354-3369. [PMID: 38441168 DOI: 10.1039/d3cc05329f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
While progress in enantioselective C-H functionalization has been accomplished by employing 4d and 5d transition metal-based catalysts, the rapid depletion of these metals in the earth's crust poses a serious threat to making these protocols sustainable. On the other hand, because of their unique reactivity, low toxicity, and high earth abundance, newer strategies utilizing affordable 3d transition metals have come to the forefront. Among the first-row transition metals, high-valent cobalt has recently attracted a lot of attention for catalytic C-H functionalization with mono and bidentate directing groups. This approach was extended for asymmetric catalysis due to a fairly thorough knowledge of its catalytic cycles. Four major themes have been investigated as a result of this insight: (1) rational design of a chiral Cp#Co(III)-catalyst, (2) chiral carboxylic acid with achiral Cp*Co(III)-catalysts using monodentate directing groups, (3) cobalt/salox-based systems, and (4) cobalt/chiral phosphoric acid-based hybrid systems with bidentate directing groups. Herein, we highlight the recent developments in high-valent cobalt-catalyzed enantioselective C-H functionalization up to October 2023, with the strong belief that the current state-of-the-art can attract considerable interest in the synthetic community, encouraging discoveries in the evolving landscape of asymmetric catalysis.
Collapse
Affiliation(s)
- Bholanath Garai
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Abir Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Doppalapudi Vineet Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| |
Collapse
|
4
|
Luo J, Luo Z, Zhang B, Zhao Q, Liu L, Liu Y. B(C 6 F 5 ) 3 -Catalyzed [2+3]-Cyclative o,m-diC-H Functionalization of Phenols. Chemistry 2023; 29:e202301595. [PMID: 37759356 DOI: 10.1002/chem.202301595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Metal-free catalytic C-H functionalization is highly desired for the construction of C-C bonds. We herein report a highly chemoselective consecutive C-H [2+3]-cyclative functionalization for the simultaneous formation of two C-C bonds with construction of polycyclic phenols catalyzed by commercially available and low-cost B(C6 F5 )3 . This catalytic system tolerates a wide range of substrate scope, providing a series of 2,6,7,8-tetrahydroacenaphthylen-3-ol-type polycyclic compounds efficiently. Several derivatizations of the catalytic products have also been conducted to show the potential application of this method in synthesis of polycyclic compounds.
Collapse
Affiliation(s)
- Jingyan Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhou Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Biqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Qiuyu Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lu Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yuanyuan Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
5
|
Hu J, Wang S, Li B, Lei A. K 2S 2O 8-Induced [4+2] Annulation of Tertiary Anilines and Alkenes toward Tetrahydroquinolines. Org Lett 2023. [PMID: 36866524 DOI: 10.1021/acs.orglett.2c04335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Due to the unique physicochemical properties of heterocyclic compounds, their construction is one of the central issues in synthetic chemistry. Here, we report a K2S2O8-induced protocol for constructing tetrahydroquinolines from bulk chemicals (alkenes and anilines). The merit of this method has been demonstrated by its operational simplicity, wide scope, mild conditions, and transition-metal-free system.
Collapse
Affiliation(s)
- Jianguo Hu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China.,Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Bin Li
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, P. R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. China.,The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| |
Collapse
|
6
|
Jha RK, Upadhyay A, Kanika, Jain S, K A N, Kumar S. Light-Driven Carbon-Carbon Coupling of α-sp 3-CH of Aliphatic Alcohols with sp 2-CH Bond of 1,4-Naphthoquinones. Org Lett 2022; 24:7605-7610. [PMID: 36227000 DOI: 10.1021/acs.orglett.2c03066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, an α-selective Csp3-H bond functionalization of primary aliphatic alcohols with 1,4-naphthoquinones yielded Csp2-Csp2 coupled products driven by blue-LED light under catalyst, metal, base, and reagent-free conditions. In this transformation, cleavage of three C-H bonds (two sp3-C-H, one sp2-C-H, and one O-H) and four new bonds formed, leading to fluorescent 2-acylated-1,4-naphthohydroquinones.
