1
|
Cahill ME, Walker DM, Gancarz AM, Wang ZJ, Lardner CK, Bagot RC, Neve RL, Dietz DM, Nestler EJ. The dendritic spine morphogenic effects of repeated cocaine use occur through the regulation of serum response factor signaling. Mol Psychiatry 2018; 23:1474-1486. [PMID: 28555077 PMCID: PMC5709273 DOI: 10.1038/mp.2017.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/23/2017] [Accepted: 04/12/2017] [Indexed: 12/28/2022]
Abstract
The nucleus accumbens (NAc) is a primary brain reward region composed predominantly of medium spiny neurons (MSNs). In response to early withdrawal from repeated cocaine administration, de novo dendritic spine formation occurs in NAc MSNs. Much evidence indicates that this new spine formation facilitates the rewarding properties of cocaine. Early withdrawal from repeated cocaine also produces dramatic alterations in the transcriptome of NAc MSNs, but how such alterations influence cocaine's effects on dendritic spine formation remain unclear. Studies in non-neuronal cells indicate that actin cytoskeletal regulatory pathways in nuclei have a direct role in the regulation of gene transcription in part by controlling the access of co-activators to their transcription factor partners. In particular, actin state dictates the interaction between the serum response factor (SRF) transcription factor and one of its principal co-activators, MAL. Here we show that cocaine induces alterations in nuclear F-actin signaling pathways in the NAc with associated changes in the nuclear subcellular localization of SRF and MAL. Using in vivo optogenetics, the brain region-specific inputs to the NAc that mediate these nuclear changes are investigated. Finally, we demonstrate that regulated SRF expression, in turn, is critical for the effects of cocaine on dendritic spine formation and for cocaine-mediated behavioral sensitization. Collectively, these findings reveal a mechanism by which nuclear-based changes influence the structure of NAc MSNs in response to cocaine.
Collapse
Affiliation(s)
- ME Cahill
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - DM Walker
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - AM Gancarz
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University at Buffalo, Buffalo, NY, USA
| | - ZJ Wang
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University at Buffalo, Buffalo, NY, USA
| | - CK Lardner
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - RC Bagot
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Psychology, McGill University, Montréal, QC, Canada
| | - RL Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - DM Dietz
- Department of Pharmacology and Toxicology, Research Institute on Addictions, Program in Neuroscience, State University at Buffalo, Buffalo, NY, USA
| | - EJ Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Hanna SJ, McCoy-Simandle K, Miskolci V, Guo P, Cammer M, Hodgson L, Cox D. The Role of Rho-GTPases and actin polymerization during Macrophage Tunneling Nanotube Biogenesis. Sci Rep 2017; 7:8547. [PMID: 28819224 PMCID: PMC5561213 DOI: 10.1038/s41598-017-08950-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/17/2017] [Indexed: 01/06/2023] Open
Abstract
Macrophage interactions with other cells, either locally or at distances, are imperative in both normal and pathological conditions. While soluble means of communication can transmit signals between different cells, it does not account for all long distance macrophage interactions. Recently described tunneling nanotubes (TNTs) are membranous channels that connect cells together and allow for transfer of signals, vesicles, and organelles. However, very little is known about the mechanism by which these structures are formed. Here we investigated the signaling pathways involved in TNT formation by macrophages using multiple imaging techniques including super-resolution microscopy (3D-SIM) and live-cell imaging including the use of FRET-based Rho GTPase biosensors. We found that formation of TNTs required the activity and differential localization of Cdc42 and Rac1. The downstream Rho GTPase effectors mediating actin polymerization through Arp2/3 nucleation, Wiskott-Aldrich syndrome protein (WASP) and WASP family verprolin-homologous 2 (WAVE2) proteins are also important, and both pathways act together during TNT biogenesis. Finally, TNT function as measured by transfer of cellular material between cells was reduced following depletion of a single factor demonstrating the importance of these factors in TNTs. Given that the characterization of TNT formation is still unclear in the field; this study provides new insights and would enhance the understanding of TNT formation towards investigating new markers.
