1
|
Giusti D, Guemari A, Perotin JM, Fontaine JF, Tonye Libyh M, Gatouillat G, Tabary T, Pham BN, Vitte J. Molecular allergology: a clinical laboratory tool for precision diagnosis, stratification and follow-up of allergic patients. Clin Chem Lab Med 2024; 62:2339-2355. [PMID: 38815141 DOI: 10.1515/cclm-2024-0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
Identification of the molecular culprits of allergic reactions leveraged molecular allergology applications in clinical laboratory medicine. Molecular allergology shifted the focus from complex, heterogeneous allergenic extracts, e.g. pollen, food, or insect venom, towards genetically and immunologically defined proteins available for in vitro diagnosis. Molecular allergology is a precision medicine approach for the diagnosis, stratification, therapeutic management, follow-up and prognostic evaluation of patients within a large range of allergic diseases. Exclusively available for in vitro diagnosis, molecular allergology is nonredundant with any of the current clinical tools for allergy investigation. As an example of a major application, discrimination of genuine sensitization from allergen cross-reactivity at the molecular level allows the proper targeting of the culprit allergen and thus dramatically improves patient management. This review aims at introducing clinical laboratory specialists to molecular allergology, from the biochemical and genetic bases, through immunological concepts, to daily use in the diagnosis and management of allergic diseases.
Collapse
Affiliation(s)
- Delphine Giusti
- Immunology Laboratory, Biology and Pathology Department, University Hospital of Reims, Reims, France
- University of Reims Champagne Ardenne, EA7509 IRMAIC, Reims, France
| | - Amir Guemari
- Univ Montpellier, Desbrest Institute of Epidemiology and Public Health (IDESP), INSERM, Montpellier, France
| | - Jeanne-Marie Perotin
- Department of Respiratory Diseases, University Hospital of Reims, Reims, France
- University of Reims Champagne Ardenne, INSERM UMR 1250, Reims, France
| | | | - Marcelle Tonye Libyh
- Immunology Laboratory, Biology and Pathology Department, University Hospital of Reims, Reims, France
| | - Gregory Gatouillat
- Immunology Laboratory, Biology and Pathology Department, University Hospital of Reims, Reims, France
| | - Thierry Tabary
- Immunology Laboratory, Biology and Pathology Department, University Hospital of Reims, Reims, France
| | - Bach-Nga Pham
- Immunology Laboratory, Biology and Pathology Department, University Hospital of Reims, Reims, France
- University of Reims Champagne Ardenne, EA7509 IRMAIC, Reims, France
| | - Joana Vitte
- Immunology Laboratory, Biology and Pathology Department, University Hospital of Reims, Reims, France
- University of Reims Champagne Ardenne, INSERM UMR 1250, Reims, France
| |
Collapse
|
2
|
Caraballo L, Lockey R, Puerta L, Zakzuk J, Acevedo N, Fernández-Caldas E. Blomia tropicalis: A 50-Year History. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024:S2213-2198(24)01172-3. [PMID: 39577660 DOI: 10.1016/j.jaip.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/24/2024]
Abstract
The genus Blomia tropicalis was described 50 years ago. Since then, great progress has been made on the clinical impact of this house dust mite (HDM). Blomia tropicalis is widely distributed in tropical and subtropical zones, where it induces IgE sensitization and clinical symptoms. The discovery of this mite not only provided additional support for the causal relationship between HDM sensitization and allergic respiratory symptoms, it changed the scope of the diagnosis and management of these diseases. There are now 26 officially accepted B tropicalis allergens, several of them with cross-reactivity with mites such as Dermatophagoides spp and some storage mites, which adds complexity to the diagnosis of sensitization and the choice of extracts for allergen specific immunotherapy. Fortunately, the discovery and characterization of molecules useful for component-resolved diagnostic testing provide the tools for this challenge. Immunotherapy with B tropicalis extract is successfully used in several countries of Latin America, Africa, and Asia; however, the availability of standardized extracts in subtropical regions remains limited. During the 50 years of research on B tropicalis, several groups have made contributions to allergen characterization, their mechanisms of action and clinical impact; the immunogenetics of sensitization; the possible effects of climate change; and the design and testing of new vaccines.