Collapse
Affiliation(s)
- Raushan Kumar Jha
- Department of Chemistry, IISER Bhopal, Bhauri By-pass Road, Bhopal 462 066, Madhya Pradesh India
| | - Aditya Upadhyay
- Department of Chemistry, IISER Bhopal, Bhauri By-pass Road, Bhopal 462 066, Madhya Pradesh India
| | - Kanika
- Department of Chemistry, IISER Bhopal, Bhauri By-pass Road, Bhopal 462 066, Madhya Pradesh India
| | - Saket Jain
- Department of Chemistry, IISER Bhopal, Bhauri By-pass Road, Bhopal 462 066, Madhya Pradesh India
| | - Neena K A
- Department of Chemistry, IISER Bhopal, Bhauri By-pass Road, Bhopal 462 066, Madhya Pradesh India
| | - Sangit Kumar
- Department of Chemistry, IISER Bhopal, Bhauri By-pass Road, Bhopal 462 066, Madhya Pradesh India
| |
Collapse
|
7
|
Liu XH, Yu HY, Huang JY, Su JH, Xue C, Zhou XT, He YR, He Q, Xu DJ, Xiong C, Ji HB. Biomimetic catalytic aerobic oxidation of C-sp(3)-H bonds under mild conditions using galactose oxidase model compound Cu IIL. Chem Sci 2022; 13:9560-9568. [PMID: 36091900 PMCID: PMC9400635 DOI: 10.1039/d2sc02606f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Developing highly efficient catalytic protocols for C-sp(3)-H bond aerobic oxidation under mild conditions is a long-desired goal of chemists. Inspired by nature, a biomimetic approach for the aerobic oxidation of C-sp(3)-H by galactose oxidase model compound CuIIL and NHPI (N-hydroxyphthalimide) was developed. The CuIIL-NHPI system exhibited excellent performance in the oxidation of C-sp(3)-H bonds to ketones, especially for light alkanes. The biomimetic catalytic protocol had a broad substrate scope. Mechanistic studies revealed that the CuI-radical intermediate species generated from the intramolecular redox process of CuIILH2 was critical for O2 activation. Kinetic experiments showed that the activation of NHPI was the rate-determining step. Furthermore, activation of NHPI in the CuIIL-NHPI system was demonstrated by time-resolved EPR results. The persistent PINO (phthalimide-N-oxyl) radical mechanism for the aerobic oxidation of C-sp(3)-H bond was demonstrated.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Hai-Yang Yu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Jia-Ying Huang
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Ji-Hu Su
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China Hefei 230026 China
| | - Can Xue
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Xian-Tai Zhou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Yao-Rong He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Qian He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - De-Jing Xu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Hong-Bing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
8
|
Panja S, Ahsan S, Pal T, Kolb S, Ali W, Sharma S, Das C, Grover J, Dutta A, Werz DB, Paul A, Maiti D. Non-directed Pd-catalysed electrooxidative olefination of arenes. Chem Sci 2022; 13:9432-9439. [PMID: 36093017 PMCID: PMC9383708 DOI: 10.1039/d2sc03288k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/15/2022] [Indexed: 12/19/2022] Open
Abstract
The Fujiwara-Moritani reaction is a powerful tool for the olefination of arenes by Pd-catalysed C-H activation. However, the need for superstoichiometric amounts of toxic chemical oxidants makes the reaction unattractive from an environmental and atom-economical view. Herein, we report the first non-directed and regioselective olefination of simple arenes via an electrooxidative Fujiwara-Moritani reaction. The versatility of this operator-friendly approach was demonstrated by a broad substrate scope which includes arenes, heteroarenes and a variety of olefins. Electroanalytical studies suggest the involvement of a Pd(ii)/Pd(iv) catalytic cycle via a Pd(iii) intermediate.
Collapse
Affiliation(s)
- Subir Panja
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| | - Salman Ahsan
- Indian Institute of Science Education and Research (IISER) Bhopal, Department of Chemistry Bhopal Madhya Pradesh 462066 India
| | - Tanay Pal
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| | - Simon Kolb
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Wajid Ali
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| | - Sulekha Sharma
- Indian Institute of Science Education and Research (IISER) Bhopal, Department of Chemistry Bhopal Madhya Pradesh 462066 India
| | - Chandan Das
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| | - Jagrit Grover
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| | - Arnab Dutta
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Amit Paul
- Indian Institute of Science Education and Research (IISER) Bhopal, Department of Chemistry Bhopal Madhya Pradesh 462066 India
| | - Debabrata Maiti
- IIT Bombay, Department of Chemistry and IDP, Climate Studies Powai Mumbai 400076 India
| |
Collapse
|
9
|
Affiliation(s)
- Yichang Liu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Yi-Hung Chen
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| |
Collapse
|
10
|
Katiyar S, Kumar A, Sashidhara KV. Silver-catalyzed decarboxylative cyclization for the synthesis of substituted pyrazoles from 1,2-diaza-1,3-dienes and α-keto acids. Chem Commun (Camb) 2022; 58:7297-7300. [PMID: 35678363 DOI: 10.1039/d2cc01793h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A silver-catalyzed decarboxylative cyclization process has been developed for the synthesis of substituted pyrazoles from the readily available 1,2-diaza-1,3-dienes and α-keto acids. Under the optimized conditions, a series of multisubstituted pyrazoles were well prepared in moderate to good yields. In addition, the synthetic utility of this protocol has been demonstrated by synthesizing analogs of FDA approved drugs such as anti-inflammatory drug, lonazolac and antiobesity drug, rimonabant.
