1
|
Patra T, Arepally S, Seitz J, Wirth T. Electrocatalytic continuous flow chlorinations with iodine(I/III) mediators. Nat Commun 2024; 15:6329. [PMID: 39068163 PMCID: PMC11283512 DOI: 10.1038/s41467-024-50643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Electrochemistry offers tunable, cost effective and environmentally friendly alternatives to carry out redox reactions with electrons as traceless reagents. The use of organoiodine compounds as electrocatalysts is largely underdeveloped, despite their widespread application as powerful and versatile reagents. Mechanistic data reveal that the hexafluoroisopropanol assisted iodoarene oxidation is followed by a stepwise chloride ligand exchange for the catalytic generation of the dichloroiodoarene mediator. Here, we report an environmentally benign iodine(I/III) electrocatalytic platform for the in situ generation of dichloroiodoarenes for different reactions such as mono- and dichlorinations as well as chlorocyclisations within a continuous flow setup.
Collapse
Affiliation(s)
- Tuhin Patra
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, Cymru/Wales, UK
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha, India
| | - Sagar Arepally
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, Cymru/Wales, UK
| | - Jakob Seitz
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, Cymru/Wales, UK
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, Cymru/Wales, UK.
| |
Collapse
|
2
|
Juneau A, Abdolhosseini M, Rocq C, Pham HDM, Pascall M, Khaliullin RZ, Canesi S, McCalla E, Mauzeroll J. Overcoming Challenges in Electrosynthesis Using High‐Throughput Electrochemistry: Hypervalent Iodine‐Mediated Phenol Dearomatization, a Case Study. ChemElectroChem 2024; 11. [DOI: 10.1002/celc.202400193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 01/06/2025]
Abstract
AbstractDespite many recent efforts, the field of organic electrosyn‐thesis faces important challenges due to the intricate nature of heterogeneous redox processes, the wide parameter space to be explored and the lack of standardized methods. To overcome these limitations, we developed a cost‐effective high‐throughput electrochemical (HTE) reactor capable of running 24 individually controlled parallel reactions. This system allows the rapid testing of electrochemical parameters on a given reaction, assessing not only yield but also reproducibility. Using the hypervalent iodine‐mediated dearomatization of phloretic acid as a demonstration of HTE capabilities, we ran more than 200 electrosyntheses in different experimental conditions and demonstrate the effect of parameters such as total charge transferred, current, electrode materials, electrolyte formulation and concentration, mediator formulation and concentration and electrochemical technique of oxidation. Notably, this report demonstrates that while catalytic amounts of iodine mediator can be used successfully, the reproducibility may be affected, which calls for a cautious approach when developing similar transformations. Using cyclic voltammetry, density functional theory, chronopotentiometry, and Raman spectroscopy, we shed light on the causes of this issue.
Collapse
Affiliation(s)
- Antoine Juneau
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| | - Marzieh Abdolhosseini
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| | - Camille Rocq
- Département de chimie Université du Québec à Montréal Laboratoire de Méthodologie et Synthèse de Produits Naturels C.P. 8888, Succ. Centre-Ville Montréal Québec Canada H3C 3P8
| | - Hanh D. M. Pham
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| | - Mia Pascall
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| | - Rustam Z. Khaliullin
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| | - Sylvain Canesi
- Département de chimie Université du Québec à Montréal Laboratoire de Méthodologie et Synthèse de Produits Naturels C.P. 8888, Succ. Centre-Ville Montréal Québec Canada H3C 3P8
| | - Eric McCalla
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| | - Janine Mauzeroll
- Department of Chemistry McGill University 801 Sherbrooke St. West Montréal Québec Canada H3A 0B8
| |
Collapse
|
3
|
Sedikides A, Lennox AJJ. Silver-Catalyzed ( Z)-β-Fluoro-vinyl Iodonium Salts from Alkynes: Efficient and Selective Syntheses of Z-Monofluoroalkenes. J Am Chem Soc 2024; 146:15672-15680. [PMID: 38829699 PMCID: PMC11177317 DOI: 10.1021/jacs.4c03826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Monofluoroalkenes are stable and lipophilic amide bioisosteres used in medicinal chemistry. However, efficient and stereoselective methods for synthesizing Z-monofluoroalkenes are underdeveloped. We envisage (Z)-β-fluoro-vinyl iodonium salts (Z-FVIs) as coupling partners for the diverse and stereoselective synthesis of Z-monofluoroalkenes. Disclosed herein is the development and application of a silver(I)-catalyzed process for accessing a broad scope of (Z)-FVIs with exclusive Z-stereoselectivity and regioselectivity from alkynes in a single step. Experimental and computational studies provide insight into the mechanism of the catalytic cycle and the role of the silver(I) catalyst, and the reactivity of (Z)-FVIs is explored through several stereospecific derivatizations.
