1
|
Sun W, Wang Y, Liu J, Hu Q, Yu K, Wen Z, Yao J, Li H. Oxidative Cleavage of Aromatic C-O Linkages by Oxoammonium Salts. Chemistry 2024; 30:e202402838. [PMID: 39380315 DOI: 10.1002/chem.202402838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Oxidative cleavage of aromatic C(sp2)-O bond is important to the conversion of biomass and plastic wastes into value-added chemicals. Here we put forward the oxidative cleavage of para-C-O bonds in phenolic compounds in use of oxoammonium salts as oxidant and water as the oxygen source. The mechanism is that oxoammonium cation activates water to form hydroxy-oxoammonium adduct and thus realizes the ipso-substitution of 4-alkoxyphenol, which is proved by substituent effect, isotope labelling experiments, and kinetic analysis. Furthermore, this protocol is successfully applied into the depolymerization of both lignin model compounds with α-O-5 and 4-O-5 linkages and polyphenylene oxide (PPO).
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Yongtao Wang
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
- Center of Chemistry for Frontier Technologies, ZJU-NHU United R&D Center, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Jiaxin Liu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Qixuan Hu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Kehan Yu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Zeyu Wen
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Jia Yao
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| | - Haoran Li
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
- Center of Chemistry for Frontier Technologies, ZJU-NHU United R&D Center, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310058, China
| |
Collapse
|
2
|
Giri R, Zhilin E, Kissling M, Patra S, Fernandes AJ, Katayev D. Visible-Light-Mediated Vicinal Dihalogenation of Unsaturated C-C Bonds Using Dual-Functional Group Transfer Reagents. J Am Chem Soc 2024; 146:31547-31559. [PMID: 39498866 PMCID: PMC11583368 DOI: 10.1021/jacs.4c09039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The growing demand for chemical production continues to drive the development of sustainable and efficient methods for introducing molecular complexity. In this context, the exploration of unconventional functional group transfer reagents (FGTRs) has led to significant advancements in practical and atom-efficient synthetic protocols. Aiming to advance the field of valuable organic synthesis, herein we report the successful development of carbon-based, bench-stable, modular, and inexpensive reagents implemented in dual halogen transfer to unsaturated hydrocarbons via photocatalytic activation of reagents based on a radical-polar crossover mechanism. This method beneficially enables vicinal dichlorination, dibromination, and bromo-chlorination reactions of olefins, offering practical alternatives to the use of toxic binary halogens. Detailed mechanistic studies, combining experimental, spectroscopic, and theoretical investigations, revealed a distinctive photocatalytic single-electron transfer reduction of FGTR. This process triggers mesolytic carbon-halogen bond cleavage, followed by a radical 1,2-halide rearrangement, leading to the continuous generation of dihalogen species in the reaction medium. The wide applicability of the developed protocol is demonstrated through an extensive scope of unsaturated molecules, including additional operations on strain-release dihalogenation.