Collapse
Affiliation(s)
- Sarita Katiyar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India. .,Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh - 201002, India
| | - Abhishek Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India.
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India. .,Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh - 201002, India.,Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| |
Collapse
|
11
|
Mishra M, Maharana PK, Karjee P, Punniyamurthy T. Expedient cobalt-catalyzed stereospecific cascade C-N and C-O bond formation of styrene oxides with hydrazones. Chem Commun (Camb) 2022; 58:7090-7093. [PMID: 35661177 DOI: 10.1039/d2cc01926d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt-catalyzed cascade C-N and C-O bond formation of epoxides with hydrazones is described to furnish oxadiazines using air as an oxidant. The catalyst plays a dual role as a Lewis acid followed by a redox catalyst to accomplish the C-H/O-H cyclization. Optically active styrene oxide can be reacted enantiospecifically (>99% ee).
Collapse
Affiliation(s)
- Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | | |
Collapse
|
12
|
Electrochemically driven regioselective C-H phosphorylation of group 8 metallocenes. Nat Commun 2022; 13:3496. [PMID: 35715392 PMCID: PMC9206016 DOI: 10.1038/s41467-022-31178-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/01/2022] [Indexed: 01/11/2023] Open
Abstract
Metallocenes are privileged backbones for synthesis and catalysis. However, the direct dehydrogenative C−H functionalization of unsymmetric metallocenes suffers from reactivity and selectivity issues. Herein, we report an electrochemically driven regioselective C−H phosphorylation of group 8 metallocenes. Mechanistic investigations indicate this dehydrogenative cross coupling occurs through an electrophilic radical substitution of the metallocene with a phosphoryl radical, facilitated by the metallocene itself. This work not only offers an efficient and divergent synthesis of phosphorylated metallocenes, but also provides a guide to interpret the reactivity and regioselectivity for the C−H functionalization of unsymmetric metallocenes. Metallocene-based phosphines are compounds with potential use in catalysis. Here, the authors report the electrochemical regioselective functionalization of group 8 metallocenes with phosphine oxides; over 60 examples of phosphorylated (benzo)ferrocenes and ruthenocenes can be accessed via this method without the need for a preinstalled directing group.
Collapse
|
13
|
Mironova IA, Nenajdenko VG, Postnikov PS, Saito A, Yusubov MS, Yoshimura A. Efficient Catalytic Synthesis of Condensed Isoxazole Derivatives via Intramolecular Oxidative Cycloaddition of Aldoximes. Molecules 2022; 27:3860. [PMID: 35744982 PMCID: PMC9229713 DOI: 10.3390/molecules27123860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/28/2023] Open
Abstract
The intramolecular oxidative cycloaddition reaction of alkyne- or alkene-tethered aldoximes was catalyzed efficiently by hypervalent iodine(III) species to afford the corresponding polycyclic isoxazole derivatives in up to a 94% yield. The structure of the prepared products was confirmed by various methods, including X-ray crystallography. Mechanistic study demonstrated the crucial role of hydroxy(aryl)iodonium tosylate as a precatalyst, which is generated from 2-iodobenzoic acid and m-chloroperoxybenzoic acid in the presence of a catalytic amount of p-toluenesulfonic acid.
Collapse
Affiliation(s)
- Irina A. Mironova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (I.A.M.); (P.S.P.)
| | | | - Pavel S. Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (I.A.M.); (P.S.P.)
| | - Akio Saito
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (I.A.M.); (P.S.P.)
| | - Akira Yoshimura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| |
Collapse
|
14
|
Han M, Tang Z, Li GX, Wang QW. Electrochemical oxidation chemoselective sulfimidation of thioether with sulfonamide via catalytic iodobenzene. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Yang L, Huang Y, Yu W, Fan L, Wang T, Fu J. Copper-Catalyzed Oxidative Coupling of Quinazoline-3-Oxides: Synthesis of O-Quinazolinic Carbamates. J Org Chem 2022; 87:5136-5148. [DOI: 10.1021/acs.joc.1c03098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingyun Yang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Yangfei Huang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Weijie Yu
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Lijia Fan
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Tao Wang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Junkai Fu
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
16
|
Shi P, Tu Y, Wang C, Ma D, Bolm C. Visible Light-Promoted Synthesis of β-Keto Sulfoximines from N-Tosyl-Protected Sulfoximidoyl Chlorides. J Org Chem 2022; 87:3817-3824. [PMID: 35041422 DOI: 10.1021/acs.joc.1c02971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Under visible light, N-tosyl-protected sulfoximidoyl chlorides react with aryl alkynes to give β-keto sulfoximines. The reaction is characterized by a high functional group tolerance and good yields. It can be improved by the presence of a ruthenium photocatalyst. Air is the source of the ketonic oxygen in the products.