Collapse
Affiliation(s)
- Samer J Hanna
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA
| | - Kessler McCoy-Simandle
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA
| | - Veronika Miskolci
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA
| | - Peng Guo
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Cammer
- Microscopy Core, DART, NYU Langone Medical Center, Bronx, NY, 10016, USA
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA. .,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA. .,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Janssen E, Tohme M, Hedayat M, Leick M, Kumari S, Ramesh N, Massaad MJ, Ullas S, Azcutia V, Goodnow CC, Randall KL, Qiao Q, Wu H, Al-Herz W, Cox D, Hartwig J, Irvine DJ, Luscinskas FW, Geha RS. A DOCK8-WIP-WASp complex links T cell receptors to the actin cytoskeleton. J Clin Invest 2016; 126:3837-3851. [PMID: 27599296 DOI: 10.1172/jci85774] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/28/2016] [Indexed: 11/17/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is associated with mutations in the WAS protein (WASp), which plays a critical role in the initiation of T cell receptor-driven (TCR-driven) actin polymerization. The clinical phenotype of WAS includes susceptibility to infection, allergy, autoimmunity, and malignancy and overlaps with the symptoms of dedicator of cytokinesis 8 (DOCK8) deficiency, suggesting that the 2 syndromes share common pathogenic mechanisms. Here, we demonstrated that the WASp-interacting protein (WIP) bridges DOCK8 to WASp and actin in T cells. We determined that the guanine nucleotide exchange factor activity of DOCK8 is essential for the integrity of the subcortical actin cytoskeleton as well as for TCR-driven WASp activation, F-actin assembly, immune synapse formation, actin foci formation, mechanotransduction, T cell transendothelial migration, and homing to lymph nodes, all of which also depend on WASp. These results indicate that DOCK8 and WASp are in the same signaling pathway that links TCRs to the actin cytoskeleton in TCR-driven actin assembly. Further, they provide an explanation for similarities in the clinical phenotypes of WAS and DOCK8 deficiency.
Collapse
|
4
|
Franco-Villanueva A, Fernández-López E, Gabandé-Rodríguez E, Bañón-Rodríguez I, Esteban JA, Antón IM, Ledesma MD. WIP modulates dendritic spine actin cytoskeleton by transcriptional control of lipid metabolic enzymes. Hum Mol Genet 2014; 23:4383-95. [PMID: 24698977 DOI: 10.1093/hmg/ddu155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We identify Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) as a novel component of neuronal synapses whose absence increases dendritic spine size and filamentous actin levels in an N-WASP/Arp2/3-independent, RhoA/ROCK/profilinIIa-dependent manner. These effects depend on the reduction of membrane sphingomyelin (SM) due to transcriptional upregulation of neutral sphingomyelinase (NSM) through active RhoA; this enhances RhoA binding to the membrane, raft partitioning and activation in steady state but prevents RhoA changes in response to stimulus. Inhibition of NSM or SM addition reverses RhoA, filamentous actin and functional anomalies in synapses lacking WIP. Our findings characterize WIP as a link between membrane lipid composition and actin cytoskeleton at dendritic spines. They also contribute to explain cognitive deficits shared by individuals bearing mutations in the region assigned to the gene encoding for WIP.