Collapse
Affiliation(s)
- Rahul Giri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Egor Zhilin
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Mathias Kissling
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Subrata Patra
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Anthony J Fernandes
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Dmitry Katayev
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
3
|
Wang W, Song S, Jiao N. Late-Stage Halogenation of Complex Substrates with Readily Available Halogenating Reagents. Acc Chem Res 2024; 57:3161-3181. [PMID: 39303309 DOI: 10.1021/acs.accounts.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
ConspectusLate-stage halogenation, targeting specific positions in complex substrates, has gained significant attention due to its potential for diversifying and functionalizing complex molecules such as natural products and pharmaceutical intermediates. Utilizing readily available halogenating reagents, such as hydrogen halides (HX), N-halosuccinimides (NXS), and dichloroethane (DCE) reagents for late-stage halogenation shows great promise for expanding the toolbox of synthetic chemists. However, the reactivity of haleniums (X+, X = Cl, Br, I) can be significantly hindered by the presence of various functional groups such as hydroxyl, amine, amide, or carboxylic acid groups. The developed methods of late-stage halogenation often rely on specialized activating reagents and conditions. Recently, our group (among others) has put great efforts into addressing these challenges and unlocking the potential of these readily available HX, NXS, and DCE reagents in complex molecule halogenation. Developing new methodologies, catalyst systems, and reaction conditions further enhanced their utility, enabling the efficient and selective halogenation of intricate substrates.With the long-term goal of achieving selective halogenation of complex molecules, we summarize herein three complementary research topics in our group: (1) Efficient oxidative halogenations: Taking inspiration from naturally occurring enzyme-catalyzed oxidative halogenation reactions, we focused on developing cost-effective oxidative halogenation reactions. We found the combination of dimethyl sulfoxide (DMSO) and HX (X = Cl, Br, I) efficient for the oxidative halogenation of aromatic compounds and alkenes. Additionally, we developed electrochemical oxidative halogenation using DCE as a practical chlorinating reagent for chlorination of (hetero)arenes. (2) Halenium reagent activation: Direct electrophilic halogenation using halenium reagents is a reliable method for obtaining organohalides. However, compared to highly reactive reagents, the common and readily available NXS and dihalodimethylhydantoin (DXDMH) demonstrate relatively lower reactivity. Therefore, we focused on developing oxygen-centered Lewis base catalysts such as DMSO, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and nitromethane to activate NXS or DXDMH, enabling selective halogenation of bioactive substrates. (3) Halogenation of inert substrates: Some substrates, such as electron-poor arenes and pyridines, are inert toward electrophilic functionalization reactions. We devised several strategies to enhance the reactivity of these molecules. These strategies, characterized by mild reaction conditions, the ready availability and stability of catalysts and reagents, and excellent tolerance for various functional groups, have emerged as versatile protocols for the late-stage aromatic halogenation of drugs, natural products, and peptides. By harnessing the versatility and selectivity of these catalysts and methodologies, synthetic chemists can unlock new possibilities in the synthesis of halogenated compounds, paving the way for the development of novel functional materials and biologically active molecules.
Collapse
Affiliation(s)
- Weijin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Road 38, Beijing 100191, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Road 38, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Xue Yuan Road 38, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences. Shanghai 200032, China
| |
Collapse
|
4
|
Li Y, Chen Z, Lin S, Liu Y, Qian J, Li Q, Huang Z, Wang H. Regioselective Electrophilic Addition to Propargylic B(MIDA)s Enabled by β-Boron Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304282. [PMID: 37632709 PMCID: PMC10602563 DOI: 10.1002/advs.202304282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Indexed: 08/28/2023]
Abstract
Electrophilic addition reaction to alkynes is of fundamental importance in organic chemistry, yet the regiocontrol when reacting with unsymmetrical 1,2-dialkyl substituted alkynes is often problematic. Herein, it is demonstrated that the rarely recognized β-boron effect can confer a high level of site-selectivity in several alkyne electrophilic addition reactions. A broad range of highly functionalized and complex organoborons are thus formed under simple reaction conditions starting from propargylic MIDA (N-methyliminodiacetic acid) boronates. These products are demonstrated to be valuable building blocks in organic synthesis. In addition to the regiocontrol, this study also observes a drastic rate enhancement upon B(MIDA) substitution. Theoretical calculation reveals that the highest occupied molecular obital (HOMO) energy level of propargylic B(MIDA) is significantly raised by 0.3 eV, and the preferential electrophilic addition to the γ position is due to its higher HOMO orbital coefficient and more negative natural bond orbital (NBO) charge compared to the β position. This study demonstrates the potential of utilizing the β-boron effect in stereoelectronic control of chemical transformations, which can inspire further research in this area.