Collapse
Affiliation(s)
- Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia.
| | - Richard Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Fla
| | - Leonardo Puerta
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Enrique Fernández-Caldas
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Fla
| |
Collapse
|
3
|
Sharma E, Vitte J. A systematic review of allergen cross-reactivity: Translating basic concepts into clinical relevance. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100230. [PMID: 38524786 PMCID: PMC10959674 DOI: 10.1016/j.jacig.2024.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/29/2023] [Accepted: 01/03/2024] [Indexed: 03/26/2024]
Abstract
Access to the molecular culprits of allergic reactions allows for the leveraging of molecular allergology as a new precision medicine approach-one built on interdisciplinary, basic, and clinical knowledge. Molecular allergology relies on the use of allergen molecules as in vitro tools for the diagnosis and management of allergic patients. It complements the conventional approach based on skin and in vitro allergen extract testing. Major applications of molecular allergology comprise accurate identification of the offending allergen thanks to discrimination between genuine sensitization and allergen cross-reactivity, evaluation of potential severity, patient-tailored choice of the adequate allergen immunotherapy, and prediction of its expected efficacy and safety. Allergen cross-reactivity, defined as the recognition of 2 or more allergen molecules by antibodies or T cells of the same specificity, frequently interferes with allergen extract testing. At the mechanistic level, allergen cross-reactivity depends on the allergen, the host's immune response, and the context of their interaction. The multiplicity of allergen molecules and families adds further difficulty. Understanding allergen cross-reactivity at the immunologic level and translating it into a daily tool for the management of allergic patients is further complicated by the ever-increasing number of characterized allergenic molecules, the lack of dedicated resources, and the need for a personalized, patient-centered approach. Conversely, knowledge sharing paves the way for improved clinical use, innovative diagnostic tools, and further interdisciplinary research. Here, we aimed to provide a comprehensive and unbiased state-of-the art systematic review on allergen cross-reactivity. To optimize learning, we enhanced the review with basic, translational, and clinical definitions, clinical vignettes, and an overview of online allergen databases.
Collapse
Affiliation(s)
| | - Joana Vitte
- Aix-Marseille University, MEPHI, IHU Méditerranée Infection, Marseille, France
- Desbrest Institute of Epidemiology and Public Health (IDESP), University of Montpellier, INSERM, Montpellier, France
- University of Reims Champagne-Ardenne, INSERM UMR-S 1250 P3CELL and University Hospital of Reims, Immunology Laboratory, Reims, France
| |
Collapse
|
4
|
Biliute G, Miskinyte M, Miskiniene A, Zinkeviciene A, Kvedariene V. Sensitization profiles to house dust mite Dermatophagoides pteronyssinus molecular allergens in the Lithuanian population: Understanding allergic sensitization patterns. Clin Transl Allergy 2024; 14:e12332. [PMID: 38282198 PMCID: PMC10807355 DOI: 10.1002/clt2.12332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND House dust mite (HDM) allergy is a prevalent global health concern, with varying sensitization profiles observed across populations. We aimed to provide a comprehensive assessment of molecular allergen sensitization patterns in the Lithuanian population, with a focus on Dermatophagoides pteronyssinus (Der p), and investigate patterns of concomitant reactivity among different allergens to enhance the accuracy of HDM allergy diagnostics. METHODS A comprehensive analysis of 1520 patient test results in Lithuania from 2020 to 2022 was performed. Sensitization patterns to major (Der p 1, Der p 2, and Der p 23) and minor (Der p 5, Der p 7, and Der p 21) Der p allergen components were described using molecular-based diagnostics. Additionally, we investigated sensitization to allergen components from other allergen sources, including tropomyosins (Der p 10, Per a 7, Pen m 1, Ani s 3, Blo t 10) and arginine kinases (Pen m 2, Bla g 9, Der p 20). RESULTS This study reveals a high prevalence of HDM sensitization in Lithuania - 481 individuals (45.38% of the sensitized group) exhibited sensitization to at least one Der p allergen component. Importantly, within the sensitized group, 37.21% of patients were sensitized to Der p 5, Der p 7, or Der p 21 in addition to major allergenic components. Distinct sensitization patterns were observed across different age groups, indicating the influence of age-related factors. Furthermore, we confirmed cross-reactivity between Der p 5 and Blo t 5 as well as between Der p 21 and Blo t 21, emphasizing the clinical relevance of these associations. We also highlighted the complexity of sensitization patterns among tropomyosins and arginine kinases. CONCLUSION This study provides valuable insights into HDM allergy sensitization profiles in Lithuania, emphasizing the importance of considering major and minor HDM allergen components for accurate diagnosis and management of HDM-related allergic diseases. Differences between populations and age-related factors impact sensitization patterns. Understanding concomitant reactivity among allergens, such as Der p 5 and Blo t 5, Der p 21 and Blo t 21, tropomyosins, and arginine kinases, is crucial for improving diagnostic strategies and developing targeted interventions for allergic individuals.