Collapse
Affiliation(s)
- Ana Franco-Villanueva
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Estefanía Fernández-López
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | | | | | | | - Inés M Antón
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | | |
Collapse
|
5
|
Ku YS, Koo NSC, Li FWY, Li MW, Wang H, Tsai SN, Sun F, Lim BL, Ko WH, Lam HM. GmSAL1 hydrolyzes inositol-1,4,5-trisphosphate and regulates stomatal closure in detached leaves and ion compartmentalization in plant cells. PLoS One 2013; 8:e78181. [PMID: 24167607 PMCID: PMC3805524 DOI: 10.1371/journal.pone.0078181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/09/2013] [Indexed: 11/19/2022] Open
Abstract
Inositol polyphosphatases are important regulators since they control the catabolism of phosphoinositol derivatives, which are often signaling molecules for cellular processes. Here we report on the characterization of one of their members in soybean, GmSAL1. In contrast to the substrate specificity of its Arabidopsis homologues (AtSAL1 and AtSAL2), GmSAL1 only hydrolyzes inositol-1,4,5-trisphosphate (IP3) but not inositol-1,3,4-trisphosphate or inositol-1,4-bisphosphate.The ectopic expression of GmSAL1 in transgenic Arabidopsis thaliana led to a reduction in IP3 signals, which was inferred from the reduction in the cytoplasmic signals of the in vivo biomarker pleckstrin homology domain-green florescent protein fusion protein and the suppression of abscisic acid-induced stomatal closure. At the cellular level, the ectopic expression of GmSAL1 in transgenic BY-2 cells enhanced vacuolar Na(+) compartmentalization and therefore could partially alleviate salinity stress.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Nicolas Siu-Chung Koo
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Francisca Wing-Yen Li
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Man-Wah Li
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Hongmei Wang
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Sau-Na Tsai
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Feng Sun
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| | - Boon Leong Lim
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| | - Wing-Hung Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Hon-Ming Lam
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| |
Collapse
|
6
|
Lee J, Park I, Lee ZW, Kim SW, Baek N, Park HS, Park SU, Kwon S, Kim H. Regulation of the major vacuolar Ca²⁺ transporter genes, by intercellular Ca²⁺ concentration and abiotic stresses, in tip-burn resistant Brassica oleracea. Mol Biol Rep 2012; 40:177-88. [PMID: 23138186 DOI: 10.1007/s11033-012-2047-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 10/02/2012] [Indexed: 11/26/2022]
Abstract
Calcium is an essential plant macronutrient that has unique structural and signaling roles related to tip-burn disorder in Brassica spp. crops. For two types of cabbage inbred lines, tip-burn susceptible and resistant, we measured and compared major macronutrient cations, including Ca(2+), in leaves. In both lines, Ca(2+), Mg(2+), Na(+), and K(+), accumulated more in leaf base than in leaf apex. Ca(2+) and K(+) were >2 times more abundant in the tip-burn resistant line, while Na(+) was higher in the susceptible line. Ca(2+) differences between the two lines resulted from differential accumulation of calcium into cell vacuoles. We profiled major vacuolar Ca(2+) transporters, in both cabbage lines, by growth time and intercellular Ca(2+) concentration. Expression pattern of several Ca(2+) transporter genes differed between tip-burn susceptible and resistant lines by growth time points. We also identified promoter regions of the major Ca(2+) vacuole transporter genes, CAX1, ACA4, and ACA11, which displayed hormonal, light and defense-related cis-acting regulatory elements. Finally, transporter genes in the two cabbage lines responded differently to abiotic stresses, demonstrating diversity in gene regulation among orthologous genes.
Collapse
Affiliation(s)
- Jeongyeo Lee
- Green Bio Research Center, Cabbage Genomics Assisted Breeding Supporting Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahangno 111, Daejeon 305-806, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kapustina M, Vitriol E, Elston TC, Loew LM, Jacobson K. Modeling capping protein FRAP and CALI experiments reveals in vivo regulation of actin dynamics. Cytoskeleton (Hoboken) 2010; 67:519-34. [PMID: 20623665 DOI: 10.1002/cm.20463] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To gain insights on cellular mechanisms regulating actin polymerization, we used the Virtual Cell to model fluorescence recovery after photobleaching (FRAP) and chromophore-assisted laser inactivation (CALI) experiments on EGFP-capping protein (EGFP-CP). Modeling the FRAP kinetics demonstrated that the in vivo rate for the dissociation of CP from actin filaments is much faster (approximately 0.1 s(-1)) than that measured in vitro (0.01-0.0004 s(-1)). The CALI simulation revealed that in order to induce sustainable changes in cell morphology after CP inactivation, the cells should exhibit anticapping ability. We included the VASP protein as the anticapping agent in the modeling scheme. The model predicts that VASP affinity for barbed ends has a cooperative dependence on the concentration of VASP-barbed end complexes. This dependence produces a positive feedback that stabilizes the complexes and allows sustained growth at clustered filament tips. We analyzed the range of laser intensities that are sufficient to induce changes in cell morphology. This analysis demonstrates that FRAP experiments with EGFP-CP can be performed safely without changes in cell morphology, because, the intensity of the photobleaching beam is not high enough to produce the critical concentration of free barbed ends that will induce filament growth before diffusional replacement of EGFP-CP occurs.
