1
|
Xu C, Li X, Zhang X, Wu R, Zhou Y, Zhao Q, Zhang Y, Geng S, Gu Y, Hong S. Cardiac murmur grading and risk analysis of cardiac diseases based on adaptable heterogeneous-modality multi-task learning. Health Inf Sci Syst 2024; 12:2. [PMID: 38045019 PMCID: PMC10692066 DOI: 10.1007/s13755-023-00249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/20/2023] [Indexed: 12/05/2023] Open
Abstract
Cardiovascular disease (CVDs) has become one of the leading causes of death, posing a significant threat to human life. The development of reliable Artificial Intelligence (AI) assisted diagnosis algorithms for cardiac sounds is of great significance for early detection and treatment of CVDs. However, there is scarce research in this field. Existing research mainly faces three major challenges: (1) They mainly limited to murmur classification and cannot achieve murmur grading, but attempting both classification and grading may lead to negative effects between different multi-tasks. (2) They mostly pay attention to unstructured cardiac sound modality and do not consider the structured demographic modality, as it is difficult to balance the influence of heterogeneous modalities. (3) Deep learning methods lack interpretability, which makes it challenging to apply them clinically. To tackle these challenges, we propose a method for cardiac murmur grading and cardiac risk analysis based on heterogeneous modality adaptive multi-task learning. Specifically, a Hierarchical Multi-Task learning-based cardiac murmur detection and grading method (HMT) is proposed to prevent negative interference between different tasks. In addition, a cardiac risk analysis method based on Heterogeneous Multi-modal feature impact Adaptation (HMA) is also proposed, which transforms unstructured modality into structured modality representation, and utilizes an adaptive mode weight learning mechanism to balance the impact between unstructured modality and structured modality, thus enhancing the performance of cardiac risk prediction. Finally, we propose a multi-task interpretability learning module that incorporates an important evaluation using random masks. This module utilizes SHAP graphs to visualize crucial murmur segments in cardiac sound and employs a multi-factor risk decoupling model based on nomograms. And then we gain insights into the cardiac disease risk in both pre-decoupled multi-modality and post-decoupled single-modality scenarios, thus providing a solid foundation for AI assisted cardiac murmur grading and risk analysis. Experimental results on a large real-world CirCor DigiScope PCG dataset demonstrate that the proposed method outperforms the state-of-the-art (SOTA) method in murmur detection, grading, and cardiac risk analysis, while also providing valuable diagnostic evidence.
Collapse
Affiliation(s)
- Chenyang Xu
- Department of Computer Science, Tianjin University of Technology, Tianjin, China
| | - Xin Li
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xinyue Zhang
- Department of Computer Science, Tianjin University of Technology, Tianjin, China
| | - Ruilin Wu
- Department of Computer Science, Tianjin University of Technology, Tianjin, China
| | - Yuxi Zhou
- Department of Computer Science, Tianjin University of Technology, Tianjin, China
- DCST, BNRist, RIIT, Institute of Internet Industry, Tsinghua University, Beijing, China
| | - Qinghao Zhao
- Department of Cardiology, Peking University People’s Hospital, Beijing, China
| | - Yong Zhang
- DCST, BNRist, RIIT, Institute of Internet Industry, Tsinghua University, Beijing, China
| | | | - Yue Gu
- Department of Computer Science, Tianjin University of Technology, Tianjin, China
| | - Shenda Hong
- National Institute of Health Data Science, Peking University, Beijing, China
- Institute of Medical Technology, Peking University, Beijing, China
| |
Collapse
|
2
|
Popat A, Saini B, Patel M, Seby N, Patel S, Harikrishnan S, Shah H, Pathak P, Dekhne A, Sen U, Yadav S, Sharma P, Rezkalla S. Diagnostic Accuracy of AI Algorithms in Aortic Stenosis Screening: A Systematic Review and Meta-Analysis. Clin Med Res 2024; 22:145-155. [PMID: 39438148 PMCID: PMC11495659 DOI: 10.3121/cmr.2024.1934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Background: Aortic stenosis (AS) is frequently identified at an advanced stage after clinical symptoms appear. The aim of this systematic review and meta-analysis is to evaluate the diagnostic accuracy of artificial intelligence (AI) algorithms for AS screening.Methods: We conducted a thorough search of six databases. Several evaluation parameters, such as sensitivity, specificity, diagnostic odds ratio (DOR), negative likelihood ratio (NLR), positive likelihood ratio (PLR), and area under the curve (AUC) value were employed in the diagnostic meta-analysis of AI-based algorithms for AS screening. The AI algorithms utilized diverse data sources including electrocardiograms (ECG), chest radiographs, auscultation audio files, electronic stethoscope recordings, and cardio-mechanical signals from non-invasive wearable inertial sensors.Results: Of the 295 articles identified, 10 studies met the inclusion criteria. The pooled estimates for AI-based algorithms in diagnosing AS were as follows: sensitivity 0.83 (95% CI: 0.81-0.85), specificity 0.81 (95% CI: 0.79-0.84), PLR 4.78 (95% CI: 3.12-7.32), NLR 0.20 (95% CI: 0.13-0.28), and DOR 27.11 (95% CI: 14.40-51.05). The AUC value was 0.909 (95% CI: 0.889-0.929), indicating outstanding diagnostic accuracy. Subgroup and meta-regression analyses showed that continent, type of AS, data source, and type of AI-based method constituted sources of heterogeneity. Furthermore, we demonstrated proof of publication bias for DOR values analyzed using Egger's regression test (P = 0.002) and a funnel plot.Conclusion: Deep learning approaches represent highly sensitive, feasible, and scalable strategies to identify patients with moderate or severe AS.
