1
|
Abouzid MRA, Hameed M, Katta MR, Valisekka SS. Approach to Lymphoma-Associated Cardiomyopathy. Cardiol Rev 2024; 32:104-109. [PMID: 36129332 DOI: 10.1097/crd.0000000000000471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cardiomyopathy is a disease of the myocardium that affects the heart structure and function, eventually resulting in heart failure, valvular regurgitation, arrhythmia, or even sudden cardiac death. Occurring following treatment of lymphoma, both Hodgkin's and Non-Hodgkin's, cardiomyopathy is a feared complication in these cancer survivors due to its significant association with morbidity and mortality. A review of the literature was conducted using a combination of keywords including "Cardiomyopathy," "Anthracycline," "Radiation," "Pathogenesis," and "Management." Anthracyclines and radiation are prominent entities explored in the discussion of lymphoma-associated cardiomyopathy, whereby the formation of reactive oxygen species following treatment with both has been seen in the pathogenesis. The current standard of care thus far for anthracycline-induced cardiomyopathy includes heart failure medications such as beta-blockers, angiotensin-converting enzyme inhibitors, aldosterone receptor antagonists, and loop-diuretics. On the other hand, radiation-induced cardiomyopathy management has not been well-established yet in literature, with agents such as antioxidants and anti-inflammatory drugs still being studied in rat models. The treatment approach to cardiotoxicity in a lymphoma patient should consist of a collaboration between the oncologist and cardiologist prior to lymphoma treatment initiation, to stratify the risk of development of cardiomyopathy in the patient, and decide the best chemotherapy or radiotherapy agent, dosing, and surveillance technique.
Collapse
Affiliation(s)
| | - Maha Hameed
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
2
|
Santos JD, Dawson S, Conefrey C, Isaacs T, Khanum M, Faisal S, Paramasivan S. Most UK cardiovascular disease trial protocols feature criteria that exclude ethnic minority participants: a systematic review. J Clin Epidemiol 2024; 167:111259. [PMID: 38215800 DOI: 10.1016/j.jclinepi.2024.111259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
OBJECTIVES We systematically reviewed UK cardiovascular disease (CVD) randomized controlled trial (RCT) protocols to identify the proportion featuring eligibility criteria that may disproportionately exclude ethnic minority (EM) participants. METHODS We searched MEDLINE, Embase, and Cochrane Library databases, January 2014-June 2022, to identify UK CVD RCT protocols. We extracted nonclinical eligibility criteria from trial protocols and inductively categorized the trials by their language, consent, and broad (ambiguous) criteria. Findings are narratively reported. RESULTS Of the seventy included RCT protocols, most (87.1%; 61/70) mentioned consent within the eligibility criteria, with more than two-thirds (68.9%; 42/61) indicating a requirement for 'written' consent. Alternative consent pathways that can aid EM participation were absent. English language requirement was present in 22.9% (16/70) of the studies and 37.1% (26/70) featured broad criteria that are open to interpretation and subject to recruiter bias. Only 4.3% (3/70) protocols mentioned the provision of translation services. CONCLUSION Most UK CVD trial protocols feature eligibility criteria that potentially exclude EM groups. Trial eligibility criteria must be situated within a larger inclusive recruitment framework, where ethnicity is considered alongside other intersecting and disadvantaging identities.
Collapse
Affiliation(s)
- Jhulia Dos Santos
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Shoba Dawson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Carmel Conefrey
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Talia Isaacs
- UCL Centre for Applied Linguistics, IOE, UCL's Faculty of Education and Society, University College London, London, UK
| | - Mahwar Khanum
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Saba Faisal
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sangeetha Paramasivan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
3
|
Mallouppas M, Chung R, Ghosh AK, Macklin A, Yellon DM, Walker JM. Anthracyclines and Biomarkers of Myocardial Injury: The Effect of Remote Ischemic Conditioning. JACC CardioOncol 2023; 5:343-355. [PMID: 37397080 PMCID: PMC10308041 DOI: 10.1016/j.jaccao.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 07/04/2023] Open
Abstract
Background Remote ischemic conditioning (RIC) has been beneficial in laboratory studies of anthracycline cardiotoxicity, but its effects in patients is not established. Objectives The authors studied the effect of RIC on cardiac biomarkers and function during and after anthracycline chemotherapy. Methods The ERIC-Onc study (Effect of Remote Ischaemic Conditioning in Oncology Patients; NCT02471885) was a randomized, single-blind, sham-controlled study of RIC at each chemotherapy cycle. The primary endpoint was troponin T (TnT) during chemotherapy and up to 1 year. Secondary outcomes included cardiac function, major adverse cardiovascular events (MACE), and MACE or cancer death. Cardiac myosin-binding-protein C (cMyC) was investigated in parallel with TnT. Results The study was prematurely halted after the evaluation of 55 patients (RIC n = 28, sham n = 27). Biomarkers increased from baseline to cycle 6 of chemotherapy for all patients (median TnT 6 [IQR: 4-9] ng/L to 33 [IQR: 16-36)] ng/L; P ≤ 0.001; cMyC 3 (IQR: 2-5) ng/L to 47 (IQR: 18-49) ng/L; P ≤ 0.001). Mixed-effects regression analysis for repeated measures showed no difference in TnT between the 2 groups (RIC vs sham, mean difference 3.15 ng/L; 95% CI: -0.04 to 6.33; P = 0.053), or cMyC (RIC vs sham, mean difference 4.17 ng/L; 95% CI: -0.12 to 8.45; P = 0.056). There were more MACE and cancer deaths in the RIC group (11 vs 3; HR: 0.25; 95% CI: 0.07-0.90; P = 0.034), with more cancer deaths (8 vs 1; HR: 0.21; 95% CI: 0.04-0.95; P = 0.043) at 1 year. Conclusions TnT and cMyC significantly increased during anthracycline chemotherapy with 81% having a TnT ≥14 ng/L at cycle 6. RIC did not affect the rise in biomarkers, but there was a small increase in early cancer deaths, possibly related to the greater proportion of patients with metastatic disease randomized to the RIC group (54%vs 37%). (Effect of Remote Ischaemic Conditioning in Oncology Patients [ERIC-ONC]; NCT02471885).