Collapse
Affiliation(s)
- Peng Shi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Yongliang Tu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Chenyang Wang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Ding Ma
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
17
|
Nayek N, Karmakar P, Mandal M, Karmakar I, Brahmachari G. Photochemical and electrochemical regioselective cross-dehydrogenative C(sp 2)–H sulfenylation and selenylation of substituted benzo[ a]phenazin-5-ols. NEW J CHEM 2022. [DOI: 10.1039/d2nj02224a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The essence of photo- and electrochemistry: sulfenylation and selenylation of substituted benzo[a]phenazin-5-ols through cross-dehydrogenative C(sp2)–H functionalization.
Collapse
Affiliation(s)
- Nayana Nayek
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Pintu Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Mullicka Mandal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| |
Collapse
|
18
|
Li H, Lu F, Xu J, Hu J, Alhumade H, Lu L, Lei A. Electrochemical oxidative selenocyclization of olefinic amides towards the synthesis of iminoisobenzofurans. Org Chem Front 2022. [DOI: 10.1039/d2qo00406b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We introduced an electrochemical oxidative radical cascade cyclization of olefinic amides and diselenides without a transition-metal catalyst and external oxidant. This selenocyclization reaction provided a facile method to construct C–Se and C–O bonds in one step.
Collapse
Affiliation(s)
- Hao Li
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Fangling Lu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jie Xu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jianguo Hu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lijun Lu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Wuhan University, Wuhan, Hubei 430072, P. R. China
- King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Hu J, Zeng L, Hu J, Ma R, Liu X, Jiao Y, He H, Chen S, Xu Z, Wang H, Lei A. Electrochemical Difunctionalization of Terminal Alkynes: Access to 1,4-Dicarbonyl Compounds. Org Lett 2021; 24:289-292. [PMID: 34923826 DOI: 10.1021/acs.orglett.1c03955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1,4-Dicarbonyl compounds are versatile scaffolds for the heterocycle synthesis, including the Paal-Knorr reaction. Herein, a feasible electrosynthesis method to access 1,4-dicarbonyl compounds has been developed from simple alkynes and 1,3-dicarbonyl compounds. When the undivided cell is combined with the constant current mode, aryl alkynes containing numerous medicinal motifs with 1,3-dicarbonyl esters or ketones react smoothly. External oxidant and catalyst-free conditions conform to the requirements of green synthesis.
Collapse
Affiliation(s)
- Jingcheng Hu
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Li Zeng
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Jiayu Hu
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Rui Ma
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Xue Liu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang, Jiangxi 330022, People's Republic of China
| | - Ying Jiao
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Haoyu He
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Siyu Chen
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Zhexi Xu
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Hongfei Wang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China.,Department of Chemical and Materials Engineering, Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
20
|
Liu Y, Shi B, Liu Z, Gao R, Huang C, Alhumade H, Wang S, Qi X, Lei A. Time-Resolved EPR Revealed the Formation, Structure, and Reactivity of N -Centered Radicals in an Electrochemical C(sp 3)-H Arylation Reaction. J Am Chem Soc 2021; 143:20863-20872. [PMID: 34851107 DOI: 10.1021/jacs.1c09341] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Electrochemical synthesis has been rapidly developed over the past few years, while a vast majority of the reactions proceed through a radical pathway. Understanding the properties of radical intermediates is crucial in the mechanistic study of electrochemical transformations and will be beneficial for developing new reactions. Nevertheless, it is rather difficult to determine the "live" radical intermediates due to their high reactivity. In this work, the formation and structure of sulfonamide N-centered radicals have been researched directly by using the time-resolved electron paramagnetic resonance (EPR) technique under electrochemical conditions. Supported by the EPR results, the reactivity of N-centered radicals as a mediator in the hydrogen atom transfer (HAT) approach has been discussed. Subsequently, these mechanistic study results have been successfully utilized in the discovery of an unactivated C(sp3)-H arylation reaction. The kinetic experiments have revealed the rate-determined step is the anodic oxidation of sulfonamides.
Collapse
Affiliation(s)
- Yichang Liu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Biyin Shi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Zhao Liu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Renfei Gao
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Cunlong Huang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Center of Research Excellence in Renewable Energy and Power Ststems, King Abdulzaziz University, Jeddah 21589, Saudi Arabia
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Xiaotian Qi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China.,Department of Chemical and Materials Engineering, Abdulzaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
21
|
|
22
|
Cuan Y, Li W, Dou Y, Yang G. Facile and scalable synthesis of baphicacanthin A by a two-pot procedure. Nat Prod Res 2021; 37:1439-1443. [PMID: 34852687 DOI: 10.1080/14786419.2021.2011275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Facile two-pot total synthesis of baphicacanthin A, a natural phenoxazinone alkaloid isolated from the roots of Baphicacanthus cusia which has been utilized as a traditional chinese medicine to effectively treat disease caused by coronavirus, has been developed from simple and commercially available starting materials. Catalytic aerobic oxidative cross-cyclocondensation of equimolar 2-aminophenol and 3-methoxy-2-hydroxylphenol in water was used to construct the key molecular skeleton 2-hydroxy-3H-phenoxazin-3-one. Gram scale synthesis was realized in 80% overall yield with practical convenience.