Collapse
Affiliation(s)
- Maryna Kapustina
- Department of Cell and Developmental Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7090, USA
| | | | | | | | | |
Collapse
|
8
|
Mesenchymal migration as a therapeutic target in glioblastoma. JOURNAL OF ONCOLOGY 2010; 2010:430142. [PMID: 20652056 PMCID: PMC2905941 DOI: 10.1155/2010/430142] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 04/28/2010] [Indexed: 12/29/2022]
Abstract
Extensive infiltration of the surrounding healthy brain tissue is a cardinal feature of glioblastomas, highly lethal brain tumors. Deep infiltration by the glioblastoma cells renders complete surgical excision difficult and contemporary adjuvant therapies have had little impact on long-term survival. Thus, deep infiltration and resistance to irradiation and chemotherapy remain a major cause of patient mortality. Modern therapies specifically targeted to this unique aspect of glioblastoma cell biology hold significant promise to substantially improve survival rates for glioblastoma patients. In the present paper, we focus on the role of adhesion signaling molecules and the actin cytoskeleton in the mesenchymal mode of motility that characterizes invading glioblastoma cells. We then review current approaches to targeting these elements of the glioblastoma cell migration machinery and discuss other aspects of cell migration that may improve the treatment of infiltrating glioblastoma.
Collapse
|
9
|
Park H, Cox D. Cdc42 regulates Fc gamma receptor-mediated phagocytosis through the activation and phosphorylation of Wiskott-Aldrich syndrome protein (WASP) and neural-WASP. Mol Biol Cell 2009; 20:4500-8. [PMID: 19741094 DOI: 10.1091/mbc.e09-03-0230] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cdc42 is a key regulator of the actin cytoskeleton and activator of Wiskott-Aldrich syndrome protein (WASP). Although several studies have separately demonstrated the requirement for both Cdc42 and WASP in Fc(gamma) receptor (Fc(gamma)R)-mediated phagocytosis, their precise roles in the signal cascade leading to engulfment are still unclear. Reduction of endogenous Cdc42 expression by using RNA-mediated interference (short hairpin RNA [shRNA]) severely impaired the phagocytic capacity of RAW/LR5 macrophages, due to defects in phagocytic cup formation, actin assembly, and pseudopod extension. Addition of wiskostatin, a WASP/neural-WASP (N-WASP) inhibitor showed extensive inhibition of phagocytosis, actin assembly, and cell extension identical to the phenotype seen upon reduction of Cdc42 expression. However, using WASP-deficient bone marrow-derived macrophages or shRNA of WASP or N-WASP indicated a requirement for both WASP and N-WASP in phagocytosis. Cdc42 was necessary for WASP/N-WASP activation, as determined using a conformation-sensitive antibody against WASP/N-WASP and partial restoration of phagocytosis in Cdc42 reduced cells by expression of a constitutively activated WASP. In addition, Cdc42 was required for proper WASP tyrosine phosphorylation, which was also necessary for phagocytosis. These results indicate that Cdc42 is essential for the activation of WASP and N-WASP, leading to actin assembly and phagocytic cup formation by macrophages during Fc(gamma)R-mediated phagocytosis.