Collapse
Affiliation(s)
| | | | | | | | - Derek M. Yellon
- Address for correspondence: Prof Derek Yellon, OR Prof Malcolm Walker, The Hatter Cardiovascular Institute, University College London Institute of Cardiovascular Science, 67 Chenies Mews, London WC1E 6HX, United Kingdom.
| | - J. Malcolm Walker
- Address for correspondence: Prof Derek Yellon, OR Prof Malcolm Walker, The Hatter Cardiovascular Institute, University College London Institute of Cardiovascular Science, 67 Chenies Mews, London WC1E 6HX, United Kingdom.
| |
Collapse
|
4
|
Cheung YF, Li VWY, So EKF, Cheng FWT, Yau JPW, Chiu SY, Wong WHS, Cheuk DKL. Remote Ischemic Conditioning in Pediatric Cancer Patients Receiving Anthracycline Chemotherapy: A Sham-Controlled Single-Blind Randomized Trial. JACC CardioOncol 2023; 5:332-342. [PMID: 37397078 PMCID: PMC10308057 DOI: 10.1016/j.jaccao.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 07/04/2023] Open
Abstract
Background Anthracycline cardiotoxicity is a concern in survivors of childhood cancers. Recent evidence suggests that remote ischemic conditioning (RIC) may offer myocardial protection. Objectives This randomized sham-controlled single-blind study tested the hypothesis that RIC may reduce myocardial injury in pediatric cancer patients receiving anthracycline chemotherapy. Methods We performed a phase 2 sham-controlled single-blind randomized controlled trial to determine the impact of RIC on myocardial injury in pediatric cancer patients receiving anthracycline-based chemotherapy. Patients were randomized to receive RIC (3 cycles of 5-minute inflation of a blood pressure cuff placed over 1 limb to 15 mm Hg above systolic pressure) or sham intervention. The intervention was applied within 60 minutes before initiation of the first dose and before up to 4 cycles of anthracycline therapy. The primary outcome was the plasma high-sensitivity cardiac troponin T (hs-cTnT) level. The secondary outcome measures included echocardiographic indexes of left ventricular systolic and diastolic function and the occurrence of cardiovascular events. Results A total of 68 children 10.9 ± 3.9 years of age were randomized to receive RIC (n = 34) or sham (n = 34) intervention. Plasma levels of hs-cTnT showed a progressive increase across time points in the RIC (P < 0.001) and sham (P < 0.001) groups. At each of the time points, there were no significant differences in hs-cTnT levels or LV tissue Doppler and strain parameters between the 2 groups (all P > 0.05). None of the patients developed heart failure or cardiac arrhythmias. Conclusions RIC did not exhibit cardioprotective effects in childhood cancer patients receiving anthracycline-based chemotherapy. (Remote Ischaemic Preconditioning in Childhood Cancer [RIPC]; NCT03166813).
Collapse
Affiliation(s)
- Yiu-fai Cheung
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Vivian Wing-yi Li
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Edwina Kam-fung So
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Frankie Wai-tsoi Cheng
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Jeffery Ping-wa Yau
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Sau-ying Chiu
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| | - Wilfred Hing-sang Wong
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Daniel Ka-leung Cheuk
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, China
| |
Collapse
|
5
|
Muhandiramge J, Zalcberg JR, van Londen GJ, Warner ET, Carr PR, Haydon A, Orchard SG. Cardiovascular Disease in Adult Cancer Survivors: a Review of Current Evidence, Strategies for Prevention and Management, and Future Directions for Cardio-oncology. Curr Oncol Rep 2022; 24:1579-1592. [PMID: 35796941 PMCID: PMC9606033 DOI: 10.1007/s11912-022-01309-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular disease is long-term complication of both cancer and anti-cancer treatment and can have significant ramifications for health-related quality of life and mortality. This narrative review explores the current evidence linking cardiovascular disease and cancer, as well as exploring strategies for the prevention and management of cardiovascular disease, and outlines future opportunities in the field of cardio-oncology. RECENT FINDINGS Cancer confers risk for various cardiovascular diseases including heart failure, cardiomyopathy, arrhythmia, coronary heart disease, stroke, venous thromboembolism, and valvular heart disease. Cancer treatment, in particular agents such as platinum-based chemotherapy, anthracyclines, hormonal treatments, and thoracic radiotherapy, further increases risk. While cardiovascular disease can be identified early and effectively managed in cancer survivors, cardiovascular screening and management does not typically feature in routine long-term cancer care of adult cancer survivors. Cancer and cancer treatment can accelerate the development of cardiovascular disease. Further research into screening and management strategies for cardiovascular disease, along with evidence-based guidelines, is required to ensure adult cancer survivors receive appropriate long-term care.
Collapse
Affiliation(s)
- Jaidyn Muhandiramge
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia.
- Austin Health, Heidelberg, VIC, Australia.
| | - John R Zalcberg
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
- Department of Medical Oncology, Alfred Hospital, Melbourne, VIC, Australia
| | - G J van Londen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erica T Warner
- Clinical and Translational Epidemiology Unit, MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Prudence R Carr
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Andrew Haydon
- Department of Medical Oncology, Alfred Hospital, Melbourne, VIC, Australia
| | - Suzanne G Orchard
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, 3004, Australia
| |
Collapse
|
6
|
Bell RM, Basalay M, Bøtker HE, Beikoghli Kalkhoran S, Carr RD, Cunningham J, Davidson SM, England TJ, Giesz S, Ghosh AK, Golforoush P, Gourine AV, Hausenloy DJ, Heusch G, Ibanez B, Kleinbongard P, Lecour S, Lukhna K, Ntsekhe M, Ovize M, Salama AD, Vilahur G, Walker JM, Yellon DM. Remote ischaemic conditioning: defining critical criteria for success-report from the 11th Hatter Cardiovascular Workshop. Basic Res Cardiol 2022; 117:39. [PMID: 35970954 PMCID: PMC9377667 DOI: 10.1007/s00395-022-00947-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 01/31/2023]
Abstract
The Hatter Cardiovascular Institute biennial workshop, originally scheduled for April 2020 but postponed for 2 years due to the Covid pandemic, was organised to debate and discuss the future of Remote Ischaemic Conditioning (RIC). This evolved from the large multicentre CONDI-2-ERIC-PPCI outcome study which demonstrated no additional benefit when using RIC in the setting of ST-elevation myocardial infarction (STEMI). The workshop discussed how conditioning has led to a significant and fundamental understanding of the mechanisms preventing cell death following ischaemia and reperfusion, and the key target cyto-protective pathways recruited by protective interventions, such as RIC. However, the obvious need to translate this protection to the clinical setting has not materialised largely due to the disconnect between preclinical and clinical studies. Discussion points included how to adapt preclinical animal studies to mirror the patient presenting with an acute myocardial infarction, as well as how to refine patient selection in clinical studies to account for co-morbidities and ongoing therapy. These latter scenarios can modify cytoprotective signalling and need to be taken into account to allow for a more robust outcome when powered appropriately. The workshop also discussed the potential for RIC in other disease settings including ischaemic stroke, cardio-oncology and COVID-19. The workshop, therefore, put forward specific classifications which could help identify so-called responders vs. non-responders in both the preclinical and clinical settings.