Collapse
Affiliation(s)
- Apurva Popat
- Department of Internal Medicine, Marshfield Clinic Health System, Marshfield, Wisconsin USA
| | - Babita Saini
- Uzhhorod National University Faculty of Medicine, Uzhorodskij Nacionalnij Universitet Medicnij Fakultet, Ukraine
| | - Mitkumar Patel
- Mahatma Gandhi Memorial Medical College, Madhya Pradesh, India
| | - Niran Seby
- Tbilisi State Medical University, Tbilisi, Georgia
| | - Sagar Patel
- Gujarat Adani Institute of Medical Science, Gujarat, India
| | | | - Hilloni Shah
- Gujarat Education & Research Society Medical College and Hospital Sola, India
| | - Prutha Pathak
- North Alabama Medical Center, Florence, Alabama, USA
| | - Anushka Dekhne
- American University of Antigua, Osbourn, Antigua & Barbuda
| | - Udvas Sen
- Agartala Government Medical College, India
| | - Sweta Yadav
- Department of Internal Medicine, Marshfield Clinic Health System, Marshfield, Wisconsin USA
| | - Param Sharma
- Department of Cardiology, Marshfield Clinic Health System, Marshfield, Wisconsin, USA
| | - Shereif Rezkalla
- Department of Cardiology, Marshfield Clinic Health System, Marshfield, Wisconsin, USA
| |
Collapse
|
3
|
Wieneke H, Voigt I. Principles of artificial intelligence and its application in cardiovascular medicine. Clin Cardiol 2024; 47:e24148. [PMID: 37721424 PMCID: PMC10766001 DOI: 10.1002/clc.24148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
Artificial intelligence (AI) represents a rapidly developing field. Its use can improve diagnosis and therapy in many areas of medicine. Despite this enormous progress, many physicians perceive it as a black box and are skeptical about it. This review will present the basics of machine learning. Different classifications of artificial intelligence, such as supervised versus unsupervised and discriminative versus generative AI, are given. Analogies to human intelligence are discussed as far as algorithms are oriented toward it. In the second step, the most common models like random forest, k-means clustering, convolutional neural network, and transformers will be presented in a way that the underlying idea can be understood. Corresponding medical applications in cardiovascular medicine will be named for all models, respectively. The overview is intended to show that the term artificial intelligence covers a wide range of different concepts. It should help physicians understand the principles of AI to make up one's minds about its application in cardiology. It should also enable them to evaluate results obtained with AI's help critically.