Collapse
Affiliation(s)
- Gabija Biliute
- Faculty of MedicineClinic of Chest DiseasesAllergology and ImmunologyInstitute of Clinical MedicineVilnius UniversityVilniusLithuania
| | | | | | - Aukse Zinkeviciene
- State Research Institute Centre for Innovative MedicineDepartment of ImmunologyVilnius UniversityVilniusLithuania
| | - Violeta Kvedariene
- Faculty of MedicineClinic of Chest DiseasesAllergology and ImmunologyInstitute of Clinical MedicineVilnius UniversityVilniusLithuania
- Department of PathologyFaculty of MedicineInstitute of Biomedical SciencesVilnius UniversityVilniusLithuania
| |
Collapse
|
5
|
Huang J, Xiang R, Tan L, Deng Y, Tao Z, Zhang W, Xu Y. Dust mite component Analysis: Identifying key allergens components for effective immunotherapy in allergic rhinitis. Int Immunopharmacol 2023; 125:111111. [PMID: 37925948 DOI: 10.1016/j.intimp.2023.111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND The aim of this study was to examine the frequency of sensitization to house dust mite (HDM) components among allergic rhinitis patients receiving subcutaneous immunotherapy (SCIT), and to assess the correlation between SCIT efficacy and specific IgE (sIgE) levels for allergenic HDM components. METHODS Serum samples and clinical data were collected from 38 allergic rhinitis patients receiving HDM-SCIT at baseline and after 1 year of treatment. Effective treatment was defined as a therapeutic index (TI) of at least 50% after 1 year. Cytokine levels were analyzed using commercial ELISA kits, while serum total and specific IgE levels were determined by the fluoroenzymeimmunoassay technique. The ALLEOS 2000 magnetic particle chemiluminescence system was used to measure sIgE levels for Der f, Der p 1, Der p 2, Der p 10, and Der p 23. RESULTS Allergic rhinitis patients undergoing HDM-SCIT had a high rate of allergic sensitization to the HDM major allergens Der p (100%), Der f (100%), Der p 1 (94.74%), Der p 2 (94.74%), and Der p 23 (36.84%). Patients who responded to SCIT had higher levels of IgE for HDM components at baseline, while those with ineffective treatment showed an opposite performance, particularly for Der p 1 (P<0.05). After 1 year of treatment, effective and ineffective patients showed opposite trends in sIgE for dust mite components (decreased in effective patients, increased in ineffective patients). HDM-SCIT led to a significant reduction in IL-2, IL-4, IL-6, and EOS% (P<0.05). IgE for Der p, Der f, Der p 1, Der p 2, and HDM sIgE were significantly positively correlated (P < 0.001). The correlation heatmap analysis based on changes in values reveals a negative correlation between CSMS score changes and sIgE for Der f and Der p 1, and a positive correlation with IL-2, IL-10, and TNF (P < 0.05). CONCLUSIONS The molecular sensitization profiles during HDM-SCIT are variable and relate to treatment efficacy. Molecular diagnosis can assist allergists in identifying patients eligible for HDM-SCIT, thereby enhancing the treatment's clinical efficacy. Serum cytokine levels of IL-2, IL-4, IL-6,and EOS% may serve as useful biomarkers for monitoring HDM-SCIT efficacy.
