1
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Consalvo KM, Rijal R, Beruvides SL, Mitchell R, Beauchemin K, Collins D, Scoggin J, Scott J, Gomer RH. PTEN and the PTEN-like phosphatase CnrN have both distinct and overlapping roles in a Dictyostelium chemorepulsion pathway. J Cell Sci 2024; 137:jcs262054. [PMID: 38940195 PMCID: PMC11317092 DOI: 10.1242/jcs.262054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Little is known about eukaryotic chemorepulsion. The enzymes phosphatase and tensin homolog (PTEN) and CnrN dephosphorylate phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Dictyostelium discoideum cells require both PTEN and CnrN to induce chemorepulsion of cells away from the secreted chemorepellent protein AprA. How D. discoideum cells utilize two proteins with redundant phosphatase activities in response to AprA is unclear. Here, we show that D. discoideum cells require both PTEN and CnrN to locally inhibit Ras activation, decrease basal levels of PI(3,4,5)P3 and increase basal numbers of macropinosomes, and AprA prevents this increase. AprA requires both PTEN and CnrN to increase PI(4,5)P2 levels, decrease PI(3,4,5)P3 levels, inhibit proliferation, decrease myosin II phosphorylation and increase filopod sizes. PTEN, but not CnrN, decreases basal levels of PI(4,5)P2, and AprA requires PTEN, but not CnrN, to induce cell roundness. Together, our results suggest that CnrN and PTEN play unique roles in AprA-induced chemorepulsion.
Collapse
Affiliation(s)
- Kristen M. Consalvo
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Steven L. Beruvides
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Ryan Mitchell
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Karissa Beauchemin
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Danni Collins
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Jack Scoggin
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Jerome Scott
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
3
|
Consalvo KM, Rijal R, Beruvides SL, Mitchell R, Beauchemin K, Collins D, Scoggin J, Scott J, Gomer RH. PTEN and the PTEN-like phosphatase CnrN have both distinct and overlapping roles in a Dictyostelium chemorepulsion pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581751. [PMID: 38464111 PMCID: PMC10925239 DOI: 10.1101/2024.02.23.581751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The directed movement of eukaryotic cells is crucial for processes such as embryogenesis and immune cell trafficking. The enzyme Phosphatase and tensin homolog (PTEN) dephosphorylates phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P 3 ] to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P 2 ]. Dictyostelium discoideum cells require both PTEN and the PTEN-like phosphatase CnrN to locally inhibit Ras activation to induce biased movement of cells away from the secreted chemorepellent protein AprA. Both PTEN and CnrN decrease basal levels of PI(3,4,5)P 3 and increase basal numbers of macropinosomes, and AprA prevents this increase. AprA requires both PTEN and CnrN to increase PI(4,5)P 2 levels, decrease PI(3,4,5)P 3 levels, inhibit proliferation, decrease myosin II phosphorylation, and increase filopod sizes. AprA causes PTEN, similar to CnrN, to localize to the side of the cell towards AprA in an AprA gradient. However, PTEN and CnrN also have distinct roles in some signaling pathways. PTEN, but not CnrN, decreases basal levels of PI(4,5)P 2 , AprA requires PTEN, but not CnrN, to induce cell roundness, and CnrN and PTEN have different effects on the number of filopods and pseudopods, and the sizes of filopods. Together, our results suggest that CnrN and PTEN play unique roles in D. discoideum signaling pathways, and possibly dephosphorylate PI(3,4,5)P 3 in different membrane domains, to mediate chemorepulsion away from AprA.
Collapse
|
4
|
Li D, Sun F, Yang Y, Tu H, Cai H. Gradients of PI(4,5)P2 and PI(3,5)P2 Jointly Participate in Shaping the Back State of Dictyostelium Cells. Front Cell Dev Biol 2022; 10:835185. [PMID: 35186938 PMCID: PMC8855053 DOI: 10.3389/fcell.2022.835185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Polarity, which refers to the molecular or structural asymmetry in cells, is essential for diverse cellular functions. Dictyostelium has proven to be a valuable system for dissecting the molecular mechanisms of cell polarity. Previous studies in Dictyostelium have revealed a range of signaling and cytoskeletal proteins that function at the leading edge to promote pseudopod extension and migration. In contrast, how proteins are localized to the trailing edge is not well understood. By screening for asymmetrically localized proteins, we identified a novel trailing-edge protein we named Teep1. We show that a charged surface formed by two pleckstrin homology (PH) domains in Teep1 is necessary and sufficient for targeting it to the rear of cells. Combining biochemical and imaging analyses, we demonstrate that Teep1 interacts preferentially with PI(4,5)P2 and PI(3,5)P2in vitro and simultaneous elimination of these lipid species in cells blocks the membrane association of Teep1. Furthermore, a leading-edge localized myotubularin phosphatase likely mediates the removal of PI(3,5)P2 from the front, as well as the formation of a back-to-front gradient of PI(3,5)P2. Together our data indicate that PI(4,5)P2 and PI(3,5)P2 on the plasma membrane jointly participate in shaping the back state of Dictyostelium cells.