Collapse
Affiliation(s)
- Haein Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA.
| | | |
Collapse
|
10
|
Sauna ZE, Okunji C, Hunt RC, Gupta T, Allen CE, Plum E, Blaisdell A, Grigoryan V, S G, Fathke R, Soejima K, Kimchi-Sarfaty C. Characterization of conformation-sensitive antibodies to ADAMTS13, the von Willebrand cleavage protease. PLoS One 2009; 4:e6506. [PMID: 19654870 PMCID: PMC2716513 DOI: 10.1371/journal.pone.0006506] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 06/27/2009] [Indexed: 12/17/2022] Open
Abstract
Background The zinc metalloprotease ADAMTS13 is a multidomain protein that cleaves von Willebrand Factor (VWF) and is implicated in Thrombotic Thrombocytopenic Purpura (TTP) pathogenesis. Understanding the mechanism of this protein is an important goal. Conformation sensitive antibodies have been used to monitor protein conformation and to decipher the molecular mechanism of proteins as well as to distinguish functional and non-functional mutants. Methodology/Principal Findings We have characterized several antibodies against ADAMTS13, both monoclonal and polyclonal. We have used flow cytometry to estimate the binding of these antibodies to ADAMTS13 and demonstrate that antibodies raised against the TSP and disintegrin domains detect conformation changes in the ADAMTS13. Thus for example, increased binding of these antibodies was detected in the presence of the substrate (VWF), mainly at 37°C and not at 4°C. These antibodies could also detect differences between wild-type ADAMTS13 and the catalytically deficient mutant (P475S). The flow cytometry approach also allows us to estimate the reactivity of the antibody as well as its apparent affinity. Conclusions/Significance Our results suggest that these antibodies may serve as useful reagents to distinguish functional and non-functional ADAMTS13 and analyze conformational transitions to understand the catalytic mechanism.
Collapse
Affiliation(s)
- Zuben E. Sauna
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
- * E-mail: (ZES); (CKS)
| | - Chinyere Okunji
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Ryan C. Hunt
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Tanvi Gupta
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Courtni E. Allen
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Elizabeth Plum
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Adam Blaisdell
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Vahan Grigoryan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Geetha S
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Robert Fathke
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Kenji Soejima
- First Research Department, the Chemo-Sero-Therapeutic Research Institute, Kumamoto, Japan
| | - Chava Kimchi-Sarfaty
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
- * E-mail: (ZES); (CKS)
| |
Collapse
|
11
|
Cammer M, Gevrey JC, Lorenz M, Dovas A, Condeelis J, Cox D. The mechanism of CSF-1-induced Wiskott-Aldrich syndrome protein activation in vivo: a role for phosphatidylinositol 3-kinase and Cdc42. J Biol Chem 2009; 284:23302-11. [PMID: 19561083 DOI: 10.1074/jbc.m109.036384] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A role for Wiskott-Aldrich syndrome protein (WASP) in chemotaxis to various agents has been demonstrated in monocyte-derived cell types. Although WASP has been shown to be activated by multiple mechanisms in vitro, it is unclear how WASP is regulated in vivo. A WASP biosensor (WASPbs), which uses intramolecular fluorescence resonance energy transfer to report WASP activation in vivo, was constructed, and following transfection of macrophages, activation of WASPbs upon treatment with colony-stimulating factor-1 (CSF-1) was detected globally as early as 30 s and remained localized to protrusive regions at later time points. Similar results were obtained when endogenous WASP activation was determined using conformation-sensitive antibodies. In vivo CSF-1-induced WASP activation was fully Cdc42-dependent. Activation of WASP in response to treatment with CSF-1 was also shown to be phosphatidylinositol 3-kinase-dependent. However, treatment with the Src family kinase inhibitors PP2 or SU6656 or disruption of the major tyrosine phosphorylation site of WASPbs (Y291F mutation) did not reduce the level of CSF-1-induced WASP activation. Our results indicate that WASP activation downstream of CSF-1R is phosphatidylinositol 3-kinase- and Cdc42-dependent consistent with an involvement of these molecules in macrophage migration. However, although tyrosine phosphorylation of WASP has been proposed to stimulate WASP activity, we found no evidence to indicate that this occurs in vivo.