Collapse
Affiliation(s)
- Heinrich Wieneke
- Department of Cardiology and Angiology, Contilia Heart and Vascular CenterElisabeth‐Krankenhaus EssenEssenGermany
| | - Ingo Voigt
- Department of Cardiology and Angiology, Contilia Heart and Vascular CenterElisabeth‐Krankenhaus EssenEssenGermany
| |
Collapse
|
4
|
Holste G, Oikonomou EK, Mortazavi BJ, Coppi A, Faridi KF, Miller EJ, Forrest JK, McNamara RL, Ohno-Machado L, Yuan N, Gupta A, Ouyang D, Krumholz HM, Wang Z, Khera R. Severe aortic stenosis detection by deep learning applied to echocardiography. Eur Heart J 2023; 44:4592-4604. [PMID: 37611002 PMCID: PMC11004929 DOI: 10.1093/eurheartj/ehad456] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND AND AIMS Early diagnosis of aortic stenosis (AS) is critical to prevent morbidity and mortality but requires skilled examination with Doppler imaging. This study reports the development and validation of a novel deep learning model that relies on two-dimensional (2D) parasternal long axis videos from transthoracic echocardiography without Doppler imaging to identify severe AS, suitable for point-of-care ultrasonography. METHODS AND RESULTS In a training set of 5257 studies (17 570 videos) from 2016 to 2020 [Yale-New Haven Hospital (YNHH), Connecticut], an ensemble of three-dimensional convolutional neural networks was developed to detect severe AS, leveraging self-supervised contrastive pretraining for label-efficient model development. This deep learning model was validated in a temporally distinct set of 2040 consecutive studies from 2021 from YNHH as well as two geographically distinct cohorts of 4226 and 3072 studies, from California and other hospitals in New England, respectively. The deep learning model achieved an area under the receiver operating characteristic curve (AUROC) of 0.978 (95% CI: 0.966, 0.988) for detecting severe AS in the temporally distinct test set, maintaining its diagnostic performance in geographically distinct cohorts [0.952 AUROC (95% CI: 0.941, 0.963) in California and 0.942 AUROC (95% CI: 0.909, 0.966) in New England]. The model was interpretable with saliency maps identifying the aortic valve, mitral annulus, and left atrium as the predictive regions. Among non-severe AS cases, predicted probabilities were associated with worse quantitative metrics of AS suggesting an association with various stages of AS severity. CONCLUSION This study developed and externally validated an automated approach for severe AS detection using single-view 2D echocardiography, with potential utility for point-of-care screening.
Collapse
Affiliation(s)
- Gregory Holste
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8056, USA
| | - Evangelos K Oikonomou
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8056, USA
| | - Bobak J Mortazavi
- Department of Computer Science & Engineering, Texas A&M University, College Station, TX, USA
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, 195 Church St 5th Floor, New Haven, CT, USA
| | - Andreas Coppi
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8056, USA
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, 195 Church St 5th Floor, New Haven, CT, USA
| | - Kamil F Faridi
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8056, USA
| | - Edward J Miller
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8056, USA
| | - John K Forrest
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8056, USA
| | - Robert L McNamara
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8056, USA
| | - Lucila Ohno-Machado
- Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
| | - Neal Yuan
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Division of Cardiology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Aakriti Gupta
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David Ouyang
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harlan M Krumholz
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8056, USA
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, 195 Church St 5th Floor, New Haven, CT, USA
- Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
| | - Zhangyang Wang
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Rohan Khera
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8056, USA
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, 195 Church St 5th Floor, New Haven, CT, USA
- Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
- Section of Health Informatics, Department of Biostatistics, Yale School of Public Health, 60 College St, New Haven, CT, USA
| |
Collapse
|
5
|
Kufel J, Bargieł-Łączek K, Kocot S, Koźlik M, Bartnikowska W, Janik M, Czogalik Ł, Dudek P, Magiera M, Lis A, Paszkiewicz I, Nawrat Z, Cebula M, Gruszczyńska K. What Is Machine Learning, Artificial Neural Networks and Deep Learning?-Examples of Practical Applications in Medicine. Diagnostics (Basel) 2023; 13:2582. [PMID: 37568945 PMCID: PMC10417718 DOI: 10.3390/diagnostics13152582] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Machine learning (ML), artificial neural networks (ANNs), and deep learning (DL) are all topics that fall under the heading of artificial intelligence (AI) and have gained popularity in recent years. ML involves the application of algorithms to automate decision-making processes using models that have not been manually programmed but have been trained on data. ANNs that are a part of ML aim to simulate the structure and function of the human brain. DL, on the other hand, uses multiple layers of interconnected neurons. This enables the processing and analysis of large and complex databases. In medicine, these techniques are being introduced to improve the speed and efficiency of disease diagnosis and treatment. Each of the AI techniques presented in the paper is supported with an example of a possible medical application. Given the rapid development of technology, the use of AI in medicine shows promising results in the context of patient care. It is particularly important to keep a close eye on this issue and conduct further research in order to fully explore the potential of ML, ANNs, and DL, and bring further applications into clinical use in the future.