Collapse
Affiliation(s)
- Dong Li
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Feifei Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yihong Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hui Tu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Huaqing Cai,
| |
Collapse
|
5
|
Senoo H, Murata D, Wai M, Arai K, Iwata W, Sesaki H, Iijima M. KARATE: PKA-induced KRAS4B-RHOA-mTORC2 supercomplex phosphorylates AKT in insulin signaling and glucose homeostasis. Mol Cell 2021; 81:4622-4634.e8. [PMID: 34551282 DOI: 10.1016/j.molcel.2021.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/06/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023]
Abstract
AKT is a serine/threonine kinase that plays an important role in metabolism, cell growth, and cytoskeletal dynamics. AKT is activated by two kinases, PDK1 and mTORC2. Although the regulation of PDK1 is well understood, the mechanism that controls mTORC2 is unknown. Here, by investigating insulin receptor signaling in human cells and biochemical reconstitution, we found that insulin induces the activation of mTORC2 toward AKT by assembling a supercomplex with KRAS4B and RHOA GTPases, termed KARATE (KRAS4B-RHOA-mTORC2 Ensemble). Insulin-induced KARATE assembly is controlled via phosphorylation of GTP-bound KRAS4B at S181 and GDP-bound RHOA at S188 by protein kinase A. By developing a KARATE inhibitor, we demonstrate that KRAS4B-RHOA interaction drives KARATE formation. In adipocytes, KARATE controls insulin-dependent translocation of the glucose transporter GLUT4 to the plasma membrane for glucose uptake. Thus, our work reveals a fundamental mechanism that activates mTORC2 toward AKT in insulin-regulated glucose homeostasis.
Collapse
Affiliation(s)
- Hiroshi Senoo
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daisuke Murata
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - May Wai
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenta Arai
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wakiko Iwata
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Pressure sensing through Piezo channels controls whether cells migrate with blebs or pseudopods. Proc Natl Acad Sci U S A 2020; 117:2506-2512. [PMID: 31964823 PMCID: PMC7007555 DOI: 10.1073/pnas.1905730117] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cells migrating within the body perform vital functions in development and for defense and repair of tissues. In this dense environment, cells encounter mechanical forces and constraints not experienced when moving under buffer, and, accordingly, many change how they move. We find that gentle squashing, which mimics mechanical resistance, causes cells to move using blebs—a form of projection driven by fluid pressure—rather than pseudopods. This behavior depends on the Piezo stretch-operated ion channel in the cell membrane and calcium fluxes into the cell. Piezo is highly conserved and is required for light touch sensation; this work extends its functions into migrating cells. Blebs and pseudopods can both power cell migration, with blebs often favored in tissues, where cells encounter increased mechanical resistance. To investigate how migrating cells detect and respond to mechanical forces, we used a “cell squasher” to apply uniaxial pressure to Dictyostelium cells chemotaxing under soft agarose. As little as 100 Pa causes a rapid (<10 s), sustained shift to movement with blebs rather than pseudopods. Cells are flattened under load and lose volume; the actin cytoskeleton is reorganized, with myosin II recruited to the cortex, which may pressurize the cytoplasm for blebbing. The transition to bleb-driven motility requires extracellular calcium and is accompanied by increased cytosolic calcium. It is largely abrogated in cells lacking the Piezo stretch-operated channel; under load, these cells persist in using pseudopods and chemotax poorly. We propose that migrating cells sense pressure through Piezo, which mediates calcium influx, directing movement with blebs instead of pseudopods.
Collapse
|
7
|
Rijal R, Consalvo KM, Lindsey CK, Gomer RH. An endogenous chemorepellent directs cell movement by inhibiting pseudopods at one side of cells. Mol Biol Cell 2018; 30:242-255. [PMID: 30462573 PMCID: PMC6589559 DOI: 10.1091/mbc.e18-09-0562] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic chemoattraction signal transduction pathways, such as those used by Dictyostelium discoideum to move toward cAMP, use a G protein-coupled receptor to activate multiple conserved pathways such as PI3 kinase/Akt/PKB to induce actin polymerization and pseudopod formation at the front of a cell, and PTEN to localize myosin II to the rear of a cell. Relatively little is known about chemorepulsion. We previously found that AprA is a chemorepellent protein secreted by Dictyostelium cells. Here we used 29 cell lines with disruptions of cAMP and/or AprA signal transduction pathway components, and delineated the AprA chemorepulsion pathway. We find that AprA uses a subset of chemoattraction signal transduction pathways including Ras, protein kinase A, target of rapamycin (TOR), phospholipase A, and ERK1, but does not require the PI3 kinase/Akt/PKB and guanylyl cyclase pathways to induce chemorepulsion. Possibly as a result of not using the PI3 kinase/Akt/PKB pathway and guanylyl cyclases, AprA does not induce actin polymerization or increase the pseudopod formation rate, but rather appears to inhibit pseudopod formation at the side of cells closest to the source of AprA.
Collapse
Affiliation(s)
- Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Kristen M Consalvo
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | | | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| |
Collapse
|
8
|
Direct time-resolved spectroscopic investigation of intramolecular hydrogen atom transfer of deoxyblebbistatin. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Pfannes EKB, Anielski A, Gerhardt M, Beta C. Intracellular photoactivation of caged cGMP induces myosin II and actin responses in motile cells. Integr Biol (Camb) 2014; 5:1456-63. [PMID: 24136144 DOI: 10.1039/c3ib40109j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cyclic GMP (cGMP) is a ubiquitous second messenger in eukaryotic cells. It is assumed to regulate the association of myosin II with the cytoskeleton of motile cells. When cells of the social amoeba Dictyostelium discoideum are exposed to chemoattractants or to increased osmotic stress, intracellular cGMP levels rise, preceding the accumulation of myosin II in the cell cortex. To directly investigate the impact of intracellular cGMP on cytoskeletal dynamics in a living cell, we released cGMP inside the cell by laser-induced photo-cleavage of a caged precursor. With this approach, we could directly show in a live cell experiment that an increase in intracellular cGMP indeed induces myosin II to accumulate in the cortex. Unexpectedly, we observed for the first time that also the amount of filamentous actin in the cell cortex increases upon a rise in the cGMP concentration, independently of cAMP receptor activation and signaling. We discuss our results in the light of recent work on the cGMP signaling pathway and suggest possible links between cGMP signaling and the actin system.