Collapse
Affiliation(s)
- Yalong Cuan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Wenhao Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Yingchao Dou
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Guanyu Yang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Liang K, Lu L, Liu X, Yang D, Wang S, Gao Y, Alhumade H, Yi H, Lei A. Electrochemical Cobalt-catalyzed Cyclotrimerization of Alkynes to 1,2,4-Substituted Arenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kailun Liang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Lijun Lu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Xing Liu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Dali Yang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Yiming Gao
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Center of Research Excellence in Renewable Energy and Power Ststems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
- Department of Chemical and Materials Engineering, Abdulaziz University. Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Li Y, Wang H, Zhang H, Lei A. Electrochemical Dimethyl
Sulfide‐Mediated
Esterification of Amino Acids. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongli Li
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
| | - Huamin Wang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
| | - Heng Zhang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University Nanchang Jiangxi 330022 China
| |
Collapse
|
25
|
Kobayashi A, Matsuzawa T, Hosoya T, Yoshida S. Thioxanthone Synthesis from Benzoic Acid Esters through Directed ortho-Lithiation. CHEM LETT 2021. [DOI: 10.1246/cl.210293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akihiro Kobayashi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Tsubasa Matsuzawa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Suguru Yoshida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
26
|
Wu Y, Zeng L, Li H, Cao Y, Hu J, Xu M, Shi R, Yi H, Lei A. Electrochemical Palladium-Catalyzed Oxidative Sonogashira Carbonylation of Arylhydrazines and Alkynes to Ynones. J Am Chem Soc 2021; 143:12460-12466. [PMID: 34347455 DOI: 10.1021/jacs.1c06036] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Oxidative carbonylation using carbon monoxide has evolved as an attractive tool to valuable carbonyl-containing compounds, while mixing CO with a stoichiometric amount of a chemical oxidant especially oxygen is hazardous and limits its application in scale-up synthesis. By employing anodic oxidation, we developed an electrochemical palladium-catalyzed oxidative carbonylation of arylhydrazines with alkynes, which is regarded as an alternative supplement of the carbonylative Sonogashira reaction. Combining an undivided cell with constant current mode, oxygen-free conditions avoids the explosion hazard of CO. A diversity of ynones are efficiently obtained using accessible arylhydrazines and alkynes under copper-free conditions. A possible mechanism of the electrochemical Pd(0)/Pd(II) cycle is rationalized based upon cyclic voltammetry, kinetic studies, and intermediates experiments.
Collapse
Affiliation(s)
- Yong Wu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P. R. China
| | - Li Zeng
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P. R. China
| | - Haoran Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P. R. China
| | - Yue Cao
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P. R. China
| | - Jingcheng Hu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P. R. China
| | - Minghao Xu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P. R. China
| | - Renyi Shi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P. R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
27
|
Jin S, Kim J, Kim D, Park JW, Chang S. Electrolytic C–H Oxygenation via Oxidatively Induced Reductive Elimination in Rh Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01670] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Seongho Jin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Jinwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Jung-Woo Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
28
|
Wang Z, Wang C. Manganese/NaOPh co-catalyzed C2-selective C–H conjugate addition of indoles to α,β-unsaturated carbonyls. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
29
|
Patel OPS, Nandwana NK, Legoabe LJ, Das BC, Kumar A. Recent Advances in Radical C−H Bond Functionalization of Imidazoheterocycles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000633] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Om P. S. Patel
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
- Centre of Excellence for Pharmaceutical Sciences North-West University Private Bag X6001 Potchefstroom 2520 South Africa
| | - Nitesh K. Nandwana
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
- Departments of Medicine and Pharmacological Sciences Icahn School of Medicine at Mount Sinai New York, NY 10029 USA
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences North-West University Private Bag X6001 Potchefstroom 2520 South Africa
| | - Bhaskar C. Das
- Departments of Medicine and Pharmacological Sciences Icahn School of Medicine at Mount Sinai New York, NY 10029 USA
| | - Anil Kumar
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
| |
Collapse
|
30
|
Yuan Y, Liang Y, Shi S, Liang Y, Jiao N. Efficient
Pd‐Catalyzed
C—H Oxidative Bromination of Arenes with Dimethyl Sulfoxide and Hydrobromic Acid
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yizhi Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yujie Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Shihui Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Yu‐Feng Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Rd. 38 Beijing 100191 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200062 China
| |
Collapse
|
31
|
Wang X, Wang S, Gao Y, Sun H, Liang X, Bu F, Abdelilah T, Lei A. Oxidant-Induced Azolation of Electron-Rich Phenol Derivatives. Org Lett 2020; 22:5429-5433. [PMID: 32614189 DOI: 10.1021/acs.orglett.0c01796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since N-arylazoles are widely present in natural products, pharmaceuticals, and functional materials, it is important to develop a simple and efficient synthetic method for the synthesis of N-arylazoles. Herein, an oxidant-induced intermolecular azolation of phenol derivatives was demonstrated under catalyst-free condition. Both monoazolation and diazolation of phenols can be successfully achieved via this practical and powerful method.