Collapse
Affiliation(s)
- Alexi
T. Sedikides
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Alastair J. J. Lennox
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
4
|
Kumar R, Dohi T, Zhdankin VV. Organohypervalent heterocycles. Chem Soc Rev 2024; 53:4786-4827. [PMID: 38545658 DOI: 10.1039/d2cs01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This review summarizes the structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The term "hypervalent" has been suggested for derivatives of main-group elements with more than eight valence electrons, and the concept of hypervalency is commonly used despite some criticism from theoretical chemists. The significantly higher thermal stability of hypervalent heterocycles compared to their acyclic analogs adds special features to their chemistry, particularly for bromine and iodine. Heterocyclic compounds of elements with double bonds are not categorized as hypervalent molecules owing to the zwitterionic nature of these bonds, resulting in the conventional 8-electron species. This review is focused on hypervalent heterocyclic derivatives of nonmetal main-group elements, such as boron, silicon, nitrogen, carbon, phosphorus, sulfur, selenium, bromine, chlorine, iodine(III) and iodine(V).
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, 121006, Haryana, India.
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, 1038 University Drive, 126 HCAMS University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
5
|
Miyamoto N, Koseki D, Sumida K, Elboray EE, Takenaga N, Kumar R, Dohi T. Auxiliary strategy for the general and practical synthesis of diaryliodonium(III) salts with diverse organocarboxylate counterions. Beilstein J Org Chem 2024; 20:1020-1028. [PMID: 38711591 PMCID: PMC11070968 DOI: 10.3762/bjoc.20.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
Diaryliodonium(III) salts are versatile reagents that exhibit a range of reactions, both in the presence and absence of metal catalysts. In this study, we developed efficient synthetic methods for the preparation of aryl(TMP)iodonium(III) carboxylates, by reaction of (diacetoxyiodo)arenes or iodosoarenes with 1,3,5-trimethoxybenzene in the presence of a diverse range of organocarboxylic acids. These reactions were conducted under mild conditions using the trimethoxyphenyl (TMP) group as an auxiliary, without the need for additives, excess reagents, or counterion exchange in further steps. These protocols are compatible with a wide range of substituents on (hetero)aryl iodine(III) compounds, including electron-rich, electron-poor, sterically congested, and acid-labile groups, as well as a broad range of aliphatic and aromatic carboxylic acids for the synthesis of diverse aryl(TMP)iodonium(III) carboxylates in high yields. This method allows for the hybridization of complex bioactive and fluorescent-labeled carboxylic acids with diaryliodonium(III) salts.