Collapse
Affiliation(s)
- Eva K B Pfannes
- Biological Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| | | | | | | |
Collapse
|
10
|
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 2014; 71:3711-47. [PMID: 24846395 DOI: 10.1007/s00018-014-1638-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.
Collapse
|
11
|
Sobczyk GJ, Wang J, Weijer CJ. SILAC-based proteomic quantification of chemoattractant-induced cytoskeleton dynamics on a second to minute timescale. Nat Commun 2014; 5:3319. [PMID: 24569529 PMCID: PMC3971484 DOI: 10.1038/ncomms4319] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/25/2014] [Indexed: 01/14/2023] Open
Abstract
Cytoskeletal dynamics during cell behaviours ranging from endocytosis and exocytosis to cell division and movement is controlled by a complex network of signalling pathways, the full details of which are as yet unresolved. Here we show that SILAC-based proteomic methods can be used to characterize the rapid chemoattractant-induced dynamic changes in the actin–myosin cytoskeleton and regulatory elements on a proteome-wide scale with a second to minute timescale resolution. This approach provides novel insights in the ensemble kinetics of key cytoskeletal constituents and association of known and novel identified binding proteins. We validate the proteomic data by detailed microscopy-based analysis of in vivo translocation dynamics for key signalling factors. This rapid large-scale proteomic approach may be applied to other situations where highly dynamic changes in complex cellular compartments are expected to play a key role. Actin-dependent motility is driven by the rapid changes in the recruitment of many different structural and regulatory proteins at the cell’s cortex. Sobczyk et al. characterize these changes in the cytoskeletal proteome on a second to minute timescale during chemotactic response in Dictyostelium using SILAC-based proteomics.
Collapse
Affiliation(s)
- Grzegorz J Sobczyk
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jun Wang
- 1] Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK [2]
| | - Cornelis J Weijer
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
12
|
Wessels D, Lusche DF, Steimle PA, Scherer A, Kuhl S, Wood K, Hanson B, Egelhoff TT, Soll DR. Myosin heavy chain kinases play essential roles in Ca2+, but not cAMP, chemotaxis and the natural aggregation of Dictyostelium discoideum. J Cell Sci 2012; 125:4934-44. [PMID: 22899719 DOI: 10.1242/jcs.112474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Behavioral analyses of the deletion mutants of the four known myosin II heavy chain (Mhc) kinases of Dictyostelium discoideum revealed that all play a minor role in the efficiency of basic cell motility, but none play a role in chemotaxis in a spatial gradient of cAMP generated in vitro. However, the two kinases MhckA and MhckC were essential for chemotaxis in a spatial gradient of Ca(2+), shear-induced directed movement, and reorientation in the front of waves of cAMP during natural aggregation. The phenotypes of the mutants mhckA(-) and mhckC(-) were highly similar to that of the Ca(2+) channel/receptor mutant iplA(-) and the myosin II phosphorylation mutant 3XALA, which produces constitutively unphosphorylated myosin II. These results demonstrate that IplA, MhckA and MhckC play a selective role in chemotaxis in a spatial gradient of Ca(2+), but not cAMP, and suggest that Ca(2+) chemotaxis plays a role in the orientation of cells in the front of cAMP waves during natural aggregation.
Collapse
Affiliation(s)
- Deborah Wessels
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lecuit T, Lenne PF, Munro E. Force generation, transmission, and integration during cell and tissue morphogenesis. Annu Rev Cell Dev Biol 2011; 27:157-84. [PMID: 21740231 DOI: 10.1146/annurev-cellbio-100109-104027] [Citation(s) in RCA: 386] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell shape changes underlie a large set of biological processes ranging from cell division to cell motility. Stereotyped patterns of cell shape changes also determine tissue remodeling events such as extension or invagination. In vitro and cell culture systems have been essential to understanding the fundamental physical principles of subcellular mechanics. These are now complemented by studies in developing organisms that emphasize how cell and tissue morphogenesis emerge from the interplay between force-generating machines, such as actomyosin networks, and adhesive clusters that transmit tensile forces at the cell cortex and stabilize cell-cell and cell-substrate interfaces. Both force production and transmission are self-organizing phenomena whose adaptive features are essential during tissue morphogenesis. A new era is opening that emphasizes the similarities of and allows comparisons between distant dynamic biological phenomena because they rely on core machineries that control universal features of cytomechanics.
Collapse
Affiliation(s)
- Thomas Lecuit
- Developmental Biology Institute of Marseilles-Luminy, Centre National de la Recherche Scientifique, Université de la Méditerranée, 13288 Marseille Cedex 9, France.