Collapse
Affiliation(s)
- Michael Cammer
- Department of Anatomy, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
12
|
Sarmiento C, Wang W, Dovas A, Yamaguchi H, Sidani M, El-Sibai M, Desmarais V, Holman HA, Kitchen S, Backer JM, Alberts A, Condeelis J. WASP family members and formin proteins coordinate regulation of cell protrusions in carcinoma cells. ACTA ACUST UNITED AC 2008; 180:1245-60. [PMID: 18362183 PMCID: PMC2290849 DOI: 10.1083/jcb.200708123] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We examined the role of the actin nucleation promoters neural Wiskott-Aldrich syndrome protein (N-WASP) and WAVE2 in cell protrusion in response to epidermal growth factor (EGF), a key regulator in carcinoma cell invasion. We found that WAVE2 knockdown (KD) suppresses lamellipod formation and increases filopod formation, whereas N-WASP KD has no effect. However, simultaneous KD of both proteins results in the formation of large jagged protrusions with lamellar properties and increased filopod formation. This suggests that another actin nucleation activity is at work in carcinoma cells in response to EGF. A mammalian Diaphanous–related formin, mDia1, localizes at the jagged protrusions in double KD cells. Constitutively active mDia1 recapitulated the phenotype, whereas inhibition of mDia1 blocked the formation of these protrusions. Increased RhoA activity, which stimulates mDia1 nucleation, was observed in the N-WASP/WAVE2 KD cells and was shown to be required for the N-WASP/WAVE2 KD phenotype. These data show that coordinate regulation between the WASP family and mDia proteins controls the balance between lamellar and lamellipodial protrusion activity.
Collapse
Affiliation(s)
- Corina Sarmiento
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Li WYF, Shao G, Lam HM. Ectopic expression of GmPAP3 alleviates oxidative damage caused by salinity and osmotic stresses. THE NEW PHYTOLOGIST 2008; 178:80-91. [PMID: 18208471 DOI: 10.1111/j.1469-8137.2007.02356.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The primary biochemical reaction of purple acid phosphatases (PAP) is to catalyze the hydrolysis of phosphate esters and anhydrides. However, the soybean GmPAP3 gene expression is induced by NaCl, osmotic, and oxidative treatments, indicating a possible role of PAP in abiotic stress responses. Confocal and electron microscopic studies demonstrated that GmPAP3 protein is mainly localized in mitochondria, a primary site for reactive oxygen species (ROS) production. When subjected to NaCl and polyethylene glycol (PEG) treatments, ectopic expression of GmPAP3 in transgenic tobacco BY-2 cells mimicked the protective effects exhibited by the antioxidant ascorbic acid: increase in the percentage of cells with active mitochondria; reduction in the percentage of dead cells; and reduced accumulation of ROS. In addition, when GmPAP3 transgenic Arabidopsis thaliana seedlings were subjected to NaCl, PEG, and paraquat (PQ) treatments, the percentage of root elongation was significantly higher than the wild type. Furthermore, PQ-induced lipid peroxidation in these transgenic seedlings was also reduced. In summary, the mitochondrial localized GmPAP3 may play a role in stress tolerance by enhancing ROS scavenging.