Collapse
Affiliation(s)
- Xiaoyu Wang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Shengchun Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P.R. China
| | - Yiming Gao
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P.R. China
| | - He Sun
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P.R. China
| | - Xing'an Liang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P.R. China
| | - Faxiang Bu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P.R. China
| | - Takfaoui Abdelilah
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P.R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P.R. China.,Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
32
|
Li XT, Lv L, Wang T, Gu QS, Xu GX, Li ZL, Ye L, Zhang X, Cheng GJ, Liu XY. Diastereo- and Enantioselective Catalytic Radical Oxysulfonylation of Alkenes in β,γ-Unsaturated Ketoximes. Chem 2020. [DOI: 10.1016/j.chempr.2020.03.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Liu K, Deng Y, Song W, Song C, Lei A. Electrochemical Dearomative Halocyclization of Tryptamine and Tryptophol Derivatives. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000194] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kun Liu
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Yuqi Deng
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Wenxu Song
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Chunlan Song
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
34
|
Liu R, Wei Y, Shi M. Rhodium
III
/
Silver
I
Relay Catalyzed C—H Aminomethylation with Imine Equivalents and Lewis Acid Catalyzed [4+2] Cycloaddition of Indoles with Triarylhexahydrotriazine
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ruixing Liu
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yin Wei
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Min Shi
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular Synthesis, University of Chinese Academy of Science, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
35
|
Vivek Kumar S, Banerjee S, Punniyamurthy T. Transition metal-catalyzed coupling of heterocyclic alkenes via C–H functionalization: recent trends and applications. Org Chem Front 2020. [DOI: 10.1039/d0qo00279h] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heterocyclic alkenes and their derivatives are an important class of reactive feedstock and valuable synthons. This review highlights the transition-metal-catalyzed coupling of heterocyclic alkenes via a C–H functionalization strategy.
Collapse
|
36
|
Song L, Jiang YX, Zhang Z, Gui YY, Zhou XY, Yu DG. CO2 = CO + [O]: recent advances in carbonylation of C–H bonds with CO2. Chem Commun (Camb) 2020; 56:8355-8367. [DOI: 10.1039/d0cc00547a] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Carbon dioxide (CO2) is an ideal one-carbon source owing to its nontoxicity, abundance, availability, and recyclability.
Collapse
Affiliation(s)
- Lei Song
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yuan-Xu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zhen Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yong-Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiao-Yu Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
37
|
Li Y, Pan GA, Luo MJ, Li JH. Radical-mediated oxidative annulations of 1,n-enynes involving C–H functionalization. Chem Commun (Camb) 2020; 56:6907-6924. [DOI: 10.1039/d0cc02335c] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent progress in oxidative annulations of 1,n-enynes involving C–H functionalization is summarized.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Gao-Ang Pan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Mu-Jia Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| |
Collapse
|
38
|
Chen S, Liang S, Wu B, Lan Z, Guo Z, Kobayashi H, Yan X, Li R. Ultrasmall Silver Clusters Stabilized on MgO for Robust Oxygen-Promoted Hydrogen Production from Formaldehyde Reforming. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33946-33954. [PMID: 31462039 DOI: 10.1021/acsami.9b11023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Efficient molecular hydrogen generation from renewable biomass-derived resources and water is of great importance to the sustainable development of the future society. Herein, ultrasmall Ag nanoclusters supported on a defect-rich MgO matrix (AgUCs/MgO) are synthesized by a facile impregnation/calcination method and are applied to robust oxygen-promoted formaldehyde reforming into H2 at room temperature. Density functional theory calculations and experimental observations show that the catalyst spatially builds up a channel for directional electron transfer from electron-rich Ag sites to the anti-bonding π orbital of chemisorbed bridged O2 molecules, leading to the implementation of low-temperature O2 adsorption and activation. The catalytically active species, •OOH, is thus selectively generated via a preferential two-electron reduction of O2 with a low energy barrier on Ag sites, involving an unusual long-range proton-coupled electron transfer process. The •OOH-AgUCs/MgO active center is efficient for the subsequent C-H activation and H2 generation, leading to a 3-fold improvement of the turnover frequency as compared with its analogous AgNPs/MgO catalyst. Our atomic-level design and synthetic strategy provide a platform that facilitates the construction of an electron-proton transfer channel for catalysis, altered adsorption configurations of activated reactants, and enhancement of catalytic hydrogen generation activity, extending a promising direction for the development of next-generation energy catalysts.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Materials Engineering, College of Material and Textiles , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Shipan Liang
