1
|
Lv XJ, Ai CZ, Zhang LR, Ma XX, Zhang JJ, Zhu JP, Tan RX. Regioselectivity switches between anthraquinone precursor fissions involved in bioactive xanthone biosynthesis. Chem Sci 2024; 15:19534-19545. [PMID: 39568878 PMCID: PMC11575538 DOI: 10.1039/d4sc06369d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Xanthone-based polyketides with complex molecular frameworks and potent bioactivities distribute and function in different biological kingdoms, yet their biosynthesis remains under-investigated. In particular, nothing is known regarding how to switch between the C4a-C10 (C4a-selective) and C10a-C10 bond (C10a-selective) cleavages of anthraquinone intermediates involved in biosynthesizing strikingly different frameworks of xanthones and their siblings. Enabled by our characterization of antiosteoporotic brunneoxanthones, a subfamily of polyketides from Aspergillus brunneoviolaceus FB-2, we present herein the brunneoxanthone biosynthetic gene cluster and the C10a-selective cleavage of anthraquinone (chrysophanol) hydroquinone leading ultimately to the bioactive brunneoxanthones under the catalysis of BruN (an undescribed atypical non-heme iron dioxygenase) in collaboration with BruM as a new oxidoreductase that reduces the anthraquinone into its hydroquinone using NADPH as a cofactor. The insights into the driving force that determines whether the C10a- or C4a-selective cleavages of anthraquinone hydroquinones take place were achieved by a combination of multiprotein sequence alignment, directed protein evolution, theoretical simulation, chemical capture of hydroquinone tautomer, 18O chasing, and X-ray crystal structure of the BruNN441M mutant, eventually allowing for the protocol establishment for the on-demand switch between the two ways of anthraquinone openings. Collectively, the work paves the way for the synthetic biology-based regeneration of uniquely structured high-value xanthones present in low abundance in complex mixtures, and helps to deepen the understanding on why and how such xanthones and their congeners are biosynthesized by different (micro)organisms in nature.
Collapse
Affiliation(s)
- Xiao Jing Lv
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Chun Zhi Ai
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Li Rong Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Xiu Xiu Ma
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Juan Juan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University Nanjing 210023 China
| | - Jia Peng Zhu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University Nanjing 210023 China
| |
Collapse
|
2
|
Guan J, Zhang PP, Wang XH, Guo YT, Zhang ZJ, Li P, Lin LP. Structure-Guided Discovery of Diverse Cytotoxic Dimeric Xanthones/Chromanones from Penicillium chrysogenum C-7-2-1 and Their Interconversion Properties. JOURNAL OF NATURAL PRODUCTS 2024; 87:238-251. [PMID: 38354306 DOI: 10.1021/acs.jnatprod.3c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Xanthone-chromanone homo- or heterodimers are regarded as a novel class of topoisomerase (Topo) inhibitors; however, limited information about these compounds is currently available. Here, 14 new (1-14) and 6 known tetrahydroxanthone chromanone homo- and heterodimers (15-20) are reported as isolated from Penicillium chrysogenum C-7-2-1. Their structures and absolute configurations were unambiguously demonstrated by a combination of spectroscopic data, single-crystal X-ray diffraction, modified Mosher's method, and electronic circular dichroism analyses. Plausible biosynthetic pathways are proposed. For the first time, it was discovered that tetrahydroxanthones can convert to chromanones in water, whereas chromone dimerization does not show this property. Among them, compounds 5, 7, 8, and 16 exhibited significant cytotoxicity against H23 cell line with IC50 values of 6.9, 6.4, 3.9, and 2.6 μM, respectively.
Collapse
Affiliation(s)
- Jing Guan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| | - Pan-Pan Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| | - Xin-Hui Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| | - Yu-Tong Guo
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| | - Zi-Jin Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| | - Peng Li
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| | - Li-Ping Lin
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Wu J, Shui H, Zhang M, Zeng Y, Zheng M, Zhu KK, Wang SB, Bi H, Hong K, Cai YS. Aculeaxanthones A-E, new xanthones from the marine-derived fungus Aspergillus aculeatinus WHUF0198. Front Microbiol 2023; 14:1138830. [PMID: 36922969 PMCID: PMC10008875 DOI: 10.3389/fmicb.2023.1138830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
Introduction Dimeric natural products are widespread in plants and microorganisms, which usually have complex structures and exhibit greater bioactivities than their corresponding monomers. In this study, we report five new dimeric tetrahydroxanthones, aculeaxanthones A-E (4-8), along with the homodimeric tetrahydroxanthone secalonic acid D (1), chrysoxanthones B and C (2 and 3), and 4-4'-secalonic acid D (9), from different fermentation batches of the title fungus. Methods A part of the culture was added to a total of 60 flasks containing 300 ml each of number II fungus liquid medium and culture 4 weeks in a static state at 28˚C. The liquid phase (18 L) and mycelia was separated from the fungal culture by filtering. A crude extract was obtained from the mycelia by ultrasound using acetone. To obtain a dry extract (18 g), the liquid phase combined with the crude extract were further extracted by EtOAc and concentrated in vacuo. The MIC of anaerobic bacteria was examined by a broth microdilution assay. To obtain MICs for aerobic bacteria, the agar dilution streak method recommended in Clinical and Laboratory Standards Institute document (CLSI) M07-A10 was used. Compounds 1-9 was tested against the Bel-7402, A-549 and HCT-116 cell lines according to MTT assay. Results and Discussion The structures of these compounds were elucidated on the base of 1D and 2D NMR and HR-ESIMS data, and the absolute configurations of the new xanthones 4-8 were determined by conformational analysis and time-dependent density functional theory-electronic circular dichroism (TDDFT-ECD) calculations. Compounds 1-9 were tested for cytotoxicity against the Bel-7402, A549, and HCT-116 cancer cell lines. Of the dimeric tetrahydroxanthone derivatives, only compound 6 provided cytotoxicity effect against Bel-7402 cell line (IC50, 1.96 µM). Additionally, antimicrobial activity was evaluated for all dimeric tetrahydroxanthones, including four Gram-positive bacteria including Enterococcus faecium ATCC 19434, Bacillus subtilis 168, Staphylococcus aureus ATCC 25923 and MRSA USA300; four Gram-negative bacteria, including Helicobacter pylori 129, G27, as well as 26,695, and multi drug-resistant strain H. pylori 159, and one Mycobacterium M. smegmatis ATCC 607. However, only compound 1 performed activities against H. pylori G27, H. pylori 26695, H. pylori 129, H. pylori 159, S. aureus USA300, and B. subtilis 168 with MIC values of 4.0, 4.0, 2.0, 2.0, 2.0 and 1.0 μg/mL, respectively.