| | | | | |
Collapse
|
14
|
Wang Y, Steimle PA, Ren Y, Ross CA, Robinson DN, Egelhoff TT, Sesaki H, Iijima M. Dictyostelium huntingtin controls chemotaxis and cytokinesis through the regulation of myosin II phosphorylation. Mol Biol Cell 2011; 22:2270-81. [PMID: 21562226 PMCID: PMC3128529 DOI: 10.1091/mbc.e10-11-0926] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This work shows that huntingtin protein (Htt) regulates the phosphorylation status of myosin II during chemotaxis and cytokinesis through protein phosphatase 2A (PP2A). Our findings provide novel insights into the physiological function of Htt and the pathogenesis of Huntington's disease. Abnormalities in the huntingtin protein (Htt) are associated with Huntington's disease. Despite its importance, the function of Htt is largely unknown. We show that Htt is required for normal chemotaxis and cytokinesis in Dictyostelium discoideum. Cells lacking Htt showed slower migration toward the chemoattractant cAMP and contained lower levels of cortical myosin II, which is likely due to defects in dephosphorylation of myosin II mediated by protein phosphatase 2A (PP2A). htt− cells also failed to maintain myosin II in the cortex of the cleavage furrow, generating unseparated daughter cells connected through a thin cytoplasmic bridge. Furthermore, similar to Dictyostelium htt− cells, siRNA-mediated knockdown of human HTT also decreased the PP2A activity in HeLa cells. Our data indicate that Htt regulates the phosphorylation status of myosin II during chemotaxis and cytokinesis through PP2A.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee S, Shen Z, Robinson DN, Briggs S, Firtel RA. Involvement of the cytoskeleton in controlling leading-edge function during chemotaxis. Mol Biol Cell 2010; 21:1810-24. [PMID: 20375144 PMCID: PMC2877640 DOI: 10.1091/mbc.e10-01-0009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cells activate signaling pathways at the site closest to the chemoattractant source that lead to pseudopod formation and directional movement up the gradient. We demonstrate that cytoskeletal components required for cortical tension, including MyoII and IQGAP/cortexillins help regulate the level and timing of leading-edge pathways. In response to directional stimulation by a chemoattractant, cells rapidly activate a series of signaling pathways at the site closest to the chemoattractant source that leads to F-actin polymerization, pseudopod formation, and directional movement up the gradient. Ras proteins are major regulators of chemotaxis in Dictyostelium; they are activated at the leading edge, are required for chemoattractant-mediated activation of PI3K and TORC2, and are one of the most rapid responders, with activity peaking at ∼3 s after stimulation. We demonstrate that in myosin II (MyoII) null cells, Ras activation is highly extended and is not restricted to the site closest to the chemoattractant source. This causes elevated, extended, and spatially misregulated activation of PI3K and TORC2 and their effectors Akt/PKB and PKBR1, as well as elevated F-actin polymerization. We further demonstrate that disruption of specific IQGAP/cortexillin complexes, which also regulate cortical mechanics, causes extended activation of PI3K and Akt/PKB but not Ras activation. Our findings suggest that MyoII and IQGAP/cortexillin play key roles in spatially and temporally regulating leading-edge activity and, through this, the ability of cells to restrict the site of pseudopod formation.
Collapse
Affiliation(s)
- Susan Lee
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
The movements of Dictyostelium discoideum amoebae translocating on a glass surface in the absence of chemoattractant have been reconstructed at 5-second intervals and motion analyzed by employing 3D-DIAS software. A morphometric analysis of pseudopods, the main cell body, and the uropod provides a comprehensive description of the basic motile behavior of a cell in four dimensions (4D), resulting in a list of 18 characteristics. A similar analysis of the myosin II phosphorylation mutant 3XASP reveals a role for the cortical localization of myosin II in the suppression of lateral pseudopods, formation of the uropod, cytoplasmic distribution of cytoplasm in the main cell body, and efficient motility. The results of the morphometric analysis suggest that pseudopods, the main cell body, and the uropod represent three motility compartments that are coordinated for efficient translocation. It provides a contextual framework for interpreting the effects of mutations, inhibitors, and chemoattractants on the basic motile behavior of D. discoideum. The generality of the characteristics of the basic motile behavior of D. discoideum must now be tested by similar 4D analyses of the motility of amoeboid cells of higher eukaryotic cells, in particular human polymorphonuclear leukocytes.
Collapse
|
17
|
Delanoë-Ayari H, Iwaya S, Maeda YT, Inose J, Rivière C, Sano M, Rieu JP. Changes in the magnitude and distribution of forces at different Dictyostelium developmental stages. ACTA ACUST UNITED AC 2008; 65:314-31. [PMID: 18205201 DOI: 10.1002/cm.20262] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The distribution of forces exerted by migrating Dictyostelium amebae at different developmental stages was measured using traction force microscopy. By using very soft polyacrylamide substrates with a high fluorescent bead density, we could measure stresses as small as 30 Pa. Remarkable differences exist both in term of the magnitude and distribution of forces in the course of development. In the vegetative state, cells present cyclic changes in term of speed and shape between an elongated form and a more rounded one. The forces are larger in this first state, especially when they are symmetrically distributed at the front and rear edge of the cell. Elongated vegetative cells can also present a front-rear asymmetric force distribution with the largest forces in the crescent-shaped rear of the cell (uropod). Pre-aggregating cells, once polarized, only present this last kind of asymmetric distribution with the largest forces in the uropod. Except for speed, no cycle is observed. Neither the force distribution of pre-aggregating cells nor their overall magnitude are modified during chemotaxis, the later being similar to the one of vegetative cells (F(0) approximately 6 nN). On the contrary, both the force distribution and overall magnitude is modified for the fast moving aggregating cells. In particular, these highly elongated cells exert lower forces (F(0) approximately 3 nN). The location of the largest forces in the various stages of the development is consistent with the myosin II localization described in the literature for Dictyostelium (Yumura et al.,1984. J Cell Biol 99:894-899) and is confirmed by preliminary experiments using a GFP-myosin Dictyostelium strain.