Collapse
Affiliation(s)
- Jakub Kufel
- Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Zabrze, Poland;
| | - Katarzyna Bargieł-Łączek
- Paediatric Radiology Students’ Scientific Association at the Division of Diagnostic Imaging, Department of Radiology and Nuclear Medicine, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.B.-Ł.); (W.B.)
| | - Szymon Kocot
- Bright Coders’ Factory, Technologiczna 2, 45-839 Opole, Poland
| | - Maciej Koźlik
- Division of Cardiology and Structural Heart Disease, Medical University of Silesia, 40-635 Katowice, Poland;
| | - Wiktoria Bartnikowska
- Paediatric Radiology Students’ Scientific Association at the Division of Diagnostic Imaging, Department of Radiology and Nuclear Medicine, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.B.-Ł.); (W.B.)
| | - Michał Janik
- Student Scientific Association Named after Professor Zbigniew Religa at the Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland; (M.J.); (Ł.C.); (P.D.); (M.M.); (I.P.)
| | - Łukasz Czogalik
- Student Scientific Association Named after Professor Zbigniew Religa at the Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland; (M.J.); (Ł.C.); (P.D.); (M.M.); (I.P.)
| | - Piotr Dudek
- Student Scientific Association Named after Professor Zbigniew Religa at the Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland; (M.J.); (Ł.C.); (P.D.); (M.M.); (I.P.)
| | - Mikołaj Magiera
- Student Scientific Association Named after Professor Zbigniew Religa at the Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland; (M.J.); (Ł.C.); (P.D.); (M.M.); (I.P.)
| | - Anna Lis
- Cardiology Students’ Scientific Association at the III Department of Cardiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-635 Katowice, Poland;
| | - Iga Paszkiewicz
- Student Scientific Association Named after Professor Zbigniew Religa at the Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland; (M.J.); (Ł.C.); (P.D.); (M.M.); (I.P.)
| | - Zbigniew Nawrat
- Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Zabrze, Poland;
| | - Maciej Cebula
- Individual Specialist Medical Practice Maciej Cebula, 40-754 Katowice, Poland;
| | - Katarzyna Gruszczyńska
- Department of Radiodiagnostics, Invasive Radiology and Nuclear Medicine, Department of Radiology and Nuclear Medicine, School of Medicine in Katowice, Medical University of Silesia, Medyków 14, 40-752 Katowice, Poland;
| |
Collapse
|
6
|
Ainiwaer A, Kadier K, Qin L, Rehemuding R, Ma X, Ma YT. Audiological Diagnosis of Valvular and Congenital Heart Diseases in the Era of Artificial Intelligence. Rev Cardiovasc Med 2023; 24:175. [PMID: 39077516 PMCID: PMC11264159 DOI: 10.31083/j.rcm2406175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 07/31/2024] Open
Abstract
In recent years, electronic stethoscopes have been combined with artificial intelligence (AI) technology to digitally acquire heart sounds, intelligently identify valvular disease and congenital heart disease, and improve the accuracy of heart disease diagnosis. The research on AI-based intelligent stethoscopy technology mainly focuses on AI algorithms, and the commonly used methods are end-to-end deep learning algorithms and machine learning algorithms based on feature extraction, and the hot spot for future research is to establish a large standardized heart sound database and unify these algorithms for external validation; in addition, different electronic stethoscopes should also be extensively compared so that the algorithms can be compatible with different. In addition, there should be extensive comparison of different electronic stethoscopes so that the algorithms can be compatible with heart sounds collected by different stethoscopes; especially importantly, the deployment of algorithms in the cloud is a major trend in the future development of artificial intelligence. Finally, the research of artificial intelligence based on heart sounds is still in the preliminary stage, although there is great progress in identifying valve disease and congenital heart disease, they are all in the research of algorithm for disease diagnosis, and there is little research on disease severity, remote monitoring, prognosis, etc., which will be a hot spot for future research.
Collapse
Affiliation(s)
- Aikeliyaer Ainiwaer
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, 830011 Urumqi, Xinjiang, China
| | - Kaisaierjiang Kadier
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, 830011 Urumqi, Xinjiang, China
| | - Lian Qin
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, 830011 Urumqi, Xinjiang, China
| | - Rena Rehemuding
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, 830011 Urumqi, Xinjiang, China
| | - Xiang Ma
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, 830011 Urumqi, Xinjiang, China
| | - Yi-Tong Ma
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, 830011 Urumqi, Xinjiang, China
| |
Collapse
|