Collapse
Affiliation(s)
- Jingyu Huang
- Department of Rhinology and Allergy, Otolaryngology-Head and Neck Surgery Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Rong Xiang
- Department of Rhinology and Allergy, Otolaryngology-Head and Neck Surgery Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lu Tan
- Department of Rhinology and Allergy, Otolaryngology-Head and Neck Surgery Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Yuqin Deng
- Department of Rhinology and Allergy, Otolaryngology-Head and Neck Surgery Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Zezhang Tao
- Department of Rhinology and Allergy, Otolaryngology-Head and Neck Surgery Center, Renmin Hospital of Wuhan University, Wuhan, China; Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Wei Zhang
- Department of Rhinology and Allergy, Otolaryngology-Head and Neck Surgery Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Yu Xu
- Department of Rhinology and Allergy, Otolaryngology-Head and Neck Surgery Center, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China; Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
da Silva ES, de Santana MBR, Silveira EF, Torres RT, Silva RC, Fernandes AMS, Belitardo EMMDA, Garcés LFS, Santiago LF, Urrego JR, Vilas-Bôas DS, de Freitas LAR, Zakzuk J, Pacheco LGC, Cruz ÁA, Ferreira F, Cooper P, Caraballo L, Pinheiro CDS, Alcantara-Neves NM. The hybrid protein BTH2 suppresses allergic airway inflammation in a murine model of HDM-specific immunotherapy. Clin Exp Allergy 2023; 53:821-832. [PMID: 36779555 DOI: 10.1111/cea.14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 02/14/2023]
Abstract
BACKGROUND Allergen-specific immunotherapy (AIT) is the only disease-modifying treatment approach to change disease-causing allergens. Hypoallergenic derivatives show promise as potential therapeutics, amongst which BTH2 was designed to induce tolerance against Blomia tropicalis allergy. Our aim was to investigate the hypoallergenicity and immunoregulatory activity of BTH2 in vitro and its therapeutic potential in a mouse model of AIT. METHODS Recombinant Blo t 5 and Blo t 21 allergens and their hybrid derivatives (BTH1 and BTH2) were expressed and purified. IgE binding capacity was tested by ELISA using sera from Brazilian, Colombian, and Ecuadorian subjects. Secretion of cytokines in supernatants from human cell cultures was measured following stimulation with the four recombinants and controls. The capacity of BTH2 to ameliorate allergic airway inflammation induced by B. tropicalis extract was evaluated in a murine model of AIT. RESULTS rBlo t 5 and rBlo t 21 were identified as major allergens in Latin American patients, and BTH2 had the lowest IgE binding. In vitro stimulation of human cells induced greater levels of IL-10 and IFN-γ and reduced the secretion of Th2 cytokines. BTH2 ameliorated allergic airway inflammation in B. tropicalis-challenged A/J mice, as evidenced by the histopathological and humoral biomarkers: decreased Th2 cytokines and cellular infiltration (especially eosinophils), lower activity of eosinophil peroxidase, an increase in IgG blocking antibodies and strong reduction of mucus production by goblet cells. CONCLUSIONS Our study shows that BTH2 represents a promising candidate for the treatment of B. tropicalis allergy with hypoallergenic, immune regulatory and therapeutic properties. Further pre-clinical studies are required in murine models of chronic asthma to further address the efficacy and safety of BTH2 as a vaccine against B. tropicalis-induced allergy.
Collapse
Affiliation(s)
- Eduardo Santos da Silva
- Laboratory of Allergology and Acarology (LAA), Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
- Post-Graduate Program in Biotechnology of the Northeast Biotechnology Network (RENORBIO), Maceió, Brazil
| | - Marina Borges Rabelo de Santana
- Laboratory of Allergology and Acarology (LAA), Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
- Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Elisânia Fontes Silveira
- Laboratory of Allergology and Acarology (LAA), Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Rogério Tanan Torres
- Laboratory of Allergology and Acarology (LAA), Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Raphael Chagas Silva
- Laboratory of Allergology and Acarology (LAA), Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
- Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | | | - Emília Maria Medeiros de Andrade Belitardo
- Laboratory of Allergology and Acarology (LAA), Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
- Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FioCruz), Salvador, Brazil
| | - Luis Fabián Salazar Garcés
- Laboratory of Allergology and Acarology (LAA), Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
- Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
- Faculty of Health Sciences, Technical University of Ambato, Ambato, Ecuador
| | - Leonardo Freire Santiago
- Laboratory of Allergology and Acarology (LAA), Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | | | - Deise Souza Vilas-Bôas
- Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
- Laboratory of Histotechnology, Department of Biomorphology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Luiz Antônio Rodrigues de Freitas
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FioCruz), Salvador, Brazil
- Department of Pathology of the School of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Josefina Zakzuk
- Institute of Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Luis Gustavo Carvalho Pacheco
- Laboratory of Allergology and Acarology (LAA), Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | | | - Fatima Ferreira
- Department of Biosciences, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Philip Cooper