Collapse
Affiliation(s)
- Jun Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Hua Shui
- Department of Nephrology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Mengke Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yida Zeng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Mingxin Zheng
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology & Helicobacter pylori Research Centre, Nanjing Medical University, Nanjing, China
| | - Kong-Kai Zhu
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| | - Shou-Bao Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongkai Bi
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology & Helicobacter pylori Research Centre, Nanjing Medical University, Nanjing, China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - You-Sheng Cai
- Department of Nephrology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Chen Y, Wei YJ, Jiang N, Ge HM, Jiao RH, Cheng X, Tan RX. Spirocitromycetin, a Fungal Polyketide with an Antiosteoporotic Pharmacophore. JOURNAL OF NATURAL PRODUCTS 2022; 85:1442-1447. [PMID: 35510520 DOI: 10.1021/acs.jnatprod.1c01060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Spirocitromycetin, an antiosteoporotic polyketide bearing a unique spirocycle, was characterized from a human mucus sputum-derived Penicillium velutinum. Its structure and absolute configuration were elucidated spectrally, with its biosynthetic pathway likely mediated via polivione, a reported heptaketide. Spirocitromycetin was shown to be antiosteoporotic at 0.1 μM in the prednisolone-induced osteoporotic zebrafish model. A combination of spirocitromycetin variant synthesis and bioassay has identified 5'-methyl-3'H-spiro[chromane-3,2'-furan]-3',4-dione as an unreported antiosteroporotic pharmacophore. Collectively, this work offers new starting (sub)structures that may be of significance for antiosteoporotic drug discovery.
Collapse
Affiliation(s)
- Yong Chen
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210023, People's Republic of China
| | - Ying Jie Wei
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Nan Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210023, People's Republic of China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xu Cheng
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- Institute of Chemistry and Biomedical Sciences, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing 210023, People's Republic of China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
5
|
Zang Z, Yang W, Cui H, Cai R, Li C, Zou G, Wang B, She Z. Two Antimicrobial Heterodimeric Tetrahydroxanthones with a 7,7'-Linkage from Mangrove Endophytic Fungus Aspergillus flavus QQYZ. Molecules 2022; 27:molecules27092691. [PMID: 35566042 PMCID: PMC9103106 DOI: 10.3390/molecules27092691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
Mangrove endophytic fungi represent significant and sustainable sources of novel metabolites with unique structures and excellent biological activities, attracting extensive chemical investigations. In this research, two novel heterodimeric tetrahydroxanthones, aflaxanthones A (1) and B (2), dimerized via an unprecedented 7,7′-linkage, a sp3-sp3 dimeric manner, were isolated from the mangrove endophytic fungus Aspergillus flavus QQYZ. Their structures were elucidated through high resolution electrospray ionization mass spectroscopy (HRESIMS) and nuclear magnetic resonance (NMR) spectroscopy, the absolute configurations of them were determined by a single-crystal X-ray diffraction combined with calculated electronic circular dichroism (ECD) spectra and a 1D potential energy scan. These compounds were evaluated for antifungal activities in vitro and exhibited broad-spectrum and potential antifungal activities against several pathogenic fungi with minimum inhibitory concentration (MIC) values in the range of 3.13–50 μM. They also performed moderate antibacterial activities against several bacteria with MIC values in the range of 12.5–25 μM. This research enriched the resources of lead compounds and templates for marine-derived antimicrobial drugs.
Collapse
Affiliation(s)
- Zhenming Zang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (Z.Z.); (W.Y.); (G.Z.)
| | - Wencong Yang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (Z.Z.); (W.Y.); (G.Z.)
| | - Hui Cui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
| | - Runlin Cai
- College of Science, Shantou University, Shantou 515063, China;
| | - Chunyuan Li
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China;
| | - Ge Zou
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (Z.Z.); (W.Y.); (G.Z.)
| | - Bo Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (Z.Z.); (W.Y.); (G.Z.)
- Correspondence: (B.W.); (Z.S.); Tel.: +86-20-84113356 (Z.S.)
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; (Z.Z.); (W.Y.); (G.Z.)
- Correspondence: (B.W.); (Z.S.); Tel.: +86-20-84113356 (Z.S.)
| |
Collapse
|