Collapse
Affiliation(s)
- R M Bell
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - M Basalay
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - H E Bøtker
- Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - S Beikoghli Kalkhoran
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - R D Carr
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | | | - S M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - T J England
- Stroke, Division of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - S Giesz
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - A K Ghosh
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - P Golforoush
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - D J Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- CVMD, Duke-NUS, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - G Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Duisburg, Germany
| | - B Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital & CIBERCV, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - P Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Duisburg, Germany
| | - S Lecour
- University of Cape Town, Cape Town, South Africa
| | - K Lukhna
- University of Cape Town, Cape Town, South Africa
| | - M Ntsekhe
- University of Cape Town, Cape Town, South Africa
| | - M Ovize
- INSERM U1060, CarMeN Laboratory, Université de Lyon, Groupement Hospitalier Est, Bâtiment B13, F-69500, Bron, France
| | | | - G Vilahur
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, CIBERCV, Barcelona, Spain
| | - J M Walker
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - D M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
7
|
Brickler M, Raskin A, Ryan TD. Current State of Pediatric Cardio-Oncology: A Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:127. [PMID: 35204848 PMCID: PMC8870613 DOI: 10.3390/children9020127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
The landscape of pediatric oncology has dramatically changed over the course of the past several decades with five-year survival rates surpassing 80%. Anthracycline therapy has been the cornerstone of many chemotherapy regimens for pediatric patients since its introduction in the 1960s, and recent improved survival has been in large part due to advancements in chemotherapy, refinement of supportive care treatments, and development of novel therapeutics such as small molecule inhibitors, chimeric antigen receptor T-cell therapy, and immune checkpoint inhibitors. Unfortunately, many cancer-targeted therapies can lead to acute and chronic cardiovascular pathologies. The range of cardiotoxicity can vary but includes symptomatic or asymptotic heart failure, arrhythmias, coronary artery disease, valvar disease, pericardial disease, hypertension, and peripheral vascular disease. There is lack of data guiding primary prevention and treatment strategies in the pediatric population, which leads to substantial practice variability. Several important future research directions have been identified, including as they relate to cardiac disease, prevention strategies, management of cardiovascular risk factors, risk prediction, early detection, and the role of genetic susceptibility in development of cardiotoxicity. Continued collaborative research will be key in advancing the field. The ideal model for pediatric cardio-oncology is a proactive partnership between pediatric cardiologists and oncologists in order to better understand, treat, and ideally prevent cardiac disease in pediatric oncology patients.
Collapse
Affiliation(s)
| | | | - Thomas D. Ryan
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| |
Collapse
|
8
|
Heusch G, Rassaf T. Protection from cardiotoxicity of cancer chemotherapy: a novel target for remote ischaemic conditioning? Cardiovasc Res 2021; 117:985-986. [PMID: 32637985 DOI: 10.1093/cvr/cvaa199] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Hufelandstr. 55, 45122 Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University of Essen Medical School, Hufelandstr. 55, 45122 Essen, Germany
| |
Collapse
|
9
|
Menacho Medina K, Seraphim A, Katekaru D, Abdel-Gadir A, Han Y, Westwood M, Walker JM, Moon JC, Herrey AS. Noninvasive rapid cardiac magnetic resonance for the assessment of cardiomyopathies in low-middle income countries. Expert Rev Cardiovasc Ther 2021; 19:387-398. [PMID: 33836619 DOI: 10.1080/14779072.2021.1915130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Cardiac Magnetic Resonance (CMR) is a crucial diagnostic imaging test that redefines diagnosis and enables targeted therapies, but the access to CMR is limited in low-middle Income Countries (LMICs) even though cardiovascular disease is an emergent primary cause of mortality in LMICs. New abbreviated CMR protocols can be less expensive, faster, whilst maintaining accuracy, potentially leading to a higher utilization in LMICs.Areas covered: This article will review cardiovascular disease in LMICs and the current role of CMR in cardiac diagnosis and enable targeted therapy, discussing the main obstacles to prevent the adoption of CMR in LMICs. We will then review the potential utility of abbreviated, cost-effective CMR protocols to improve cardiac diagnosis and care, the clinical indications of the exam, current evidence and future directions.Expert opinion: Rapid CMR protocols, provided that they are utilized in potentially high yield cases, could reduce cost and increase effectiveness. The adoption of these protocols, their integration into care pathways, and prioritizing key treatable diagnoses can potentially improve patient care. Several LMIC countries are now pioneering these approaches and the application of rapid CMR protocols appears to have a bright future if delivered effectively.