- Department of Materials Engineering, College of Material and Textiles , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Biling Wu
- Department of Materials Engineering, College of Material and Textiles , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Zhuohuang Lan
- Department of Materials Engineering, College of Material and Textiles , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Ziwei Guo
- Department of Materials Engineering, College of Material and Textiles , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Hisayoshi Kobayashi
- Emeritus Professor of Department of Chemistry and Materials Technology , Kyoto Institute of Technology , Matsugasaki , Sakyo-ku, Kyoto 606-8585 , Japan
| | - Xiaoqing Yan
- Department of Chemistry, College of Science , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Renhong Li
- Department of Materials Engineering, College of Material and Textiles , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| |
Collapse
|
39
|
Integrating Hydrogen Production with Aqueous Selective Semi‐Dehydrogenation of Tetrahydroisoquinolines over a Ni
2
P Bifunctional Electrode. Angew Chem Int Ed Engl 2019; 58:12014-12017. [DOI: 10.1002/anie.201903327] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 12/21/2022]
|
40
|
Pan D, Pan Z, Hu Z, Li M, Hu X, Jin L, Sun N, Hu B, Shen Z. Metal-Free Aerobic Oxidative C-O Coupling of C(sp
3
)-H with Carboxylic Acids Catalyzed by DDQ and tert
-Butyl Nitrite. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Decheng Pan
- College of Chemical Engineering; Zhejiang University of Technology; No. 18, Chaowang Road, Hangzhou 310014 P.R. China
| | - Zilong Pan
- College of Chemical Engineering; Zhejiang University of Technology; No. 18, Chaowang Road, Hangzhou 310014 P.R. China
| | - Zhiming Hu
- College of Chemical Engineering; Zhejiang University of Technology; No. 18, Chaowang Road, Hangzhou 310014 P.R. China
| | - Meichao Li
- College of Chemical Engineering; Zhejiang University of Technology; No. 18, Chaowang Road, Hangzhou 310014 P.R. China
| | - Xinquan Hu
- College of Chemical Engineering; Zhejiang University of Technology; No. 18, Chaowang Road, Hangzhou 310014 P.R. China
| | - Liqun Jin
- College of Chemical Engineering; Zhejiang University of Technology; No. 18, Chaowang Road, Hangzhou 310014 P.R. China
| | - Nan Sun
- College of Chemical Engineering; Zhejiang University of Technology; No. 18, Chaowang Road, Hangzhou 310014 P.R. China
| | - Baoxiang Hu
- College of Chemical Engineering; Zhejiang University of Technology; No. 18, Chaowang Road, Hangzhou 310014 P.R. China
| | - Zhenlu Shen
- College of Chemical Engineering; Zhejiang University of Technology; No. 18, Chaowang Road, Hangzhou 310014 P.R. China
| |
Collapse
|
41
|
Huang C, Huang Y, Liu C, Yu Y, Zhang B. Integrating Hydrogen Production with Aqueous Selective Semi‐Dehydrogenation of Tetrahydroisoquinolines over a Ni2P Bifunctional Electrode. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903327] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chenqi Huang
- Department of ChemistryInstitute of Molecular PlusSchool of ScienceTianjin University Tianjin 300072 China
| | - Yi Huang
- Department of ChemistryInstitute of Molecular PlusSchool of ScienceTianjin University Tianjin 300072 China
| | - Cuibo Liu
- Department of ChemistryInstitute of Molecular PlusSchool of ScienceTianjin University Tianjin 300072 China
| | - Yifu Yu
- Department of ChemistryInstitute of Molecular PlusSchool of ScienceTianjin University Tianjin 300072 China
| | - Bin Zhang
- Department of ChemistryInstitute of Molecular PlusSchool of ScienceTianjin University Tianjin 300072 China
- Tianjin Key Laboratory of Molecular Optoelectronic SciencesCollaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| |
Collapse
|
42
|
Xu Y, Shi X, Wu L. tBuOK-triggered bond formation reactions. RSC Adv 2019; 9:24025-24029. [PMID: 35530574 PMCID: PMC9069448 DOI: 10.1039/c9ra04242c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/20/2019] [Indexed: 11/21/2022] Open
Abstract
Recently, inexpensive and readily available tBuOK has seen widespread use in transition-metal-free reactions. Herein, we report the use of tBuOK for S-S, S-Se, N[double bond, length as m-dash]N and C[double bond, length as m-dash]N bond formations, which significantly extends the scope of tBuOK in chemical synthesis. Compared with traditional methods, we have realized mild and general methods for disulfide, azobenzenes imine etc. synthesis.