- Institute of Infection and Immunity, St George's University of London, London, UK
- School of Medicine, International University of Ecuador, Quito, Ecuador
| | - Luis Caraballo
- Institute of Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Carina da Silva Pinheiro
- Laboratory of Allergology and Acarology (LAA), Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
- Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Neuza Maria Alcantara-Neves
- Laboratory of Allergology and Acarology (LAA), Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
- Post-Graduate Program in Biotechnology of the Northeast Biotechnology Network (RENORBIO), Maceió, Brazil
- Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
7
|
Pauli G, Wurmser C, Roos A, Kokou C, Huang HJ, D’souza N, Lupinek C, Zakzuk J, Regino R, Acevedo N, Caraballo L, Vrtala S, Valenta R. Frequent IgE recognition of Blomia tropicalis allergen molecules in asthmatic children and young adults in equatorial Africa. Front Immunol 2023; 14:1133935. [PMID: 37359512 PMCID: PMC10286740 DOI: 10.3389/fimmu.2023.1133935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Background Asthma is not well investigated in equatorial Africa and little is known about the disease-associated allergen molecules recognized by IgE from patients in this area. The aim was to study the molecular IgE sensitization profile of asthmatic children and young adults in a semi-rural area (Lambaréné) of an equatorial African country (Gabon), to identify the most important allergen molecules associated with allergic asthma in equatorial Africa. Methods Fifty-nine asthmatic patients, mainly children and few young adults, were studied by skin prick testing to Dermatophagoides pteronyssinus (Der p), D. farinae (Der f), cat, dog, cockroach, grass, Alternaria and peanut. Sera were obtained from a subset of 35 patients, 32 with positive and 3 with negative skin reaction to Der p and tested for IgE reactivity to 176 allergen molecules from different allergen sources by ImmunoCAP ISAC microarray technology and to seven recombinant Blomia tropicalis (Blo t) allergens by IgE dot blot assay. Results Thirty-three of the 59 patients (56%) were sensitized to Der p and 23 of them (39%) were also sensitized to other allergen sources, whereas 9 patients (15%) were only sensitized to allergen sources other than Der p. IgE serology analyses (n=35) showed high IgE-binding frequencies to the Blo t allergens Blo t 5 (43%), Blo t 21 (43%) and Blo t 2 (40%), whereas the Der p allergens rDer p 2, rDer p 21 and rDer p 5 (34%, 29% and 26%) were less frequently recognized. Only few patients showed IgE reactivity to allergens from other allergen sources, except to allergens containing carbohydrate determinants (CCDs) or to wasp venom allergens (i.e., antigen 5). Conclusion Our results thus demonstrate that IgE sensitization to mite allergens is very prevalent in asthmatics in Equatorial Africa with B. tropicalis allergen molecules representing the most important ones associated with allergic asthma.
Collapse
Affiliation(s)
- Gabrielle Pauli
- Faculty of Medicine, University Louis Pasteur, Strasbourg, France
- Hôpital Albert Schweitzer, Lambaréné, Gabon
| | - Carole Wurmser
- Faculty of Medicine, University Louis Pasteur, Strasbourg, France
- Hôpital Albert Schweitzer, Lambaréné, Gabon
| | - Antoine Roos
- Faculty of Medicine, University Louis Pasteur, Strasbourg, France
- Hôpital Albert Schweitzer, Lambaréné, Gabon
| | | | - Huey-Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nishelle D’souza
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christian Lupinek
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Josefina Zakzuk
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - Ronald Regino
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - Nathalie Acevedo
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - Luis Caraballo
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- National Research Center, Institute of Immunology FMBA of Russia, Moscow, Russia
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
- Karl Landsteiner University of Health Sciences, Krems, Austria
| |
Collapse
|
8
|
Mondol E, Donado K, Regino R, Hernandez K, Mercado D, Mercado AC, Benedetti I, Puerta L, Zakzuk J, Caraballo L. The Allergenic Activity of Blo t 2, a Blomia tropicalis IgE-Binding Molecule. Int J Mol Sci 2023; 24:ijms24065543. [PMID: 36982614 PMCID: PMC10053487 DOI: 10.3390/ijms24065543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Only few allergens derived from house dust mite (HDM) species have been evaluated in terms of their potential to induce allergic inflammation. In this study, we aimed to evaluate different aspects of the allergenicity and allergenic activity of Blo t 2, a Blomia tropicalis allergen. Blo t 2 was produced as a recombinant protein in Escherichia coli. Its allergenic activity was tested in humans by skin prick test and basophil activation assays, and in mice, by passive cutaneous anaphylaxis and a model of allergic airway inflammation. Sensitization rate to Blo t 2 (54.3%) was similar to that found to Blo t 21 (57.2%) and higher than to Der p 2 (37.5%). Most Blo t 2-sensitized patients showed a low intensity response (99.5%). Blo t 2 elicited CD203c upregulation and allergen induced skin inflammation. Additionally, immunized animals produced anti-Blo t 2 IgE antibodies and passive transfer of their serum to non-immunized animals induced skin inflammation after allergen exposure. Immunized animals developed bronchial hyperreactivity and a strong inflammatory lung reaction (eosinophils and neutrophils). These results confirm the allergenic activity of Blo t 2 and supports its clinical relevance.