Collapse
Affiliation(s)
- Katia Menacho Medina
- Institute of Cardiovascular Science, University College London, London, UK.,Barts Heart Centre, Saint Bartholomew's Hospital, London, UK
| | - Andreas Seraphim
- Institute of Cardiovascular Science, University College London, London, UK.,Barts Heart Centre, Saint Bartholomew's Hospital, London, UK
| | | | - Amna Abdel-Gadir
- Institute of Cardiovascular Science, University College London, London, UK
| | - Yuchi Han
- Departments of Medicine (Cardiovascular Division) and Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Westwood
- Barts Heart Centre, Saint Bartholomew's Hospital, London, UK
| | - J Malcolm Walker
- Institute of Cardiovascular Science, University College London, London, UK.,Cardiology Department, University College London Hospitals NHS Foundation Trust, London, UK.,The Hatter Cardiovascular Institute, University College London Hospital, London, UK
| | - James C Moon
- Institute of Cardiovascular Science, University College London, London, UK.,Barts Heart Centre, Saint Bartholomew's Hospital, London, UK
| | - Anna S Herrey
- Institute of Cardiovascular Science, University College London, London, UK.,Barts Heart Centre, Saint Bartholomew's Hospital, London, UK
| |
Collapse
|
10
|
Galán-Arriola C, Villena-Gutiérrez R, Higuero-Verdejo MI, Díaz-Rengifo IA, Pizarro G, López GJ, de Molina-Iracheta A, Pérez-Martínez C, García RD, González-Calle D, Lobo M, Sánchez PL, Oliver E, Córdoba R, Fuster V, Sánchez-González J, Ibanez B. Remote ischaemic preconditioning ameliorates anthracycline-induced cardiotoxicity and preserves mitochondrial integrity. Cardiovasc Res 2021; 117:1132-1143. [PMID: 32597960 PMCID: PMC7983009 DOI: 10.1093/cvr/cvaa181] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/02/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS Anthracycline-induced cardiotoxicity (AIC) is a serious adverse effect among cancer patients. A central mechanism of AIC is irreversible mitochondrial damage. Despite major efforts, there are currently no effective therapies able to prevent AIC. METHODS AND RESULTS Forty Large-White pigs were included. In Study 1, 20 pigs were randomized 1:1 to remote ischaemic preconditioning (RIPC, 3 cycles of 5 min leg ischaemia followed by 5 min reperfusion) or no pretreatment. RIPC was performed immediately before each intracoronary doxorubicin injections (0.45 mg/kg) given at Weeks 0, 2, 4, 6, and 8. A group of 10 pigs with no exposure to doxorubicin served as healthy controls. Pigs underwent serial cardiac magnetic resonance (CMR) exams at baseline and at Weeks 6, 8, 12, and 16, being sacrifice after that. In Study 2, 10 new pigs received 3 doxorubicin injections (with/out preceding RIPC) and were sacrificed at week 6. In Study 1, left ventricular ejection fraction (LVEF) depression was blunted animals receiving RIPC before doxorubicin (RIPC-Doxo), which had a significantly higher LVEF at Week 16 than doxorubicin treated pigs that received no pretreatment (Untreated-Doxo) (41.5 ± 9.1% vs. 32.5 ± 8.7%, P = 0.04). It was mainly due to conserved regional contractile function. In Study 2, transmission electron microscopy (TEM) at Week 6 showed fragmented mitochondria with severe morphological abnormalities in Untreated-Doxo pigs, together with upregulation of fission and autophagy proteins. At the end of the 16-week Study 1 protocol, TEM revealed overt mitochondrial fragmentation with structural fragmentation in Untreated-Doxo pigs, whereas interstitial fibrosis was less severe in RIPC+Doxo pigs. CONCLUSION In a translatable large-animal model of AIC, RIPC applied immediately before each doxorubicin injection resulted in preserved cardiac contractility with significantly higher long-term LVEF and less cardiac fibrosis. RIPC prevented mitochondrial fragmentation and dysregulated autophagy from AIC early stages. RIPC is a promising intervention for testing in clinical trials in AIC.
Collapse
Affiliation(s)
- Carlos Galán-Arriola
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3. 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Rocio Villena-Gutiérrez
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3. 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Spain
| | - María I Higuero-Verdejo
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3. 28029 Madrid, Spain
| | - Iván A Díaz-Rengifo
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3. 28029 Madrid, Spain
| | - Gonzalo Pizarro
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3. 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Spain
- Complejo Hospitalario Ruber Juan Bravo, Madrid, Spain
| | - Gonzalo J López
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3. 28029 Madrid, Spain
| | - Antonio de Molina-Iracheta
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3. 28029 Madrid, Spain
| | | | - Rodrigo D García
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3. 28029 Madrid, Spain
| | - David González-Calle
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3. 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Spain
- Department of Cardiology, Hospital Universitario Salamanca-IBSAL, Salamanca, Spain
| | - Manuel Lobo
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3. 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Spain
- Department of Cardiology, IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Pedro L Sánchez
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Spain
- Department of Cardiology, Hospital Universitario Salamanca-IBSAL, Salamanca, Spain
| | - Eduardo Oliver
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3. 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Raúl Córdoba
- Department of Cardiology, IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Valentin Fuster
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3. 28029 Madrid, Spain
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Borja Ibanez
- Translational Laboratory for Cardiovascular Imaging and Therapy, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3. 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Spain
- Department of Cardiology, IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| |
Collapse
|
11
|
Carrasco R, Castillo RL, Gormaz JG, Carrillo M, Thavendiranathan P. Role of Oxidative Stress in the Mechanisms of Anthracycline-Induced Cardiotoxicity: Effects of Preventive Strategies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8863789. [PMID: 33574985 PMCID: PMC7857913 DOI: 10.1155/2021/8863789] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/29/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022]
Abstract
Anthracycline-induced cardiotoxicity (AIC) persists as a significant cause of morbidity and mortality in cancer survivors. Although many protective strategies have been evaluated, cardiotoxicity remains an ongoing threat. The mechanisms of AIC remain unclear; however, several pathways have been proposed, suggesting a multifactorial origin. When the central role of topoisomerase 2β in the pathophysiology of AIC was described some years ago, the classical reactive oxygen species (ROS) hypothesis shifted to a secondary position. However, new insights have reemphasized the importance of the role of oxidative stress-mediated signaling as a common pathway and a critical modulator of the different mechanisms involved in AIC. A better understanding of the mechanisms of cardiotoxicity is crucial for the development of treatment strategies. It has been suggested that the available therapeutic interventions for AIC could act on the modulation of oxidative balance, leading to a reduction in oxidative stress injury. These indirect antioxidant effects make them an option for the primary prevention of AIC. In this review, our objective is to provide an update of the accumulated knowledge on the role of oxidative stress in AIC and the modulation of the redox balance by potential preventive strategies.