Collapse
Affiliation(s)
- Naoki Miyamoto
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga, 525-8577, Japan
| | - Daichi Koseki
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga, 525-8577, Japan
| | - Kohei Sumida
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga, 525-8577, Japan
| | - Elghareeb E Elboray
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga, 525-8577, Japan
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Naoko Takenaga
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Ravi Kumar
- Department of Chemistry, J. C. Bose University of Science & Technology, YMCA Faridabad, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga, 525-8577, Japan
| |
Collapse
|
6
|
Chandu P, Biswas S, Pal K, Sureshkumar D. Organophotoredox Catalysis: Switchable Radical Generation from Alkyl Sodium Sulfinates for Sulfonylation and Alkylative Activation of C-C Bonds of Cyclopropenes. J Org Chem 2024; 89:3912-3925. [PMID: 38446801 DOI: 10.1021/acs.joc.3c02743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Generating alkyl radicals from the sulfonyl radicals remains challenging in synthetic chemistry. Here, we report an efficient photocatalyzed strategy using alkyl sodium sulfinates as both sulfonylating and alkylating reagents by controlling the reaction temperature. This methodology provides a versatile protocol for synthesizing diastereoselective sulfonylated cyclopropanes and poly-substituted styrene derivatives. This methodology is successfully demonstrated with a wide variety of cyclopropenes and alkyl sulfinates, showcasing its broad substrate scope, high diastereo- and E/Z selectivity, and yielding good to excellent yields.
Collapse
Affiliation(s)
- Palasetty Chandu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Sourabh Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Koustav Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
7
|
Vanhoof JR, De Smedt PJ, Derhaeg J, Ameloot R, De Vos DE. Metal-Free Electrocatalytic Diacetoxylation of Alkenes. Angew Chem Int Ed Engl 2023; 62:e202311539. [PMID: 37724630 DOI: 10.1002/anie.202311539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
1,2-Dioxygenation of alkenes leads to a structural motif ubiquitous in organic synthons, natural products and active pharmaceutical ingredients. Straightforward and green synthesis protocols starting from abundant raw materials are required for facile and sustainable access to these crucial moieties. Especially industrially abundant aliphatic alkenes have proven to be arduous substrates in sustainable 1,2-dioxygenation methods. Here, we report a highly efficient electrocatalytic diacetoxylation of alkenes under ambient conditions using a simple iodobenzene mediator and acetic acid as both the solvent and an atom-efficient reactant. This transition metal-free method is applicable to a wide range of alkenes, even challenging feedstock alkenes such as ethylene and propylene, with a broad functional group tolerance and excellent faradaic efficiencies up to 87 %. In addition, this protocol can be extrapolated to alkenoic acids, resulting in cyclization of the starting materials to valuable lactone derivatives. With aromatic alkenes, a competing mechanism of direct anodic oxidation exists which enables reaction under catalyst-free conditions. The synthetic method is extensively investigated with cyclic voltammetry.
Collapse
Affiliation(s)
- Jef R Vanhoof
- Centre For Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium
| | - Pieter J De Smedt
- Centre For Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium
| | - Jan Derhaeg
- Centre For Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium
| | - Rob Ameloot
- Centre For Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium
| | - Dirk E De Vos
- Centre For Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium
| |
Collapse
|
8
|
Jiang W, Wang B, Song C, Liu J. Electrocatalytic Desulfurizative Amination of Thioureas to Guanidines. J Org Chem 2023; 88:14601-14609. [PMID: 37788335 DOI: 10.1021/acs.joc.3c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Guanidine has been known as an important class of N-containing molecules with a wide range of applications. Described here is a selective and efficient electrochemical approach to the synthesis of guanidines from easily accessible thioureas and amines. The key to success for this reaction is the in situ generation of a hypervalent iodine reagent as a catalyst from iodoarene by anodic oxidation. This mild desulfurizative amination presents ample substrate scope and good functional group tolerance without the use of extra stoichiometric chemical oxidants. As only electrons serve as the oxidation reagents, this method offers a more straightforward and sustainable manner toward versatile guanidines, including late-stage functionalization of pharmaceutically relevant molecules.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Bing Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Chunlan Song
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, China
| |
Collapse
|
9
|
Thai P, Frey BL, Figgins MT, Thompson RR, Carmieli R, Powers DC. Selective multi-electron aggregation at a hypervalent iodine center by sequential disproportionation. Chem Commun (Camb) 2023; 59:4308-4311. [PMID: 36939182 PMCID: PMC10089653 DOI: 10.1039/d3cc00549f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
We demonstrate that sequential disproportionation reactions can enable selective aggregation of two- or four electron-holes at a hypervalent iodine center. Disproportionation of an anodically generated iodanyl radical affords an iodosylbenzene derivative. Subsequent iodosylbenzene disproportionation can be triggered to provide access to an iodoxybenzene. These results demonstrate multielectron oxidation at the one-electron potential by selective and sequential disproportionation chemistry.