Collapse
|
9
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, et alDramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Show More Authors] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
10
|
Fernandes AMS, da Silva ES, Silveira EF, Belitardo EMMDA, Santiago LF, Silva RC, Dos Santos Alves V, Carneiro DM, Ferreira F, Jacquet A, Pacheco LGC, Alcantara-Neves NM, Pinheiro CS. Recombinant T-cell epitope conjugation: A new approach for Dermatophagoides hypoallergen design. Clin Exp Allergy 2023; 53:198-209. [PMID: 36176209 DOI: 10.1111/cea.14238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Allergen-specific immunotherapy (AIT) is the only clinical approach that can potentially cure some allergic diseases by inducing immunological tolerance. Dermatophagoides pteronyssinus is considered as the most important source of mite allergens worldwide, with high sensitization rates for the major allergens Der p 1, Der p 2 and Der p 23. The aim of this work is to generate a hypoallergenic hybrid molecule containing T-cell epitopes from these three major allergens. METHODS The hybrid protein termed Der p 2231 containing T-cell epitopes was purified by affinity chromatography. The human IgE reactivity was verified by comparing those with the parental allergens. The hybrid was also characterized immunologically through an in vivo mice model. RESULTS The hybrid rDer p 2231 stimulated in peripheral blood mononuclear cells (PBMCs) isolated from allergic patients with higher levels of IL- 2, IL-10, IL-15 and IFN-γ, as well as lower levels of IL-4, IL-5, IL-13, TNF-α and GM-CSF. The use of hybrid molecules as a therapeutic model in D. pteronyssinus allergic mice led to the reduction of IgE production and lower eosinophilic peroxidase activity in the airways. We found increased levels of IgG antibodies that blocked the IgE binding to the parental allergens in the serum of allergic patients. Furthermore, the stimulation of splenocytes from mice treated with rDer p 2231 induced higher levels of IL-10 and IFN-γ and decreased the secretion of IL-4 and IL-5, when compared with parental allergens and D. pteronyssinus extract. CONCLUSIONS rDer p 2231 has the potential to be used in AIT in patients co-sensitized with D. pteronyssinus major allergens, once it was able to reduce IgE production, inducing allergen-specific blocking antibodies, restoring and balancing Th1/Th2 immune responses, and inducing regulatory T-cells.
Collapse
Affiliation(s)
- Antônio Márcio Santana Fernandes
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| | - Eduardo Santos da Silva
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Elisânia Fontes Silveira
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | | | - Leonardo Freire Santiago
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Raphael Chagas Silva
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Vitor Dos Santos Alves
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Deise Malta Carneiro
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Fatima Ferreira
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Luis Gustavo Carvalho Pacheco
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| | - Neuza Maria Alcantara-Neves
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| | - Carina Silva Pinheiro
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
11
|
Aarestrup FM, Taketomi EA, Santos Galvão CE, Gagete E, Nóbrega Machado Arruda AC, Alves GB, Véras de Araújo Gueiros Lira G, Gonçalves MR, Couto Miziara MG, Maranhão Casado SS, Curi SV, Rufino Pereira VA, Sales V, Solé D, de Paula Motta Rubini N, Cavalcanti Sarinho ES. Good clinical practice recommendations in allergen immunotherapy: Position paper of the Brazilian Association of Allergy and Immunology - ASBAI. World Allergy Organ J 2022; 15:100697. [PMID: 36254179 PMCID: PMC9513275 DOI: 10.1016/j.waojou.2022.100697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022] Open
Abstract
Background Allergen Immunotherapy (AIT) represents one of the pillars in the treatment of allergic diseases. AIT is the only therapeutic strategy with curative potential, promoting the reduction of drug use and long-term symptom control even after the end of the treatment. The European Academy of Allergy, Asthma and Immunology (EAACI) guidelines, position papers of World Allergy Organization (WAO), and the US Practice Parameters are the leading official documents that set scientific standard for the use of AIT in the world. The use of AIT in Brazil has specific regional conditions due to the pattern of allergen sensitization, as well as genetic, socioeconomic, and cultural characteristics, climate conditions, and the availability of allergenic extracts. The most prevalent house dust mites are Dermatophagoides pteronyssinus, Dermatophagoides farinae and their allergens have the highest clinical relevance. Blomia tropicalis is also very frequent. This position paper has been prepared by the Brazilian Association of Allergy and Clinical Immunology (ASBAI) Taskforce on AIT for respiratory allergy and Hymenoptera venom allergy. Objective According to the current scientific literature adapted to the Brazilian reality, this position paper aims to establish the main recommendations for the good clinical practice parameters for AIT in Brazil. Methods A systematic review using the Pub Med and Cochrane databases was performed, and the websites of major allergy and immunology organizations were consulted. The research was limited to English language literature and was conducted between March 30, 2002, and March 30, 2022. The terms used for the research were: Allergen Immunotherapy, sublingual immunotherapy (SLIT), subcutaneous immunotherapy (SCIT), venom-specific immunotherapy (VIT), and allergen extract. Results The several recommendations that establish the clinical practices for AIT recommended by the main Allergy, Asthma and Immunology world organizations were analyzed and adapted to the Brazilian situation. Conclusion This position paper establishes the main recommendations for the effective clinical practice of AIT in Brazil, using current knowledge of evidence-based medicine and precision medicine.