Collapse
Affiliation(s)
- Rodrigo Carrasco
- Division of Cardiology, Peter Munk Cardiac Centre and the Ted Rogers Centre for Heart Research, University Health Network, Toronto, Ontario, Canada
| | - Rodrigo L. Castillo
- Medicine Department, East Division, Faculty of Medicine, University of Chile. Santiago, Chile; Critical Care Patient Unit, Hospital Salvador, Santiago, Chile
| | - Juan G. Gormaz
- Faculty of Medicine, University of Chile, Santiago, Chile
| | - Montserrat Carrillo
- Division of Cardiology, Peter Munk Cardiac Centre and the Ted Rogers Centre for Heart Research, University Health Network, Toronto, Ontario, Canada
| | - Paaladinesh Thavendiranathan
- Division of Cardiology, Peter Munk Cardiac Centre and the Ted Rogers Centre for Heart Research, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Schwach V, Slaats RH, Passier R. Human Pluripotent Stem Cell-Derived Cardiomyocytes for Assessment of Anticancer Drug-Induced Cardiotoxicity. Front Cardiovasc Med 2020; 7:50. [PMID: 32322588 PMCID: PMC7156610 DOI: 10.3389/fcvm.2020.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/16/2020] [Indexed: 12/26/2022] Open
Abstract
Cardiotoxicity is a major cause of high attrition rates among newly developed drugs. Moreover, anti-cancer treatment-induced cardiotoxicity is one of the leading reasons of mortality in cancer survivors. Cardiotoxicity screening in vitro may improve predictivity of cardiotoxicity by novel drugs, using human pluripotent stem cell (hPSC)-derived-cardiomyocytes. Anthracyclines, including Doxorubicin, are widely used and highly effective chemotherapeutic agents for the treatment of different forms of malignancies. Unfortunately, anthracyclines cause many cardiac complications early or late after therapy. Anthracyclines exhibit their potent anti-cancer effect primarily via induction of DNA damage during the DNA replication phase in proliferative cells. In contrast, studies in animals and hPSC-cardiomyocytes have revealed that cardiotoxic effects particularly arise from (1) the generation of oxidative stress inducing mitochondrial dysfunction, (2) disruption of calcium homeostasis, and (3) changes in transcriptome and proteome, triggering apoptotic cell death. To increase the therapeutic index of chemotherapeutic Doxorubicin therapy several protective strategies have been developed or are under development, such as (1) reducing toxicity through modification of Doxorubicin (analogs), (2) targeted delivery of anthracyclines specifically to the tumor tissue or (3) cardioprotective agents that can be used in combination with Doxorubicin. Despite continuous progress in the field of cardio-oncology, cardiotoxicity is still one of the major complications of anti-cancer therapy. In this review, we focus on current hPSC-cardiomyocyte models for assessing anthracycline-induced cardiotoxicity and strategies for cardioprotection. In addition, we discuss latest developments toward personalized advanced pre-clinical models that are more closely recapitulating the human heart, which are necessary to support in vitro screening platforms with higher predictivity. These advanced models have the potential to reduce the time from bench-to-bedside of novel antineoplastic drugs with reduced cardiotoxicity.
Collapse
Affiliation(s)
- Verena Schwach
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Rolf H Slaats
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Robert Passier
- Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, Netherlands.,Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
13
|
Hausenloy DJ, Ng CT, Chong JH. Repeated Remote Ischemic Conditioning Protects Against Doxorubicin Cardiotoxicity: Never Too Much of a Good Thing. JACC CardioOncol 2020; 2:53-55. [PMID: 34396209 PMCID: PMC8352202 DOI: 10.1016/j.jaccao.2020.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Derek J. Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Choon Ta Ng
- Department of Cardiology, National Heart Centre Singapore, Singapore
| | - Jun Hua Chong
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- Department of Cardiology, National Heart Centre Singapore, Singapore
| |
Collapse
|
14
|
Hidden Cardiotoxicity of Rofecoxib Can be Revealed in Experimental Models of Ischemia/Reperfusion. Cells 2020; 9:cells9030551. [PMID: 32111102 PMCID: PMC7140447 DOI: 10.3390/cells9030551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiac adverse effects are among the leading causes of the discontinuation of clinical trials and the withdrawal of drugs from the market. The novel concept of ‘hidden cardiotoxicity’ is defined as cardiotoxicity of a drug that manifests in the diseased (e.g., ischemic/reperfused), but not in the healthy heart or as a drug-induced deterioration of cardiac stress adaptation (e.g., ischemic conditioning). Here, we aimed to test if the cardiotoxicity of a selective COX-2 inhibitor rofecoxib that was revealed during its clinical use, i.e., increased occurrence of proarrhythmic and thrombotic events, could have been revealed in early phases of drug development by using preclinical models of ischemia/reperfusion (I/R) injury. Rats that were treated with rofecoxib or vehicle for four weeks were subjected to 30 min. coronary artery occlusion and 120 min. reperfusion with or without cardioprotection that is induced by ischemic preconditioning (IPC). Rofecoxib increased overall the arrhythmias including ventricular fibrillation (VF) during I/R. The proarrhythmic effect of rofecoxib during I/R was not observed in the IPC group. Rofecoxib prolonged the action potential duration (APD) in isolated papillary muscles, which was not seen in the simulated IPC group. Interestingly, while showing hidden cardiotoxicity manifested as a proarrhythmic effect during I/R, rofecoxib decreased the infarct size and increased the survival of adult rat cardiac myocytes that were subjected to simulated I/R injury. This is the first demonstration that rofecoxib increased acute mortality due to its proarrhythmic effect via increased APD during I/R. Rofecoxib did not interfere with the cardiprotective effect of IPC; moreover, IPC was able to protect against rofecoxib-induced hidden cardiotoxicity. These results show that cardiac safety testing with simple preclinical models of I/R injury uncovers hidden cardiotoxicity of rofecoxib and might reveal the hidden cardiotoxicity of other drugs.
Collapse
|
15
|
Carrasco R, Ramirez MC, Nes K, Schuster A, Aguayo R, Morales M, Ramos C, Hasson D, Sotomayor CG, Henriquez P, Cortés I, Erazo M, Salas C, Gormaz JG. Prevention of doxorubicin-induced Cardiotoxicity by pharmacological non-hypoxic myocardial preconditioning based on Docosahexaenoic Acid (DHA) and carvedilol direct antioxidant effects: study protocol for a pilot, randomized, double-blind, controlled trial (CarDHA trial). Trials 2020; 21:137. [PMID: 32019575 PMCID: PMC7001267 DOI: 10.1186/s13063-019-3963-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Background Anthracycline-induced cardiotoxicity (AIC), a condition associated with multiple mechanisms of damage, including oxidative stress, has been associated with poor clinical outcomes. Carvedilol, a β-blocker with unique antioxidant properties, emerged as a strategy to prevent AIC, but recent trials question its effectiveness. Some evidence suggests that the antioxidant, not the β-blocker effect, could prevent related cardiotoxicity. However, carvedilol’s antioxidant effects are probably not enough to prevent cardiotoxicity manifestations in certain cases. We hypothesize that breast cancer patients taking carvedilol as well as a non-hypoxic myocardial preconditioning based on docosahexaenoic acid (DHA), an enhancer of cardiac endogenous antioxidant capacity, will develop less subclinical cardiotoxicity manifestations than patients randomized to double placebo. Methods/design We designed a pilot, randomized controlled, two-arm clinical trial with 32 patients to evaluate the effects of non-hypoxic cardiac preconditioning (DHA) plus carvedilol on subclinical cardiotoxicity in breast cancer patients undergoing anthracycline treatment. The trial includes four co-primary endpoints: changes in left ventricular ejection fraction (LVEF) determined by cardiac magnetic resonance (CMR); changes in global longitudinal strain (GLS) determined by two-dimensional echocardiography (ECHO); elevation in serum biomarkers (hs-cTnT and NT-ProBNP); and one electrocardiographic variable (QTc interval). Secondary endpoints include other imaging, biomarkers and the occurrence of major adverse cardiac events during follow-up. The enrollment and follow-up for clinical outcomes is ongoing. Discussion We expect a group of anthracycline-treated breast cancer patients exposed to carvedilol and non-hypoxic myocardial preconditioning with DHA to show less subclinical cardiotoxicity manifestations than a comparable group exposed to placebo. Trial registration ISRCTN registry, ID: ISRCTN69560410. Registered on 8 June 2016.