Collapse
Affiliation(s)
- Yin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
| | - Zhi‐Hao Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
| | - Shuang Lin
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
| | - Yuan Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
| | - Jiasheng Qian
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
| | - Qingjiang Li
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
| | - Zhi‐Shu Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhou510006China
| |
Collapse
|
5
|
Zhao S, Ding L, Sun Y, Wang M, Zhao D. Synergistic Palladium/Lewis Acid-Catalyzed Regio- and Stereo-divergent Bissilylation of Alkynoates: Scope, Mechanism, and Origin of Selectivity. Angew Chem Int Ed Engl 2023; 62:e202309169. [PMID: 37477636 DOI: 10.1002/anie.202309169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Transition metal-catalyzed bissilylation reactions of alkynes with disilane reagents have become one of the most straightforward and efficient protocols to rapidly produce structurally diverse alkenyl silicon derivatives. In these reactions, the utilization of unsymmetrical disilane reagents provided the possibilities for reactivity enhancement as well as the synthetic merits in contrast to symmetrical disilane reagents. However, a major yet challenging objective is achieving precise control over the selectivity including the regioselectivity and the cis/trans-selectivity. Herein we realized the first divergent bissilylation of alkynoates with our developed air-stable disilane reagent 8-(2-substituted-1,1,2,2-tetramethyldisilanyl)quinoline (TMDQ) by means of synergistic Pd/Lewis acid catalytic system. The catalytic system precisely dictates the selectivity, resulting in the divergent synthesis of 1,2-bissilyl alkenes. The power of these 1,2-bissilyl alkenes serving as the key synthetic intermediates has been clearly demonstrated by rapid construction of diverse motifs and densely functionalized biologically active compounds. In addition, the origins of the switchable selectivities were well elucidated by experimental and computational studies on the reaction mechanism and were mainly attributed to different ligand steric effects, the use of the specific disilane reagent TMDQ and the different coordination modes of different Lewis acid with alkynoates.
Collapse
Affiliation(s)
- Shuang Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Linlin Ding
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yingman Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
6
|
Wu R, Chen Y, Zhu S. Rh(II)-Catalyzed Enynal Cycloisomerization for the Generation of Vinyl Carbene: Divergent Access to Polycyclic Heterocycles. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yang Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
7
|
Lubaev A, Rathnayake MD, Eze F, Bayeh-Romero L. Catalytic Chemo-, Regio-, Diastereo-, and Enantioselective Bromochlorination of Unsaturated Systems Enabled by Lewis Base-Controlled Chloride Release. J Am Chem Soc 2022; 144:13294-13301. [PMID: 35820071 PMCID: PMC9945878 DOI: 10.1021/jacs.2c04588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new strategy is described for the Lewis base-catalyzed bromochlorination of unsaturated systems that is mechanistically distinct from prior methodologies. The novelty of this method hinges on the utilization of thionyl chloride as a latent chloride source in combination with as little as 1 mol % of triphenylphosphine or triphenylphosphine oxide as Lewis basic activators. This metal-free, catalytic chemo-, regio-, and diastereoselective bromochlorination of alkenes and alkynes exhibits excellent site selectivity in polyunsaturated systems and provides access to a wide variety of vicinal bromochlorides with up to >20:1 regio- and diastereoselectivity. The precision installation of Br, Cl, and I in various combinations is also demonstrated by simply varying the commercial halogenating reagents employed. Notably, when a chiral Lewis base promoter is employed, an enantioselective bromochlorination of chalcones is possible with up to a 92:8 enantiomeric ratio when utilizing only 1-3 mol % of (DHQD)2PHAL.
Collapse
|
8
|
Chen Y, Zhu S. Modular construction of α-furanyl ketones via semi-pinacol rearrangement-mediated ring expansion. Org Chem Front 2022. [DOI: 10.1039/d2qo01324j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient semi-pinacol rearrangement strategy of enynals involving a metal carbene intermediate has been developed, which allows the practical synthesis of various functionalized α-furanyl ketones in moderate to good yields under mild reaction conditions.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Youmei Institute of Intelligent Biomanufacturing, Foshan 528225, PR China
| |
Collapse
|