Collapse
Affiliation(s)
- Phong Thai
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Brandon L Frey
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Matthew T Figgins
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Richard R Thompson
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | | | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| |
Collapse
|
10
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
11
|
Spils J, Wirth T, Nachtsheim BJ. Two-step continuous-flow synthesis of 6-membered cyclic iodonium salts via anodic oxidation. Beilstein J Org Chem 2023; 19:27-32. [PMID: 36686040 PMCID: PMC9830492 DOI: 10.3762/bjoc.19.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 01/04/2023] Open
Abstract
We describe a multi-step continuous-flow procedure for the generation of six-membered diaryliodonium salts. The accompanying scalability and atom economy are significant improvements to existing batch methods. Benzyl acetates are submitted to this two-step procedure as highly available and cheap starting materials. An acid-catalyzed Friedel-Crafts alkylation followed by an anodic oxidative cyclization yielded a defined set of cyclic iodonium salts in a highly substrate-dependent yield.
Collapse
Affiliation(s)
- Julian Spils
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, UK
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| |
Collapse
|
12
|
Klein M, Waldvogel SR. Counter Electrode Reactions-Important Stumbling Blocks on the Way to a Working Electro-organic Synthesis. Angew Chem Int Ed Engl 2022; 61:e202204140. [PMID: 35668714 PMCID: PMC9828107 DOI: 10.1002/anie.202204140] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 01/12/2023]
Abstract
Over the past two decades, electro-organic synthesis has gained significant interest, both in technical and academic research as well as in terms of applications. The omission of stoichiometric oxidizers or reducing agents enables a more sustainable route for redox reactions in organic chemistry. Even if it is well-known that every electrochemical oxidation is only viable with an associated reduction reaction and vice versa, the relevance of the counter reaction is often less addressed. In this Review, the importance of the corresponding counter reaction in electro-organic synthesis is highlighted and how it can affect the performance and selectivity of the electrolytic conversion. A selection of common strategies and unique concepts to tackle this issue are surveyed to provide a guide to select appropriate counter reactions for electro-organic synthesis.
Collapse
Affiliation(s)
- Martin Klein
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
13
|
Xue X, Wang Y, Zhou L, Ge R, Yang J, Kong X, Xu M, Li Z, Ma L, Duan H. An Electrocatalytic Strategy for Dehydrogenative [4+2] Cycloaddition over a Cobalt‐based catalyst. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaomeng Xue
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Ye Wang
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Lina Zhou
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, SINOPEC Beijing 100083 China
| | - Ruixiang Ge
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiangrong Yang
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Lina Ma
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Haohong Duan
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
14
|
Chandu P, Das D, Ghosh KG, Sureshkumar D. Visible‐Light Photoredox Catalyzed Decarboxylative Alkylation of Vinylcyclopropanes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Palasetty Chandu
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal 741246 India
| | - Debabrata Das
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal 741246 India
| | - Krishna G. Ghosh
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal 741246 India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal 741246 India
| |
Collapse
|
15
|
Chen C, Wang X, Yang T. Recent Updates on Electrogenerated Hypervalent Iodine Derivatives and Their Applications as Mediators in Organic Electrosynthesis. Front Chem 2022; 10:883474. [PMID: 35494647 PMCID: PMC9043554 DOI: 10.3389/fchem.2022.883474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/25/2022] [Indexed: 01/15/2023] Open
Abstract
With the renaissance of chemical electrosynthesis in the last decade, the electrochemistry of hypervalent iodine compounds has picked up the pace and achieved significant improvements. By employing traceless electrons instead of stoichiometric oxidants as the alternative clean “reagents”, many hypervalent iodine compounds were efficiently electro-synthesized via anodic oxidation methods and utilized as powerful redox mediators triggering valuable oxidative coupling reactions in a more sustainable way. This minireview gives an up-to-date overview of the recent advances during the past 3 years, encompassing enhanced electrosynthesis technologies, novel synthetic applications, and ideas for improving reaction sustainability.