Collapse
Affiliation(s)
- Rodrigo Carrasco
- Cardiology Department, Clinica Alemana de Santiago, Santiago, Chile.,Cardiology Department, Hospital del Salvador, Santiago, Chile
| | | | - Kjersti Nes
- Cardiology Department, Hospital San Juan de Dios, Santiago, Chile
| | - Andrés Schuster
- Cardiology Department, Clinica Alemana de Santiago, Santiago, Chile
| | - Rubén Aguayo
- Cardiology Department, Hospital San Juan de Dios, Santiago, Chile
| | - Marcelo Morales
- Cardiology Department, Clinica Alemana de Santiago, Santiago, Chile.,Cardiology Department, Hospital San Juan de Dios, Santiago, Chile
| | - Cristobal Ramos
- Radiology Department, Clinica Alemana de Santiago, Santiago, Chile
| | - Daniel Hasson
- Radiology Department, Clinica Alemana de Santiago, Santiago, Chile
| | - Camilo G Sotomayor
- Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Pablo Henriquez
- Cardiology Department, Hospital San Juan de Dios, Santiago, Chile
| | - Ignacio Cortés
- Cardiology Department, Hospital San Juan de Dios, Santiago, Chile
| | - Marcia Erazo
- Publich Health Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claudio Salas
- Medical Oncology Department, Clinica Alemana de Santiago, Vitacura 5951, Santiago, Chile
| | - Juan G Gormaz
- Medical Oncology Department, Clinica Alemana de Santiago, Vitacura 5951, Santiago, Chile.
| |
Collapse
|
16
|
Gertz ZM, Cain C, Kraskauskas D, Devarakonda T, Mauro AG, Thompson J, Samidurai A, Chen Q, Gordon SW, Lesnefsky EJ, Das A, Salloum FN. Remote Ischemic Pre-Conditioning Attenuates Adverse Cardiac Remodeling and Mortality Following Doxorubicin Administration in Mice. JACC: CARDIOONCOLOGY 2019; 1:221-234. [PMID: 32699841 PMCID: PMC7375406 DOI: 10.1016/j.jaccao.2019.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objectives Because of its multifaceted cardioprotective effects, remote ischemic pre-conditioning (RIPC) was examined as a strategy to attenuate doxorubicin (DOX) cardiotoxicity. Background The use of DOX is limited by dose-dependent cardiotoxicity and heart failure. Oxidative stress, mitochondrial dysfunction, inflammation, and autophagy modulation have been proposed as mediators of DOX cardiotoxicity. Methods After baseline echocardiography, adult male CD1 mice were randomized to either sham or RIPC protocol (3 cycles of 5 min femoral artery occlusion followed by 5 min reperfusion) 1 h before receiving DOX (20 mg/kg, intraperitoneal). The mice were observed primarily for survival over 85 days (86 mice). An additional cohort of 50 mice was randomized to either sham or RIPC 1 h before DOX treatment and was followed for 25 days, at which time cardiac fibrosis, apoptosis, and mitochondrial oxidative phosphorylation were assessed, as well as the expression profiles of apoptosis and autophagy markers. Results Survival was significantly improved in the RIPC cohort compared with the sham cohort (p = 0.007). DOX-induced cardiac fibrosis and apoptosis were significantly attenuated with RIPC compared with sham (p < 0.05 and p < 0.001, respectively). Although no mitochondrial dysfunction was detected at 25 days, there was a significant increase in autophagy markers with DOX that was attenuated with RIPC. Moreover, DOX caused a 49% decline in cardiac BCL2/BAX expression, which was restored with RIPC (p < 0.05 vs. DOX). DOX also resulted in a 17% reduction in left ventricular mass at 25 days, which was prevented with RIPC (p < 0.01), despite the lack of significant changes in left ventricular ejection fraction. Conclusions Our preclinical results suggested that RIPC before DOX administration might be a promising approach for attenuating DOX cardiotoxicity.