Collapse
Affiliation(s)
- H Delanoë-Ayari
- Université de Lyon, F-6900, France, Université Lyon 1,CNRS UMR 5586, F-69622 Villeurbanne Cedex, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Kortholt A, van Haastert PJM. Highlighting the role of Ras and Rap during Dictyostelium chemotaxis. Cell Signal 2008; 20:1415-22. [PMID: 18385017 DOI: 10.1016/j.cellsig.2008.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
Abstract
Chemotaxis, the directional movement towards a chemical compound, is an essential property of many cells and has been linked to the development and progression of many diseases. Eukaryotic chemotaxis is a complex process involving gradient sensing, cell polarity, remodelling of the cytoskeleton and signal relay. Recent studies in the model organism Dictyostelium discoideum have shown that chemotaxis does not depend on a single molecular mechanism, but rather depends on several interconnecting pathways. Surprisingly, small G-proteins appear to play essential roles in all these pathways. This review will summarize the role of small G-proteins in Dictyostelium, particularly highlighting the function of the Ras subfamily in chemotaxis.
Collapse
Affiliation(s)
- Arjan Kortholt
- Department of Molecular Cell Biology, University of Groningen, Kerklaan 30, 9751NN Haren, The Netherlands
| | | |
Collapse
|
19
|
Wessels D, Lusche DF, Kuhl S, Heid P, Soll DR. PTEN plays a role in the suppression of lateral pseudopod formation during Dictyostelium motility and chemotaxis. J Cell Sci 2007; 120:2517-31. [PMID: 17623773 DOI: 10.1242/jcs.010876] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It has been suggested that the phosphatydylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] phosphatase and tensin homolog PTEN plays a fundamental role in Dictyostelium discoideum chemotaxis. To identify that role, the behavior of a pten(-) mutant was quantitatively analyzed using two-dimensional and three-dimensional computer-assisted methods. pten(-) cells were capable of polarizing and translocating in the absence of attractant, and sensing and responding to spatial gradients, temporal gradients and natural waves of attractant. However, all of these responses were compromised (i.e. less efficient) because of the fundamental incapacity of pten(-) cells to suppress lateral pseudopod formation and turning. This defect was equally manifested in the absence, as well as presence, of attractant. PTEN, which is constitutively localized in the cortex of polarized cells, was found essential for the attractant-stimulated increase in cortical myosin II and F-actin that is responsible for the increased suppression of pseudopods during chemotaxis. PTEN, therefore, plays a fundamental role in the suppression of lateral pseudopod formation, a process essential for the efficiency of locomotion and chemotaxis, but not in directional sensing.
Collapse
Affiliation(s)
- Deborah Wessels
- W. M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
20
|
Keizer-Gunnink I, Kortholt A, Van Haastert PJM. Chemoattractants and chemorepellents act by inducing opposite polarity in phospholipase C and PI3-kinase signaling. ACTA ACUST UNITED AC 2007; 177:579-85. [PMID: 17517960 PMCID: PMC2064204 DOI: 10.1083/jcb.200611046] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During embryonic development, cell movement is orchestrated by a multitude of attractants and repellents. Chemoattractants applied as a gradient, such as cAMP with Dictyostelium discoideum or fMLP with neutrophils, induce the activation of phospholipase C (PLC) and phosphoinositide 3 (PI3)-kinase at the front of the cell, leading to the localized depletion of phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2) and the accumulation of phosphatidylinositol-3,4,5-trisphosphate (PI[3,4,5]P3). Using D. discoideum, we show that chemorepellent cAMP analogues induce localized inhibition of PLC, thereby reversing the polarity of PI(4,5)P2. This leads to the accumulation of PI(3,4,5)P3 at the rear of the cell, and chemotaxis occurs away from the source. We conclude that a PLC polarity switch controls the response to attractants and repellents.
Collapse
Affiliation(s)
- Ineke Keizer-Gunnink
- Department of Molecular Cell Biology, University of Groningen, Haren, Netherlands
| | | | | |
Collapse
|
21
|
Kim D, Dressler GR. PTEN modulates GDNF/RET mediated chemotaxis and branching morphogenesis in the developing kidney. Dev Biol 2007; 307:290-9. [PMID: 17540362 PMCID: PMC2129124 DOI: 10.1016/j.ydbio.2007.04.051] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 04/12/2007] [Accepted: 04/30/2007] [Indexed: 01/20/2023]
Abstract
The RET receptor tyrosine kinase is activated by GDNF and controls outgrowth and invasion of the ureteric bud epithelia in the developing kidney. In renal epithelial cells and in enteric neuronal precursor cells, activation of RET results in chemotaxis as Ret expressing cells invade the surrounding GDNF expressing tissue. One potential downstream signaling pathway governing RET mediated chemotaxis may require phosphatidylinositol 3-kinase (PI3K), which generates PI(3,4,5) triphosphate. The PTEN tumor suppressor gene encodes a protein and lipid phosphatase that regulates cell growth, apoptosis and many other cellular processes. PTEN helps regulate cellular chemotaxis by antagonizing the PI3K signaling pathway through dephosphorylation of phosphotidylinositol triphosphates. In this report, we show that PTEN suppresses RET mediated cell migration and chemotaxis in cell culture assays, that RET activation results in asymmetric localization of inositol triphosphates and that loss of PTEN affects the pattern of branching morphogenesis in developing mouse kidneys. These data suggest a critical role for the PI3K/PTEN axis in shaping the pattern of epithelial branches in response to RET activation.