Collapse
Affiliation(s)
- Fernando Monteiro Aarestrup
- Federal University of Juiz de Fora (UFJF), MG, Brazil
- Allergy and Immunology Service, Hospital Maternity Therezinha de Jesus –Faculty of Medical and Health Sciences of Juiz de Fora (FCMS/JF - SUPREMA), Brazil
- Scientific Department of Immunotherapy, Brazilian Association of Allergy and Immunology (ASBAI), Brazil
| | - Ernesto Akio Taketomi
- Immunology and Laboratory of Allergy and Clinical Immunology, Department of Immunology, Institute of Biomedical Sciences (ICBIM) of the Federal University of Uberlandia (UFU), Brazil
- Postgraduate Program in Applied Immunology and Parasitology, Master's and Doctoral Levels, ICBIM/UFU, Brazil
- Scientific Departments of Immunotherapy and Allergens, ASBAI, Brazil
| | - Clóvis Eduardo Santos Galvão
- Clinical Immunology and Allergy Service, Clinics Hospital, Faculty of Medicine, University of Sao Paulo(HC/FMUSP), Brazil
- Faculty of Medicine, University of the City of São Paulo (UNICID), Brazil
- Department of Immunotherapy, ASBAI, Brazil
| | - Elaine Gagete
- Allergy and Immunology, Brazilian Medical Association (AMB) and ASBAI, Brazil
- Scientific Department of Immunotherapy, ASBAI, Brazil
| | | | - Gil Bardini Alves
- Department of Immunotherapy, ASBAI, Brazil
- Allergy and Immunology, Brazilian Medical Association (AMB) and ASBAI, Brazil
- Faculty of Medicine at the University of Southern Santa Catarina (UNISUL), Brazil
| | | | - Marcos Reis Gonçalves
- Scientific Department of Immunotherapy, ASBAI, Brazil
- Pediatric Allergy and Immunology by the Brazilian Society of Pediatrics (SBP), Brazil
- Faculty of Medicine, Tiradentes University Center– Campus Alagoas (UNIT/AL), Brazil
- Elective Discipline of Allergy and Immunology, Faculty of Medicine of the Federal University of Alagoas (UFAL), Brazil
| | | | | | - Simone Valladão Curi
- Scientific Department of Immunotherapy, ASBAI, Brazil
- Allergy and Immunology, Brazil
| | - Veridiana Aun Rufino Pereira
- Faculty of Medicine, University of the City of São Paulo (UNICID), Brazil
- Scientific Department of Immunotherapy, ASBAI, Brazil
| | - Valéria Sales
- Faculty of Medicine, Federal University of Rio Grande do Norte, Brazil
- ASBAI Brazil
| | - Dirceu Solé
- ASBAI Brazil
- Paulista School of Medicine, Federal University of São Paulo, Brazil
- Scientific Department of the Brazilian Society of Pediatrics, Brazil
| | | | | |
Collapse
|
12
|
Platteel ACM, van der Pol P, Murk JL, Verbrugge-Bakker I, Hack-Steemers M, Roovers THWM, Heron M. A comprehensive comparison between ISAC and ALEX 2 multiplex test systems. Clin Chem Lab Med 2022; 60:1046-1052. [PMID: 35470638 DOI: 10.1515/cclm-2022-0191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Diagnosis of type I hypersensitivity is based on anamnesis, provocation as well as blood- and skin testing. Multiplex specific IgE (sIgE) testing enables determination of sIgE antibodies against multiple recombinant or purified natural allergen components. The aim of this study was to evaluate the performance of the novel ALEX2® (Allergy Explorer, ALEX2 test introduced on the market November 2019) multiplex platform and to compare it with the ImmunoCAP ISAC® test system. METHODS Serum samples of 49 patients, routinely determined with ISAC, were selected based on positive results covering in total most of the 112 ISAC components. Cohen's kappa, negative percent agreement (NPA), and positive percent agreement (PPA) of ALEX2 data compared to ISAC data (as a non-reference standard) were computed for those allergen components present on both platforms (n=103). Furthermore, in some samples sIgE results against allergen extracts and/or -components tested with either ImmunoCAP® (ThermoFisher) or IMMULITE® (Siemens) were available and compared to ALEX2 results. RESULTS The overall agreement between ISAC and ALEX2 common allergen components was 94%. NPA and PPA were respectively 95 and 90%. Kappa values differed for specific allergen groups and varied between 0.60 and 0.92 showing moderate to almost perfect agreement. Of the qualitative discrepancies between ALEX2 and ISAC, 59% were related to weak positive results i.e. results under 1 kUA/L or 1 ISU, respectively. CONCLUSIONS The method comparison between ISAC and ALEX2 multiplex tests showed a high concordance for those allergen components present on both platforms.