Collapse
Affiliation(s)
- Chaoyue Chen
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
- *Correspondence: Chaoyue Chen, ; Tinghai Yang,
| | - Xin Wang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
| | - Tinghai Yang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- *Correspondence: Chaoyue Chen, ; Tinghai Yang,
| |
Collapse
|
16
|
He C, Zhu L, Guo Y, Zu B, Ke J. Electrochemical α-Thiolation and Azidation of 1,3-Dicarbonyls. Chem Commun (Camb) 2022; 58:2758-2761. [DOI: 10.1039/d1cc06891a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient electrochemical α-thiolation and azidation of 1,3-dicarbonyl compounds is developed. This electrochemical process is conducted under mild conditions without the use of chemical oxidant, and exhibits a wide...
Collapse
|
17
|
Kong X, Lin L, Chen X, Chen Y, Wang W, Xu B. Electrochemical Oxidative Syntheses of NH-Sulfoximines, NH-Sulfonimidamides and Dibenzothiazines via Anodically Generated Hypervalent Iodine Intermediates. CHEMSUSCHEM 2021; 14:3277-3282. [PMID: 34292660 DOI: 10.1002/cssc.202101002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Herein, we report a general method for the synthesis of NH-sulfoximines and NH-sulfonimidamides through direct electrochemical oxidative catalysis involving an iodoarene(I)/iodoarene(III) redox couple. In addition, dibenzothiazines can be synthesized from [1,1'-biaryl]-2-sulfides under standard conditions. Notably, only a catalytic amount of iodoarene is required for the generation in situ of an active hypervalent iodine catalyst, which avoids the need for an excess of a hypervalent iodine reagent relative to conventional approaches. Moreover, this protocol features broad substrate scope and wide functional group tolerance, delivering the target compounds with good-to-excellent yields even for a scale of more than 10 g.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, 213032, P. R. China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai, 201620, P. R. China
| | - Long Lin
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai, 201620, P. R. China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, 213032, P. R. China
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, 213032, P. R. China
| | - Wei Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, 213032, P. R. China
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai, 201620, P. R. China
| |
Collapse
|
18
|
Ke J, Liu W, Zhu X, Tan X, He C. Electrochemical Radical Silyl‐Oxygenation of Activated Alkenes. Angew Chem Int Ed Engl 2021; 60:8744-8749. [DOI: 10.1002/anie.202016620] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/28/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Wentan Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xujiang Zhu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xingfa Tan
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
19
|
Ke J, Liu W, Zhu X, Tan X, He C. Electrochemical Radical Silyl‐Oxygenation of Activated Alkenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Wentan Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xujiang Zhu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xingfa Tan
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
20
|
Liu F, Dai J, Cheng X. Aryl-Iodide-Mediated Electrochemical Aziridination of Electron-Deficient Alkenes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Elsherbini M, Moran WJ. Scalable electrochemical synthesis of diaryliodonium salts. Org Biomol Chem 2021; 19:4706-4711. [PMID: 33960987 DOI: 10.1039/d1ob00457c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic and acyclic diaryliodonium are synthesised by anodic oxidation of iodobiaryls and iodoarene/arene mixtures, respectively, in a simple undivided electrolysis cell in MeCN-HFIP-TfOH without any added electrolyte salts. This atom efficient process does not require chemical oxidants and generates no chemical waste. More than 30 cyclic and acyclic diaryliodonium salts with different substitution patterns were prepared in very good to excellent yields. The reaction was scaled-up to 10 mmol scale giving more than four grams of dibenzo[b,d]iodol-5-ium trifluoromethanesulfonate (>95%) in less than three hours. The solvent mixture of the large-scale experiment was recovered (>97%) and recycled several times without significant reduction in yield.
Collapse
Affiliation(s)
- Mohamed Elsherbini
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| | - Wesley J Moran
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| |
Collapse
|