Collapse
Affiliation(s)
| | - Gregory R. Dressler
- *Corresponding author. Fax: +1 734 763 6640. E-mail address: (G.R. Dressler)
| |
Collapse
|
22
|
Jeon TJ, Lee DJ, Merlot S, Weeks G, Firtel RA. Rap1 controls cell adhesion and cell motility through the regulation of myosin II. ACTA ACUST UNITED AC 2007; 176:1021-33. [PMID: 17371831 PMCID: PMC2064086 DOI: 10.1083/jcb.200607072] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have investigated the role of Rap1 in controlling chemotaxis and cell adhesion in Dictyostelium discoideum. Rap1 is activated rapidly in response to chemoattractant stimulation, and activated Rap1 is preferentially found at the leading edge of chemotaxing cells. Cells expressing constitutively active Rap1 are highly adhesive and exhibit strong chemotaxis defects, which are partially caused by an inability to spatially and temporally regulate myosin assembly and disassembly. We demonstrate that the kinase Phg2, a putative Rap1 effector, colocalizes with Rap1–guanosine triphosphate at the leading edge and is required in an in vitro assay for myosin II phosphorylation, which disassembles myosin II and facilitates filamentous actin–mediated leading edge protrusion. We suggest that Rap1/Phg2 plays a role in controlling leading edge myosin II disassembly while passively allowing myosin II assembly along the lateral sides and posterior of the cell.
Collapse
Affiliation(s)
- Taeck J Jeon
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
Dictyostelium conventional myosin (myosin II) is an abundant protein that plays a role in various cellular processes such as cytokinesis, cell protrusion and development. This review will focus on the signal transduction pathways that regulate myosin II during cell movement. Myosin II appears to have two modes of action in Dictyostelium: local stabilization of the cytoskeleton by myosin filament association to the actin meshwork (structural mode) and force generation by contraction of actin filaments (motor mode). Some processes, such as cell movement under restrictive environment, require only the structural mode of myosin. However, cytokinesis in suspension and uropod retraction depend on motor activity as well. Myosin II can self-assemble into bipolar filaments. The formation of these filaments is negatively regulated by heavy chain phosphorylation through the action of a set of novel alpha kinases and is relatively well understood. However, only recently it has become clear that the formation of bipolar filaments and their translocation to the cortex are separate events. Translocation depends on filamentous actin, and is regulated by a cGMP pathway and possibly also by the cAMP phosphodiesterase RegA and the p21-activated kinase PAKa. Myosin motor activity is regulated by phosphorylation of the regulatory light chain through myosin light chain kinase A. Unlike conventional light chain kinases, this enzyme is not regulated by calcium but is activated by cGMP-induced phosphorylation via an upstream kinase and subsequent autophosphorylation.
Collapse
Affiliation(s)
- Leonard Bosgraaf
- Department of Biology, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
24
|
Dawes-Hoang RE, Parmar KM, Christiansen AE, Phelps CB, Brand AH, Wieschaus EF. folded gastrulation, cell shape change and the control of myosin localization. Development 2006; 132:4165-78. [PMID: 16123312 DOI: 10.1242/dev.01938] [Citation(s) in RCA: 319] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The global cell movements that shape an embryo are driven by intricate changes to the cytoarchitecture of individual cells. In a developing embryo, these changes are controlled by patterning genes that confer cell identity. However, little is known about how patterning genes influence cytoarchitecture to drive changes in cell shape. In this paper, we analyze the function of the folded gastrulation gene (fog), a known target of the patterning gene twist. Our analysis of fog function therefore illuminates a molecular pathway spanning all the way from patterning gene to physical change in cell shape. We show that secretion of Fog protein is apically polarized, making this the earliest polarized component of a pathway that ultimately drives myosin to the apical side of the cell. We demonstrate that fog is both necessary and sufficient to drive apical myosin localization through a mechanism involving activation of myosin contractility with actin. We determine that this contractility driven form of localization involves RhoGEF2 and the downstream effector Rho kinase. This distinguishes apical myosin localization from basal myosin localization, which we find not to require actinomyosin contractility or FOG/RhoGEF2/Rho-kinase signaling. Furthermore, we demonstrate that once localized apically, myosin continues to contract. The force generated by continued myosin contraction is translated into a flattening and constriction of the cell surface through a tethering of the actinomyosin cytoskeleton to the apical adherens junctions. Our analysis of fog function therefore provides a direct link from patterning to cell shape change.
Collapse
Affiliation(s)
- Rachel E Dawes-Hoang
- Department of Molecular Biology, Howard Hughes Medical Institute, Princeton University, NJ 08544, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Heid PJ, Geiger J, Wessels D, Voss E, Soll DR. Computer-assisted analysis of filopod formation and the role of myosin II heavy chain phosphorylation in Dictyostelium. J Cell Sci 2005; 118:2225-37. [PMID: 15855234 DOI: 10.1242/jcs.02342] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the role played by filopodia in the motility and chemotaxis of amoeboid cells, a computer-assisted 3D reconstruction and motion analysis system, DIAS 4.0, has been developed. Reconstruction at short time intervals of Dictyostelium amoebae migrating in buffer or in response to chemotactic signals, revealed that the great majority of filopodia form on pseudopodia, not on the cell body; that filopodia on the cell body originate primarily on pseudopodia and relocate; and that filopodia on the uropod are longer and more stable than those located on other portions of the cell. When adjusting direction through lateral pseudopod formation in a spatial gradient of chemoattractant, the temporal and spatial dynamics of lateral pseudopodia suggest that filopodia may be involved in stabilizing pseudopodia on the substratum while the decision is being made by a cell either to turn into a pseudopodium formed in the correct direction (up the gradient) or to retract a pseudopodium formed in the wrong direction (down the gradient). Experiments in which amoebae were treated with high concentrations of chemoattractant further revealed that receptor occupancy plays a role both in filopod formation and retraction. As phosphorylation-dephosphorylation of myosin II heavy chain (MHC) plays a role in lateral pseudopod formation, turning and chemotaxis, the temporal and spatial dynamics of filopod formation were analyzed in MHC phosphorylation mutants. These studies revealed that MHC phosphorylation-dephosphorylation plays a role in the regulation of filopod formation during cell migration in buffer and during chemotaxis. The computer-assisted technology described here for reconstructing filopodia at short time intervals in living cells, therefore provides a new tool for investigating the role filopodia play in the motility and chemotaxis of amoeboid cells.
