1
|
Wang Y, Song H, Wang S, Cai Q, Chen J. Design, Synthesis, Nematicidal Activity, and Mechanism of Novel Amide Derivatives Containing an 1,2,4-Oxadiazole Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:128-139. [PMID: 38154095 DOI: 10.1021/acs.jafc.3c04945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
To discover new nematicides, a series of novel amide derivatives containing 1,2,4-oxadiazole were designed and synthesized. Several compounds showed excellent nematicidal activity. The LC50 values of compounds A7, A18, and A20-A22 against pine wood nematode (Bursaphelenchus xylophilus), rice stem nematode (Aphelenchoides besseyi), and sweet potato stem nematode (Ditylenchus destructor) were 1.39-3.09 mg/L, which were significantly better than the control nematicide tioxazafen (106, 49.0, and 75.0 mg/L, respectively). Compound A7 had an outstanding inhibitory effect on nematode feeding, reproductive ability, and egg hatching. Compound A7 effectively promoted the oxidative stress of nematodes and caused intestinal damage to nematodes. Compound A7 significantly inhibited the activity of succinate dehydrogenase (SDH) in nematodes, leading to blockage of electron transfer in the respiratory chain and thereby hindering the synthesis of adenosine triphosphate (ATP), which consequently affects the entire oxidative phosphorylation process to finally cause nematode death. Therefore, compound A7 can be used as a potential SDH inhibitor in nematicide applications.
Collapse
Affiliation(s)
- Yu Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongyi Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Sheng Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Qingfeng Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jixiang Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Hou S, Shi H, Zhang H, Wu Z, Hu D. Synthesis, Antifungal Evaluation, 3D-QSAR, and Preliminarily Mechanism Study of Novel Chiral Mandelic Acid Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7631-7641. [PMID: 37179490 DOI: 10.1021/acs.jafc.2c09006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
To investigate the effect of spatial configuration on the biological activity of the compounds, a series of chiral mandelic acid derivatives with a moiety of 1,3,4-oxadiazole thioether have been designed and synthesized. Bioassay results demonstrated that most title compounds with the S-configuration exhibited better in vitro antifungal activity against three plant fungi, such as H3' (EC50 = 19.3 μg/mL) against Gibberella saubinetii, which was approximately 16 times higher than that of H3 (EC50 = 317.0 μg/mL). CoMFA and CoMSIA models were established for 3D-QSAR analysis and provided an important support for further optimization of this series of compounds. Comparing the preliminary mechanism studies between enantiomers (H3 and H3') found that the S-configuration compound (H3') exhibited a stronger ability to destroy the surface structure of G. saubinetii mycelia, causing the leakage of intracellular substances to accelerate and the growth of the hyphae to be inhibited. The results provided a novel view for the further optimization of this series of active compounds and deep mechanism study of chiral pesticides.
Collapse
Affiliation(s)
- Shuaitao Hou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Huabin Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Cao X, Yang H, Liu C, Zhang R, Maienfisch P, Xu X. Bioisosterism and Scaffold Hopping in Modern Nematicide Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11042-11055. [PMID: 35549340 DOI: 10.1021/acs.jafc.2c00785] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The application of agrochemicals is critical to global food safety. Nowadays, environmentally friendly green agrochemicals are the trend in field crop protection. The research and development of nematicides absorbed more attention as a typical representation of agrochemicals. This review describes the origin of recently commercialized nematicides, the application of bioisosterism and scaffold hopping in the discovery and optimization of agrochemicals, especially nematicides, and novel bioisosteric design strategies for the identification of fluensulfone analogues. Pesticide repurposing, high-throughput screening, computer-aided drug design, and incorporation of known pharmacophoric fragments have been the most successful approach for the discovery of new nematicides. As outlined, the strategies of bioisosteric replacements and scaffold hopping have been very successful approaches in the search for new nematicides for sustainable crop protection. In the exploration of novel fluensulfone analogues with nematicidal activity, bioisosteric replacement of sulfone by amide, chain extension by insertion of a methylene group, and reversal of the amide group have proven to be successful approaches and yielded new and highly active fluensulfone analogues. These attempts might result in compounds with an optimal balance of steric, hydrophobic, electronic, and hydrogen-bonding properties and contribute to deal with the complex problem during the research and development of new nematicides. Further ideas are also put forward to provide new approaches for the molecular design of nematicides.