Collapse
Affiliation(s)
- Zachary M Gertz
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Chad Cain
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Donatas Kraskauskas
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Teja Devarakonda
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Adolfo G Mauro
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Jeremy Thompson
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Arun Samidurai
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Qun Chen
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Sarah W Gordon
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia.,Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia.,Medical Service, McGuire VA Medical Center, Richmond, Virginia
| | - Anindita Das
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Fadi N Salloum
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
17
|
Yellon DM, Walker JM, Arjun S. Preventing the Cancer Patient of Today From Becoming the Heart Failure Patient of Tomorrow. JACC CardioOncol 2019; 1:235-237. [PMID: 34396186 PMCID: PMC8352327 DOI: 10.1016/j.jaccao.2019.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Derek M. Yellon
- Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - John Malcolm Walker
- Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Sapna Arjun
- Hatter Cardiovascular Institute, University College London, London, United Kingdom
| |
Collapse
|
18
|
Chen J, Wang L, Wu F, Sun G. Early detection of cardiotoxicity by 3D speckle tracking imaging of area strain in breast cancer patients receiving chemotherapy. Echocardiography 2019; 36:1682-1688. [PMID: 31503352 DOI: 10.1111/echo.14467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 11/28/2022] Open
Affiliation(s)
- Jianqiong Chen
- Department of Medical Oncology The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Ling Wang
- Department of Ultrasound The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Fang‐Fang Wu
- Department of Ultrasound The First Affiliated Hospital of Anhui Medical University Hefei China
| | - Guoping Sun
- Department of Medical Oncology The First Affiliated Hospital of Anhui Medical University Hefei China
| |
Collapse
|
19
|
Davidson SM, Arjun S, Basalay MV, Bell RM, Bromage DI, Bøtker HE, Carr RD, Cunningham J, Ghosh AK, Heusch G, Ibanez B, Kleinbongard P, Lecour S, Maddock H, Ovize M, Walker M, Wiart M, Yellon DM. The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection-evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology. Basic Res Cardiol 2018; 113:43. [PMID: 30310998 PMCID: PMC6182684 DOI: 10.1007/s00395-018-0704-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sapna Arjun
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Maryna V Basalay
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Robert M Bell
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Daniel I Bromage
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Richard D Carr
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- MSD A/S, Copenhagen, Denmark
| | - John Cunningham
- Centre for Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Arjun K Ghosh
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Gerd Heusch
- West German Heart and Vascular Center, Institute for Pathophysiology, University of Essen Medical School, Essen, Germany
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades CardioVasculares, Madrid, Spain
- IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Petra Kleinbongard
- West German Heart and Vascular Center, Institute for Pathophysiology, University of Essen Medical School, Essen, Germany
| | - Sandrine Lecour
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Helen Maddock
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry, CV1 5FB, UK
| | - Michel Ovize
- INSERM U1060, CarMeN Laboratory, Université de Lyon and Service d'explorations Fonctionnelles Cardiovasculaires Groupement Hospitalier Est, 59 Boulevard Pinel, 69500, Bron, France
| | - Malcolm Walker
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Marlene Wiart
- INSERM U1060, CarMeN Laboratory, Université de Lyon and Service d'explorations Fonctionnelles Cardiovasculaires Groupement Hospitalier Est, 59 Boulevard Pinel, 69500, Bron, France
- CNRS, Lyon, France
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
20
|
Higuchi S, Kabeya Y, Matsushita K, Tachibana K, Kawachi R, Takei H, Suzuki Y, Abe N, Imanishi Y, Moriyama K, Yorozu T, Saito K, Sugiyama M, Kondo H, Yoshino H. The study protocol for PREDICT AF RECURRENCE: a PRospEctive cohort stuDy of surveIllanCe for perioperaTive Atrial Fibrillation RECURRENCE in major non-cardiac surgery for malignancy. BMC Cardiovasc Disord 2018; 18:127. [PMID: 29940875 PMCID: PMC6019832 DOI: 10.1186/s12872-018-0862-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/11/2018] [Indexed: 12/24/2022] Open
Abstract
Background A previous retrospective cohort study established the relationship between perioperative atrial fibrillation (POAF) and subsequent mortality and stroke. However, the details regarding the cause of death and etiology of stroke remain unclear. Methods The prospective cohort study of surveillance for perioperative atrial fibrillation recurrence in major non-cardiac surgery for malignancy (PREDICT AF RECURRENCE) registry is an ongoing prospective cohort study to elucidate the long-term recurrence rate and the clinical impact of new-onset POAF in the setting of head and neck, non-cardiac thoracic, and abdominal surgery for malignancy. In this study, cardiologists collaborate with a surgical team during the perioperative period, carefully observe the electrocardiogram (ECG) monitor, and treat arrhythmia as required. Furthermore, patients who develop new-onset POAF are followed up using a long-term Holter ECG monitor, SPIDER FLASH-t AFib®, to assess POAF recurrence. Discussion Even if patients with malignancy survive by overcoming the disease, they may die from any preventable cardiovascular diseases. In particular, those with POAF may develop cardiogenic stroke in the future. Because details of the natural history of patients with POAF remain unclear, investigating the need to continue anticoagulation therapy for such patients is necessary. This study will provide essential information on the recurrence rate of POAF and new insights into the prediction and treatment of POAF. Trial registration University Hospital Medical Information Network Clinical Trial Registry (UMIN-CTR): UMIN000016146; Data of Registration: January 7, 2015. Electronic supplementary material The online version of this article (10.1186/s12872-018-0862-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Satoshi Higuchi
- Division of Cardiology, Department of Internal Medicine II, Kyorin University School of Medicine, Tokyo, Japan. .,Division of Cardiology, Department of Internal Medicine II, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka City, Tokyo, 181-8611, Japan.
| | - Yusuke Kabeya
- Division of General Internal Medicine, Department of Internal Medicine, Tokai University, Isehara, Kanagawa, Japan.,Department of Home Care Medicine, Saiyu Clinic, Saitama, Japan
| | - Kenichi Matsushita
- Division of Cardiology, Department of Internal Medicine II, Kyorin University School of Medicine, Tokyo, Japan
| | - Keisei Tachibana
- Department of General Thoracic Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | - Riken Kawachi
- Department of General Thoracic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Hidefumi Takei
- Department of General Thoracic Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | - Nobutsugu Abe
- Department of Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | - Yorihisa Imanishi
- Department of Otorhinolaryngology, Head and Neck Surgery, Kawasaki Municipal Kawasaki Hospital, Kawasaki, Kanagawa, Japan
| | - Kiyoshi Moriyama
- Department of Anesthesiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Tomoko Yorozu
- Department of Anesthesiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Koichiro Saito
- Department of Otolaryngology-Head and Neck Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | - Masanori Sugiyama
- Department of Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | - Haruhiko Kondo
- Department of General Thoracic Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | - Hideaki Yoshino
- Division of Cardiology, Department of Internal Medicine II, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Atherogenic coefficient and atherogenic index in Doxorubicin–induced cardiotoxicity: impact of date palm extract. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2766-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Maulik A, Davidson SM, Piotrowska I, Walker M, Yellon DM. Ischaemic Preconditioning Protects Cardiomyocytes from Anthracycline-Induced Toxicity via the PI3K Pathway. Cardiovasc Drugs Ther 2018; 32:245-253. [PMID: 29766336 PMCID: PMC6018575 DOI: 10.1007/s10557-018-6793-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE Anthracyclines cause chronic irreversible cardiac failure, but the mechanism remains poorly understood. Emerging data indicate that cardiac damage begins early, suggesting protective modalities delivered in the acute stage may confer prolonged benefit. Ischaemic preconditioning (IPC) activates the pro-survival reperfusion injury salvage kinase (RISK) pathway which involves PI3-kinase and MAPK/ERK1/2. METHODS We investigated whether simulated IPC (sIPC), in the form of a sublethal exposure to a hypoxic buffer simulating ischaemic conditions followed by reoxygenation, protects primary adult rat cardiomyocytes against anthracycline-induced injury. PI3-kinase and MAPK/ERK1/2 were inhibited using LY294002, and PD98059. The role of reactive oxygen species (ROS), mitochondrial membrane potential (Δψm) and mitochondrial permeability transition pore (mPTP) were also investigated in doxorubicin-treated cells. We further examined whether sIPC protected HeLa cancer cells from doxorubicin-induced death. RESULTS sIPC protected cardiomyocytes against doxorubicin-induced death (35.4 ± 1.7% doxorubicin vs 14.7 ± 1.5% doxorubicin + sIPC; p < 0.01). This protection was abrogated by the PI3-kinase inhibitor, LY294002, but not the MAPK/ERK1/2 inhibitor, PD98059. A ROS scavenger failed to rescue cardiomyocytes from doxorubicin toxicity, and no significant influence on Δψm or mPTP opening was identified after subjecting cells to a doxorubicin insult. Importantly, sIPC did not protect HeLa cancer cells from doxorubicin-induced death. CONCLUSION sIPC is able to protect cardiomyocytes against anthracycline injury via a pathway involving PI3-kinase. This mechanism appears to be independent of ROS, changes to Δψm, and mPTP. Further investigation of the mechanism of sIPC-induced protection against anthracycline-injury is warranted.