Collapse
Affiliation(s)
- Paul J Heid
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
26
|
Bosgraaf L, Waijer A, Engel R, Visser AJWG, Wessels D, Soll D, van Haastert PJM. RasGEF-containing proteins GbpC and GbpD have differential effects on cell polarity and chemotaxis in Dictyostelium. J Cell Sci 2005; 118:1899-910. [PMID: 15827084 DOI: 10.1242/jcs.02317] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The regulation of cell polarity plays an important role in chemotaxis. Previously, two proteins termed GbpC and GbpD were identified in Dictyostelium, which contain RasGEF and cyclic nucleotide binding domains. Here we show that gbpC-null cells display strongly reduced chemotaxis, because they are unable to polarise effectively in a chemotactic gradient. However, gbpD-null mutants exhibit the opposite phenotype: cells display improved chemotaxis and appear hyperpolar, because cells make very few lateral pseudopodia, whereas the leading edge is continuously remodelled. Overexpression of GbpD protein results in severely reduced chemotaxis. Cells extend many bifurcated and lateral pseudopodia, resulting in the absence of a leading edge. Furthermore, cells are flat and adhesive owing to an increased number of substrate-attached pseudopodia. This GbpD phenotype is not dependent on intracellular cGMP or cAMP, like its mammalian homolog PDZ-GEF. Previously we showed that GbpC is a high-affinity cGMP-binding protein that acts via myosin II. We conclude that cGMP activates GbpC, mediating the chemoattractant-induced establishment of cell polarity through myosin. GbpD induces the formation of substrate-attached pseudopodia, resulting in increased attachment and suppression of polarity.
Collapse
Affiliation(s)
- Leonard Bosgraaf
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
During random locomotion, human neutrophils and Dictyostelium discoideum amoebae repeatedly extend and retract cytoplasmic processes. During directed cell migration--chemotaxis--these pseudopodia form predominantly at the leading edge in response to the local accumulation of certain signalling molecules. Concurrent changes in actin and myosin enable the cell to move towards the stimulus. Recent studies are beginning to identify an intricate network of signalling molecules that mediate these processes, and how these molecules become localized in the cell is now becoming clear.
Collapse
Affiliation(s)
- Peter J M Van Haastert
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | | |
Collapse
|
28
|
Heid PJ, Wessels D, Daniels KJ, Gibson DP, Zhang H, Voss E, Soll DR. The role of myosin heavy chain phosphorylation in Dictyostelium motility, chemotaxis and F-actin localization. J Cell Sci 2004; 117:4819-35. [PMID: 15340009 DOI: 10.1242/jcs.01358] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To assess the role of myosin II heavy chain (MHC) phosphorylation in basic motility and natural chemotaxis, the Dictyostelium mhcA null mutant mhcA(-), mhcA(-) cells rescued with a myosin II gene that mimics the constitutively unphosphorylated state (3XALA) and mhcA(-) cells rescued with a myosin II gene that mimics the constitutively phosphorylated state (3XASP), were analyzed in buffer and in response to the individual spatial, temporal and concentration components of a cAMP wave using computer-assisted methods. Each mutant strain exhibited unique defects in cell motility and chemotaxis. Although mhcA(-) cells could crawl with some polarity and showed chemotaxis with highly reduced efficiency in a spatial gradient of cAMP, they were very slow, far less polar and more three-dimensional than control cells. They were also incapable of responding to temporal gradients of cAMP, of chemotaxis in a natural wave of cAMP or streaming late in aggregation. 3XASP cells were faster and chemotactically more efficient than mhcA(-) cells, but still incapable of responding to temporal gradients of cAMP, chemotaxis in natural waves of cAMP or streaming late in aggregation. 3XALA cells were fast, were able to respond to temporal gradients of cAMP, and responded to natural waves of cAMP. However, they exhibited a 50% reduction in chemotactic efficiency, could not stream late in aggregation and could not enter the streams of control cells in mixed cultures. F-actin staining further revealed that while the presence of unphosphorylated MHC was essential for the increase in F-actin in the cytoplasm in response to the increasing temporal gradient of cAMP in the front of a natural wave, the actual dephosphorylation event was essential for the associated increase in cortical F-actin. The results of these studies indicate that MHC phosphorylation-dephosphorylation, like myosin II regulatory light chain phosphorylation-dephosphorylation, represents a potential downstream target of the regulatory cascades emanating from the different phases of the wave.