Collapse
Affiliation(s)
- Xiaofeng Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Haiping Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Cheng Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Ruifeng Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- CreInSol Consulting & Biocontrols, CH-4118 Rodersdorf, Switzerland
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
4
|
Licona JS, de Faria AC, Pereira IV, Daré JK, Freitas MP. MIA-QSAR analysis of an increased data set of 1,3,4-oxa/thiadiazole nematicides to enhance the molecular diversity and agrochemical candidacy. NEMATOLOGY 2022. [DOI: 10.1163/15685411-bja10174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
Tylenchulus semipenetrans nematodes affect citrus crops and may develop resistance to commercially available nematicides. In this sense, two series of 1,3,4-oxa- and thiadiazole compounds have been recently synthesised and tested as nematicides against T. semipenetrans, demonstrating promising results. We report herein a molecular modelling study that combines these two series of congeneric compounds to form a single and enhanced data set. The chemical structures of these compounds were correlated with the respective nematicidal activities (pLC50) using multivariate image analysis (MIA) descriptors in quantitative structure-activity relationship (QSAR) analysis. The partial least squares (PLS) regression yielded reliable and predictive models (, , and ). Therefore, novel 1,3,4-oxa- and thiadiazole derivatives were proposed and a few of them exhibited predicted nematicidal performance better than those of the parent compounds.
Collapse
Affiliation(s)
- Jessica S.F. Licona
- Department of Chemistry, Institute of Natural Sciences, Federal University of Lavras, 37200-900 Lavras, MG, Brazil
| | - Adriana C. de Faria
- Department of Chemistry, Institute of Natural Sciences, Federal University of Lavras, 37200-900 Lavras, MG, Brazil
| | - Ingrid V. Pereira
- Department of Chemistry, Institute of Natural Sciences, Federal University of Lavras, 37200-900 Lavras, MG, Brazil
| | - Joyce K. Daré
- Department of Chemistry, Institute of Natural Sciences, Federal University of Lavras, 37200-900 Lavras, MG, Brazil
| | - Matheus P. Freitas
- Department of Chemistry, Institute of Natural Sciences, Federal University of Lavras, 37200-900 Lavras, MG, Brazil
| |
Collapse
|
5
|
Niu X, Zhang H, Zhang C, Dou L, Wu Z. Design, Synthesis and in Vitro Antifungal Mechanism of Novel Phenylalanine Derivatives. Chem Biodivers 2022; 19:e202200035. [PMID: 35434877 DOI: 10.1002/cbdv.202200035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/13/2022] [Indexed: 11/09/2022]
Abstract
To explore novel molecules with unique mechanisms against plant pathogenic fungi, a series of phenylalanine derivatives containing a 1,3,4-oxadiazothioether moiety were designed and synthesized. Bioassays revealed that some target compounds at 100 μg/mL exhibited excellent antifungal activities against Thanatephorus cucumeris, such as G6 (92.1 %), G10 (94.3 %), G18 (99.1 %), and G19 (98.7 %), better than that of the commercial fungicide azoxystrobin (90.6 %), and the EC50 value of G10 against T. cucumeris was 31.9 μg/mL. Further mechanism studies of T. cucumeris treated with G10 demonstrated that this compound can affect the growth of mycelia by disrupting the integrity of the membrane, and the higher the concentration of the compound is, the greater the degree of membrane integrity damage, similar to the commercial fungicide azoxystrobin. These conclusions provide important information for further mechanism studies of this series of phenylalanine derivatives.