Collapse
Affiliation(s)
- Yulong Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Xiaonan Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
43
|
Wang R, Luan Y, Ye M. Transition Metal–Catalyzed Allylic C(sp
3
)–H Functionalization
via η
3
‐Allylmetal Intermediate. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900140] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ronghua Wang
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Yuxin Luan
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
44
|
Re‐Catalyzed Annulations of Weakly Coordinating
N
‐Carbamoyl Indoles/Indolines with Alkynes via C−H/C−N Bond Cleavage. Chemistry 2019; 25:8245-8248. [DOI: 10.1002/chem.201901518] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 11/07/2022]
|
45
|
Wang T, Wang DH. Potassium Alkylpentafluorosilicates, Primary Alkyl Radical Precursors in the C-1 Alkylation of Tetrahydroisoquinolines. Org Lett 2019; 21:3981-3985. [DOI: 10.1021/acs.orglett.9b01124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Teng Wang
- CAS Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China
| | - Dong-Hui Wang
- CAS Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
46
|
Kazi I, Guha S, Sekar G. Halogen Bond-Assisted Electron-Catalyzed Atom Economic Iodination of Heteroarenes at Room Temperature. J Org Chem 2019; 84:6642-6654. [DOI: 10.1021/acs.joc.9b00174] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Imran Kazi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Somraj Guha
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Govindasamy Sekar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
47
|
Zhou Z, Yuan Y, Cao Y, Qiao J, Yao A, Zhao J, Zuo W, Chen W, Lei A. Synergy of Anodic Oxidation and Cathodic Reduction Leads to Electrochemical C—H Halogenation. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900091] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhilin Zhou
- National Research Center for Carbohydrate SynthesisJiangxi Normal University Nanchang Jiangxi 330022 China
| | - Yong Yuan
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS)Wuhan University Wuhan Hubei 430072 China
| | - Yangmin Cao
- National Research Center for Carbohydrate SynthesisJiangxi Normal University Nanchang Jiangxi 330022 China
| | - Jin Qiao
- National Research Center for Carbohydrate SynthesisJiangxi Normal University Nanchang Jiangxi 330022 China
| | - Anjin Yao
- National Research Center for Carbohydrate SynthesisJiangxi Normal University Nanchang Jiangxi 330022 China
| | - Jing Zhao
- National Research Center for Carbohydrate SynthesisJiangxi Normal University Nanchang Jiangxi 330022 China
| | - Wanqing Zuo
- National Research Center for Carbohydrate SynthesisJiangxi Normal University Nanchang Jiangxi 330022 China
| | - Wenjie Chen
- National Research Center for Carbohydrate SynthesisJiangxi Normal University Nanchang Jiangxi 330022 China
| | - Aiwen Lei
- National Research Center for Carbohydrate SynthesisJiangxi Normal University Nanchang Jiangxi 330022 China
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS)Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
48
|
Liu S, Li J, Wang D, Liu F, Liu X, Gao Y, Jie D, Cheng X. An Electrochemical Cinnamyl C—H Amination Reaction Using Carbonyl Sulfamate. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Shuai Liu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry EducationNanjing University Nanjing Jiangsu 210023 China
| | - Jin Li
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry EducationNanjing University Nanjing Jiangsu 210023 China
| | - Dalin Wang
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry EducationNanjing University Nanjing Jiangsu 210023 China
| | - Feng Liu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry EducationNanjing University Nanjing Jiangsu 210023 China
| | - Xu Liu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry EducationNanjing University Nanjing Jiangsu 210023 China
| | - Yongyuan Gao
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry EducationNanjing University Nanjing Jiangsu 210023 China
| | - Dai Jie
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry EducationNanjing University Nanjing Jiangsu 210023 China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry EducationNanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
49
|
Jia T, Wang C. Manganese‐Catalyzed
ortho‐
Alkenylation of Aromatic Amidines with Alkynes via C−H Activation. ChemCatChem 2019. [DOI: 10.1002/cctc.201900387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Teng Jia
- Beijing National Laboratory for Molecular Sciences, CAS key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Congyang Wang
- Beijing National Laboratory for Molecular Sciences, CAS key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Physical Science LaboratoryHuairou National Comprehensive Science Center Beijing 101400 China
| |
Collapse
|
50
|
Adeli Y, Huang K, Liang Y, Jiang Y, Liu J, Song S, Zeng CC, Jiao N. Electrochemically Oxidative C–C Bond Cleavage of Alkylarenes for Anilines Synthesis. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04351] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yeerlan Adeli
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Kaimeng Huang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yujie Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yangye Jiang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Jianzhong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Cheng-Chu Zeng
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|