Collapse
Affiliation(s)
- Anouk C M Platteel
- Microvida Laboratory of Medical Microbiology and Immunology, Elisabeth-TweeSteden Ziekenhuis, Tilburg, Noord-Brabant, Netherlands
| | - Pieter van der Pol
- Microvida Laboratory of Medical Microbiology and Immunology, Elisabeth-TweeSteden Ziekenhuis, Tilburg, Noord-Brabant, Netherlands
| | - Jean-Luc Murk
- Microvida Laboratory of Medical Microbiology and Immunology, Elisabeth-TweeSteden Ziekenhuis, Tilburg, Noord-Brabant, Netherlands
| | - Ingrid Verbrugge-Bakker
- Microvida Laboratory of Medical Microbiology and Immunology, Elisabeth-TweeSteden Ziekenhuis, Tilburg, Noord-Brabant, Netherlands
| | - Marian Hack-Steemers
- Microvida Laboratory of Medical Microbiology and Immunology, Elisabeth-TweeSteden Ziekenhuis, Tilburg, Noord-Brabant, Netherlands
| | - Theo H W M Roovers
- Department of Allergology, Elisabeth-TweeSteden Ziekenhuis, Tilburg, Noord-Brabant, Netherlands
| | - Michiel Heron
- Medische micobiologie en immunologie, Diakonessenhuis Utrecht Zeist Doorn Locatie Utrecht, Bosboomstraat 1, Utrecht, 3508 TG, Utrecht, NETHERLANDS
| |
Collapse
|
13
|
Santos SP, Lisboa AB, Silva FS, Tiwari S, Azevedo V, Cruz ÁA, Silva ES, Pinheiro CS, Alcantara-Neves NM, Pacheco LG. Rationally designed hypoallergenic mutant variants of the house dust mite allergen Der p 21. Biochim Biophys Acta Gen Subj 2022; 1866:130096. [DOI: 10.1016/j.bbagen.2022.130096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
|
14
|
Purification and characterisation of the dimeric group 12 allergen from Blomia tropicalis heterologously expressed by Escherichia coli Top10F´. Mol Biol Rep 2021; 48:3405-3416. [PMID: 33914278 DOI: 10.1007/s11033-021-06361-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
Successful research in the wide-ranging field of allergy is usually achieved by definition not only of physicochemical and immunological properties of natural, but also recombinant allergens. Blomia tropicalis mite is a well-known source for various groups of hypersensitivity-causing proteins. The goal of the present work was to produce, purify and characterise by in silico, biochemical and immunological methods the recombinant group-12 allergen of B. tropicalis. The recombinant Blo t 12 aggregation capacity as well as the affinity to antibodies from BALB/c immunised mice and B. tropicalis-sensitised human donors were investigated through in silico analyses, dynamic light scattering, SDS-PAGE, ELISA and Western blot. The presence of Blo t 12 within B. tropicalis extracts was also determined by ELISA and Western blot. High concentrations of dimeric rBlo t 12 were detected through SDS-PAGE next to other aggregates and the results were confirmed by data from DLS and Western blot. The YITVM peptide was predicted to be the most aggregation-prone region. The IgE-reactivity of rBlo t 12 was not completely abolished by aggregate formation but it was significantly decreased compared to rBlo t 5, or B. tropicalis extracts. Natural Blo t 12 may naturally dimerises, but it was detected in non-delipidified B. tropicalis extracts in low amounts. Given that this allergen may be a specific marker for B. tropicalis allergy, the recombinant Blo t 12 herein obtained is characterised as a mid-tier allergen in Brazilian atopic patients and may be useful for the improvement in precision allergy molecular diagnostic applications.
Collapse
|