Collapse
Affiliation(s)
- Xue Niu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.,School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Hong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Chengzhi Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Li Dou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
6
|
Chen Y, Luo X, Wang Y, Xing Z, Chen J. Design and synthesis novel amide derivatives containing an 1,3,4‐oxadiazole moiety as potential antibacterial agents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yifang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District Guiyang China
| | - Xin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District Guiyang China
| | - Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District Guiyang China
| | - Zhifu Xing
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District Guiyang China
| | - Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District Guiyang China
| |
Collapse
|
7
|
Yang H, Zhang R, Li Z, Maienfisch P, Xu X. Design, synthesis and nematicidal activitives of trifluorobutene amide derivatives against Meloidogyne incognita. Bioorg Med Chem Lett 2021; 40:127917. [PMID: 33705904 DOI: 10.1016/j.bmcl.2021.127917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/19/2022]
Abstract
Plant parasitic nematodes have always been a pressing problem in the field of plant protection. Well-established chemical nematicides, especially organophosphorus and carbamates are the most used products for nematode control worldwide. Due to long-term overuse, they have developed serious resistance and new innovative solutions are urgently required. In this study, thirty-one novel trifluorobutene amide derivatives were designed and synthesized, and their nematicidal activities were determined. Three different synthetic methods have been developed for the final amidation reaction enabling the successfully syntheses of the target compounds independently from the nucleophilicities of the substrate amino group. Most target compounds showed good nematicidal activity in our in vitro test. Among all the compounds, compounds A8 and A23 exhibited excellent nematicidal activity against Meloidogyne incognita, their LC50 values are 2.02 mg L-1 and 0.76 mg L-1, respectively. In particular, compound A23 has found to be almost as active as the commercial nematicide fluensulfone. Furthermore, most compounds gave full control (100% inhibition) of M. incognita at 40 mg L-1 in the in vivo tests in sandy soil, the best compounds were further investigated for in vivo activity in matrix soil. Among the compound tested, compound A8 showed excellent in vivo nematicidal activity. At a concentration of 5 mg L-1 still 56% inhibition was observed. The results of our study indicate that compound A8 possesses excellent in vitro and in vivo nematicidal activity, and can be considered as promising lead molecule for further modification.
Collapse
Affiliation(s)
- Haiping Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ruifeng Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; CreInSol MCB, CH-4118 Rodersdorf, Switzerland.
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
8
|
Hou S, Xie D, Yang J, Niu X, Hu D, Wu Z. Design, synthesis and antifungal evaluation of novel mandelic acid derivatives containing a 1,3,4-oxadiazothioether moiety. Chem Biol Drug Des 2021; 98:166-174. [PMID: 33969630 DOI: 10.1111/cbdd.13861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/03/2021] [Accepted: 04/25/2021] [Indexed: 12/01/2022]
Abstract
A series of novel mandelic acid derivatives containing a 1,3,4-oxadiazothioether moiety were designed and synthesized. Bioassay results showed that some target compounds exhibited certain antifungal activity against six kinds of pathogenic fungi in vitro. Among the compounds, the EC50 values of T41 against Gibberella saubinetii, Verticillium dahlia and Sclerotinia sclerotiorum were 31.0, 27.0 and 32.1 μg/ml, respectively, and the EC50 value of T14 against S. sclerotiorum was 14.7 μg/ml. The antifungal activity against the resistant fungus S. sclerotiorum indicated that this series of target compounds may have the similar action modes or sites as the commercialized succinate dehydrogenase inhibitor carboxin. A morphological study with fluorescence microscope demonstrated that T41 can significantly destroy the membrane integrity of G. saubinetii.