Collapse
Affiliation(s)
- Angshuman Maulik
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Izabela Piotrowska
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Malcolm Walker
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
23
|
Zhang LJ, Chen KQ, Shi YY, Qiao XL, Wang LY, Zheng XZ. Findings on 3D speckle tracking echocardiography in asymptomatic methamphetamine abusers. Int J Cardiovasc Imaging 2018; 34:1589-1593. [PMID: 29808387 DOI: 10.1007/s10554-018-1381-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/24/2018] [Indexed: 11/25/2022]
Abstract
To detect potential cardiac abnormalities in asymptomatic methamphetamine abusers using three-dimensional speckle tracking echocardiography (3D STE). Fifty-three male methamphetamine abusers, free of cardiac symptoms/signs, were enrolled in this study. A control group of 53 age-matched male normal subjects was studied for comparison. Standard 3D, flow and tissue Doppler echo with measurements of left ventricular end-diastolic volume (LVEDV), end-systolic volume (LVESV), ejection fraction (LVEF), the ratio of the early to late diastolic transmitral filling velocity (E/A), the ratio of the early diastolic transmitral filling velocity to the early diastolic septal tissue velocity (E/E') and 3D STE with measurements of global area strain (GAS), global longitudinal strain (GLS), global circumferential strain (GCS) and global radial strain (GRS) were performed, respectively. These echocardiographic parameters were compared between methamphetamine abusers and normal subjects, and receiver operating characteristic curve (ROC) analysis was done to differentiating methamphetamine abusers from normal subjects. LVESV, LVEDV, LVEF, E/A, E/E' ratios and GRS were not significantly different between methamphetamine abusers and normal subjects (p > 0.05). However, GAS, GLS and GCS were significantly less in methamphetamine abusers than in normal subjects (p < 0.05). The areas under ROC (AUC) for GAS were greatest among all the 3D STE derived LV global strains (GAS vs. GLS, GCS and GRS, 0.95 vs. 0.76, 0.69 and 0.61, respectively). The cutoff value with - 30.3% of GAS had sensitivity of 91.8%, specificity of 91.6% and accuracy of 91.3% for differentiating methamphetamine abusers from normal subjects. The potential myocardial function abnormalities can be detected by 3D STE in asymptomatic methamphetamine abusers, and GAS is a good indicator for indentifying methamphetamine abusers from normal population, which can be used to screening and monitor methamphetamine abuse, detect subclinical LV dysfunction, predict potential methamphetamine-related cardiotoxicity, and to initiate early cardioprotective therapy before the onset of overt heart failure in time.
Collapse
Affiliation(s)
- Li-Juan Zhang
- Department of Ultrasound, Pukou Hospital (The Fourth Affiliated Hospital with Nanjing Medical University), 18 Puyuan Road, Pukou, Nanjing, 210031, Jiangsu Province, People's Republic of China
| | - Ke-Qi Chen
- Department of Ultrasound, Yancheng Institute of Clinical Medicine (The First People's Hospital of Yancheng), Xuzhou Medical University, 166 West Yulong Road, Yancheng, 224005, Jiangsu Province, People's Republic of China
| | - Yun-Yan Shi
- Department of Ultrasound, Yancheng Institute of Clinical Medicine (The First People's Hospital of Yancheng), Xuzhou Medical University, 166 West Yulong Road, Yancheng, 224005, Jiangsu Province, People's Republic of China
| | - Xiao-Ling Qiao
- Department of Ultrasound, Yancheng Institute of Clinical Medicine (The First People's Hospital of Yancheng), Xuzhou Medical University, 166 West Yulong Road, Yancheng, 224005, Jiangsu Province, People's Republic of China
| | - Lian-You Wang
- Hospital of Fangqiang Forced Quarantine and Drug Rehabilitation Center, 1 West Haibin Road, Fangqiang Farm, Dafeng District, Yancheng, 224165, Jiangsu Province, People's Republic of China
| | - Xiao-Zhi Zheng
- Department of Ultrasound, Yancheng Institute of Clinical Medicine (The First People's Hospital of Yancheng), Xuzhou Medical University, 166 West Yulong Road, Yancheng, 224005, Jiangsu Province, People's Republic of China.
| |
Collapse
|
24
|
Abstract
Anthracycline chemotherapy maintains a prominent role in treating many forms of cancer. Cardiotoxic side effects limit their dosing and improved cancer outcomes expose the cancer survivor to increased cardiovascular morbidity and mortality. The basic mechanisms of cardiotoxicity may involve direct pathways for reactive oxygen species generation and topoisomerase 2 as well as other indirect pathways. Cardioprotective treatments are few and those that have been examined include renin angiotensin system blockade, beta blockers, or the iron chelator dexrazoxane. New treatments exploiting the ErbB or other novel pro-survival pathways, such as conditioning, are on the cardioprotection horizon. Even in the forthcoming era of targeted cancer therapies, the substantial proportion of today's anthracycline-treated cancer patients may become tomorrow's cardiac patient.
Collapse
Affiliation(s)
- John V McGowan
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Robin Chung
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Angshuman Maulik
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Izabela Piotrowska
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - J Malcolm Walker
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK.
| |
Collapse
|