Collapse
Affiliation(s)
- Paul J Heid
- W. M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Kolega J. Phototoxicity and photoinactivation of blebbistatin in UV and visible light. Biochem Biophys Res Commun 2004; 320:1020-5. [PMID: 15240150 DOI: 10.1016/j.bbrc.2004.06.045] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Indexed: 11/22/2022]
Abstract
Blebbistatin was recently identified as a selective, cell-permeant inhibitor of myosin II. Because blebbistatin is likely to be used extensively with fluorescence imaging in studies of cytoskeletal dynamics, its compatibility with common excitation wavelengths was examined. Illumination of blebbistatin-treated bovine aortic endothelial cells at 365 and 450-490 nm, but not 510-560 or 590-650 nm, caused dose-dependent cell death. Illumination of blebbistatin alone at 365 and 450-490 nm changed its absorption and emission spectra, but the resultant compounds were not toxic. In addition, photoreacted blebbistatin no longer disrupted myosin distribution in cells, indicating loss of pharmacological activity. Fluorescence microscopy showed that upon illumination, blebbistatin became bound to cells and to protein-coated glass, suggesting that toxicity may arise from light-induced reaction of blebbistatin with cell proteins. Blebbistatin should be used only with careful consideration of these photochemical effects.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Aorta/drug effects
- Aorta/radiation effects
- Cattle
- Cells, Cultured
- Dose-Response Relationship, Drug
- Dose-Response Relationship, Radiation
- Drug Resistance/radiation effects
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/radiation effects
- Heterocyclic Compounds, 4 or More Rings/pharmacokinetics
- Heterocyclic Compounds, 4 or More Rings/radiation effects
- Heterocyclic Compounds, 4 or More Rings/toxicity
- Light
- Radiation Tolerance/drug effects
- Tissue Distribution
- Ultraviolet Rays
Collapse
Affiliation(s)
- J Kolega
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo School of Medicine and Biomedical Sciences, 3435 Main Street, Buffalo, NY 14214, USA.
| |
Collapse
|
30
|
Jacobelli J, Chmura SA, Buxton DB, Davis MM, Krummel MF. A single class II myosin modulates T cell motility and stopping, but not synapse formation. Nat Immunol 2004; 5:531-8. [PMID: 15064761 DOI: 10.1038/ni1065] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Accepted: 03/01/2004] [Indexed: 11/08/2022]
Abstract
Upon encountering an antigen, motile T cells stop crawling, change morphology and ultimately form an 'immunological synapse'. Although myosin motors are thought to mediate various aspects of this process, the molecules involved and their exact roles are not defined. Here we show that nonmuscle myosin heavy chain IIA, or MyH9, is the only class II myosin expressed in T cells and is associated with the uropod during crawling. MyH9 function is required for maintenance of the uropod and for T cell motility but is dispensable for synapse formation. Phosphorylation of MyH9 in its multimerization domain by T cell receptor-generated signals indicates that inactivation of this motor may be a key step in the 'stop' response during antigen recognition.
Collapse
Affiliation(s)
- Jordan Jacobelli
- Department of Pathology, University of California at San Francisco, 513 Parnassus Ave., San Francisco, California 93143, USA
| | | | | | | | | |
Collapse
|
31
|
De la Roche MA, Smith JL, Betapudi V, Egelhoff TT, Côté GP. Signaling pathways regulating Dictyostelium myosin II. J Muscle Res Cell Motil 2003; 23:703-18. [PMID: 12952069 DOI: 10.1023/a:1024467426244] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dictyostelium myosin II is a conventional, two-headed myosin that consists of two copies each of a myosin heavy chain (MHC), an essential light chain (ELC) and a regulatory light chain (RLC). The MHC is comprised of an amino-terminal motor domain, a neck region that binds the RLC and ELC and a carboxyl-terminal alpha-helical coiled-coil tail. Electrostatic interactions between the tail domains mediate the self-assembly of myosin II into bipolar filaments that are capable of interacting with actin filaments to generate a contractile force. In this review we discuss the regulation of Dictyostelium myosin II by a myosin light chain kinase (MLCK-A) that phosphorylates the RLC and increases motor activity and by MHC kinases (MHCKs) that phosphorylate the tail and prevent filament assembly. Dictyostelium may express as many as four MHCKs (MHCK A-D) consisting of an atypical alpha-kinase catalytic domain and a carboxyl-terminal WD repeat domain that targets myosin II filaments. A previously reported MHCK, termed MHC-PKC, now seems more likely to be a diacylglycerol kinase (DgkA). The relationship of the MHCKs to the larger family of alpha-kinases is discussed and key features of the structure of the alpha-kinase catalytic domain are reviewed. Potential upstream regulators of myosin II are described, including DgkA, cGMP, cAMP and PAKa, a target for Rac GTPases. Recent results point to a complex network of signaling pathways responsible for controling the activity and localization of myosin II in the cell.
Collapse
Affiliation(s)
- Marc A De la Roche
- Department of Biochemistry, Botterell Hall, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
32
|
Shu S, Liu X, Korn ED. Dictyostelium and Acanthamoeba myosin II assembly domains go to the cleavage furrow of Dictyostelium myosin II-null cells. Proc Natl Acad Sci U S A 2003; 100:6499-504. [PMID: 12748387 PMCID: PMC164475 DOI: 10.1073/pnas.0732155100] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How myosin II localizes to the cleavage furrow of dividing cells is largely unknown. We show here that a 283-residue protein, assembly domain (AD)1, corresponding to the AD in the tail of Dictyostelium myosin II assembles into bundles of long tubules when expressed in myosin II-null cells and localizes to the cleavage furrow of dividing cells. AD1 mutants that do not polymerize in vitro do not go to the cleavage furrow in vivo. An assembly-competent polypeptide corresponding to the C-terminal 256 residues of Acanthamoeba myosin II also goes to the cleavage furrow of Dictyostelium myosin II-null cells. When overexpressed in wild-type cells, AD1 colocalizes with endogenous myosin II (possibly as a copolymer) in interphase, motile, and dividing cells and under caps of Con A receptors but has no effect on myosin II-dependent functions. These results suggest that neither a specific sequence, other than that required for polymerization, nor interaction with other proteins is required for localization of myosin II to the cleavage furrow.
Collapse
Affiliation(s)
- Shi Shu
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | |
Collapse
|