Collapse
Affiliation(s)
- Shuaitao Hou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Dewen Xie
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Jingxin Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xue Niu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
9
|
Li P, Yang Y, Wang X, Wu X. Recent achievements on the agricultural applications of thioether derivatives: A 2010–2020 decade in review. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pei Li
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine Kaili University Kaili China
| | - Ying Yang
- Forestry Investigation Planning and Design Institute of Miao and Dong Autonomous Prefecture in Southeast Guizhou Kaili China
| | - Xiang Wang
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine Kaili University Kaili China
| | - Xianzhi Wu
- School of Life and Health Science Kaili University Kaili China
| |
Collapse
|
10
|
Jiao J, Chen M, Sun S, Si W, Wang X, Ding W, Fu X, Wang A, Yang C. Synthesis, Bioactivity Evaluation,
3D‐QSAR
, and Molecular Docking of Novel Pyrazole‐4‐carbohydrazides as Potential Fungicides Targeting Succinate Dehydrogenase. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000438] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jian Jiao
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Shengxin Sun
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Weijie Si
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Xiaobin Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Weijie Ding
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Xincan Fu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - An Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Chunlong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing Jiangsu 210095 China
| |
Collapse
|
11
|
Chen J, Li QX, Song B. Chemical Nematicides: Recent Research Progress and Outlook. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12175-12188. [PMID: 33079521 DOI: 10.1021/acs.jafc.0c02871] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Plant-parasitic nematodes have caused huge economic losses to agriculture worldwide and seriously threaten the sustainable development of modern agriculture. Chemical nematicides are still the most effective means to manage nematodes. However, the long-term use of organophosphorus and carbamate nematicides has led to a lack of field control efficacy and increased nematode resistance. To meet the huge market demand and slow the growth of resistance, new nematicides are needed to enter the market. The rational design and synthesis of new chemical scaffolds to screen for new nematicides is still a difficult task. We reviewed the latest research progress of nematicidal compounds in the past decade, discussed the structure-activity relationship and mechanism of action, and recommended some nematicidal active fragments. It is hoped that this review can update the recent progress on nematicide discoveries and provide new ideas for the design and mechanism of action studies of nematicides.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
12
|
Chen J, Luo Y, Wei C, Wu S, Wu R, Wang S, Hu D, Song B. Novel sulfone derivatives containing a 1,3,4-oxadiazole moiety: design and synthesis based on the 3D-QSAR model as potential antibacterial agent. PEST MANAGEMENT SCIENCE 2020; 76:3188-3198. [PMID: 32343024 DOI: 10.1002/ps.5873] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/09/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The rice bacterial leaf blight (BLB) is one of the most serious bacterial diseases caused by Xanthomonas oryzae pv. oryzae (Xoo), which can cause yield loss of rice up to 50%. The three-dimensional quantitative structure-activity relationship (3D-QSAR) is an important auxiliary method to find potential high-efficient pesticides active structures. RESULTS A series of novel 1,3,4-oxadiazole compounds were designed and synthesized based on the 3D-QSAR model, and their antibacterial activities in vitro against Xoo were evaluated. The results indicated that all the target compounds showed excellent in vitro antibacterial activities. For example, the compounds 6, 12, 13, 20, 21, and 23 exhibited excellent antibacterial activities against Xoo, with half-maximal effective concentration (EC50 ) values of 0.24, 0.31, 0.36, 0.29, 0.19, and 0.31 mg/L, respectively, which were superior to the antibacterial agents thiodiazole copper (127.44 mg/L) and bismerthiazol (91.08 mg/L). Meanwhile, compound 21 showed good antibacterial activity in vivo against BLB, with curative and protective activities of 46.7% and 56.4%, respectively, which were superior to thiodiazole copper (28.5% and 32.5%) and bismerthiazol (37.6% and 38.4%). Compound 21 can significantly reduce the extracellular polysaccharides production of Xoo, increase the permeability of the cell membranes, and also can cause cell surface wrinkles, deformation and dryness. CONCLUSION The 3D-QSAR model can be used to find sulfone compounds containing a 1,3,4-oxadiazole moiety with higher antibacterial activity, and compound 21 can be used as a potential antibacterial agent in the future. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Yuqin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Chengqian Wei
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Sikai Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Rong Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Shaobo Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
13
|
Chen J, Wei C, Wu S, Luo Y, Wu R, Hu D, Song B. Novel 1,3,4-oxadiazole thioether derivatives containing flexible-chain moiety: Design, synthesis, nematocidal activities, and pesticide-likeness analysis. Bioorg Med Chem Lett 2020; 30:127028. [DOI: 10.1016/j.bmcl.2020.127028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/15/2022]
|
14
|
Wang L, Zhou X, Lu H, Mu X, Jin L. Synthesis and Antibacterial Evaluation of Novel 1,3,4-Oxadiazole Derivatives Containing Sulfonate/Carboxylate Moiety. Molecules 2020; 25:E1488. [PMID: 32218317 PMCID: PMC7180883 DOI: 10.3390/molecules25071488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 11/17/2022] Open
Abstract
Abstract: In order to discover new lead compounds with high antibacterial activity, a series of new derivatives were designed and synthesized by introducing a sulfonate or carboxylate moiety into the 1,3,4-oxadiazole structure. Antibacterial activity against two phytopathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas axonopodis pv. citri (Xac), was assayed in vitro. The preliminary results indicated that ten compounds including 4a-1-4a-4 and 4a-11-4a-16 had good antibacterial activity against Xoo, with EC50 values ranging from 50.1-112.5 µM, which was better than those of Bismerthiazol (253.5 µM) and Thiodiazole copper (467.4 µM). Meanwhile, 4a-1, 4a-2, 4a-3 and 4a-4 demonstrated good inhibitory effect against Xanthomonas axonopodis pv. citri with EC50 values around 95.8-155.2 µM which were better than those of bismerthiazol (274.3 µM) and thiodiazole copper (406.3 µM). In addition, in vivo protection activity of compound 4a-2 and 4a-3 against rice bacterial leaf blight was 68.6% and 62.3%, respectively, which were better than bismerthiazol (49.6%) and thiodiazole copper (42.2%). Curative activity of compound 4a-2 and 4a-3 against rice bacterial leaf blight was 62.3% and 56.0%, which were better than bismerthiazol (42.9%) and thiodiazole copper (36.1%). Through scanning electron microscopy (SEM) analysis, it was observed that compound 4a-2 caused the cell membrane of Xanthomonas oryzae pv. oryzae ruptured or deformed. The present results indicated novel derivatives of 5-phenyl sulfonate methyl 1,3,4-oxadiazole might be potential antibacterial agents.
Collapse
Affiliation(s)
| | - Xia Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China; (L.W.); (H.L.); (X.M.)
| | | | | | - Linhong Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China; (L.W.); (H.L.); (X.M.)
| |
Collapse
|
15
|
Huang F, Ling H, Li J, Lu S, Liu W, Li Q, Xu F. Synthesis, bioactivities and 3D-QSAR of novel avermectin B2a aglycon derivatives. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.03.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Chen J, Yi C, Wang S, Wu S, Li S, Hu D, Song B. Novel amide derivatives containing 1,3,4-thiadiazole moiety: Design, synthesis, nematocidal and antibacterial activities. Bioorg Med Chem Lett 2019; 29:1203-1210. [PMID: 30902458 DOI: 10.1016/j.bmcl.2019.03.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/27/2019] [Accepted: 03/13/2019] [Indexed: 01/23/2023]
Abstract
A series of novel amide derivatives containing 1,3,4-thiadiazole moiety were synthesized and their bioactivities were evaluated. The compound 34 exhibited good nematocidal activities against Meloidogyne incognita in vitro and in vivo, the LC50 value and control effect were 6.5 mg/L and 83.3%, respectively. Meanwhile, it exhibited exciting antibacterial activities against Xanthomonas oryzae pv. oryzae, Xanthomonas campestris pv. citri, and Ralstonia solanacearum, the EC50 values were 0.4, 6.7 and 5.1 mg/L, respectively, which were better than positive controls. The curative and protection activities under the greenhouse conditions of compound 34 against rice bacterial blight were 47.9 and 55.8%, respectively. The structure-activity relationship were analyzed in detail.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chongfen Yi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shaobo Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Sikai Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shaoyuan Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China.
| |
Collapse
|