Collapse
Affiliation(s)
| | - Guihua Shao
- Department of Biology and
- Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Hon-Ming Lam
- Department of Biology and
- Molecular Biotechnology Program, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR
| |
Collapse
|
14
|
Martin TA, Pereira G, Watkins G, Mansel RE, Jiang WG. N-WASP is a putative tumour suppressor in breast cancer cells, in vitro and in vivo, and is associated with clinical outcome in patients with breast cancer. Clin Exp Metastasis 2007; 25:97-108. [PMID: 17985201 DOI: 10.1007/s10585-007-9120-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 10/16/2007] [Indexed: 02/05/2023]
Abstract
N-WASP is a key regulator of cell migration and actin polymerisation. We examined the correlation of N-WASP, with human breast cancer, in vitro, in vivo and in clinical breast cancer tissue. Immunohistochemical study of frozen sectioned human breast mammary tissues (n=124) revealed that mammary epithelial cells stained positively for N-WASP and that cancer cells in tumour tissues stained very weakly. Quantitative RT-PCR revealed that breast cancer tissues had significantly lower levels of N-WASP compared with normal background mammary tissues (0.83+/-0.3 vs 13.6+/-13, P=0.03). Although no significantly correlation was found with tumour grade and TNM staging, lower levels of transcript were seen to correlate with clinical outcome following a ten year follow up. Thus tumours from patients with predicted poor prognosis had significantly lower levels than from those with good prognosis (0.098+/-0.14 vs 1.14+/-0.56, P=0.05). Patients with metastatic disease/died of breast cancer had significantly lower levels of N-WASP compared to those remaining disease free (0.04+/-0.02 and 0.47+/-0.3, vs 0.79+/-0.44, P=0.01 and P<0.05 respectively). During in vitro experiments, MDA-MB-231 cells stably transfected with N-WASP (MDA-MB-231(WASP+)) exhibited a significantly reduced in vitro invasiveness and motility compared with control and wild type cells (P<0.0001), had increased adhesiveness (P=0.05) and moreover MDA-MB-231(WASP+ )exhibited reduced in vivo growth (P=0.002). The motogen HGF (50 ng/ml) caused a relocation of N-WASP to the cell periphery in a temporal and spatial response. It is concluded that N-WASP, a member of the N-WASP family may act as a tumour progression suppressor in human breast cancer and may therefore have significant clinical value in this condition.
Collapse
Affiliation(s)
- Tracey A Martin
- Metastasis & Angiogenesis Research Group, Department of Surgery, Wales College of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | | | | | | | | |
Collapse
|
15
|
Tehrani S, Tomasevic N, Weed S, Sakowicz R, Cooper JA. Src phosphorylation of cortactin enhances actin assembly. Proc Natl Acad Sci U S A 2007; 104:11933-8. [PMID: 17606906 PMCID: PMC1924558 DOI: 10.1073/pnas.0701077104] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Src kinase mediates growth factor signaling and causes oncogenic transformation, which includes dramatic changes in the actin cytoskeleton, cell shape, and motility. Cortactin was discovered as a substrate for Src. How phosphorylation of cortactin can enhance actin assembly is unknown. Here, using an actin assembly system reconstituted from purified components, we demonstrate for the first time a biochemical mechanism by which Src phosphorylation of cortactin affects actin assembly. The adaptor Nck is an important component of the system, linking phosphorylated cortactin with neuronal WASp (N-WASp) and WASp-interacting protein (WIP) to activate Arp2/3 complex.
Collapse
Affiliation(s)
- Shandiz Tehrani
- *Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110
- To whom correspondence may be addressed. E-mail: or
| | - Nenad Tomasevic
- Cytokinetics, Incorporated, 280 East Grand Avenue, South San Francisco, CA 94080; and
| | - Scott Weed
- Mary Babb Randolph Cancer Center, West Virginia University, 1840 Health Sciences South, P.O. Box 9300, Morgantown, WV 26506
| | - Roman Sakowicz
- Cytokinetics, Incorporated, 280 East Grand Avenue, South San Francisco, CA 94080; and
| | - John A. Cooper
- *Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
16
|
St-Jean M, Izard T, Sygusch J. A hydrophobic pocket in the active site of glycolytic aldolase mediates interactions with Wiskott-Aldrich syndrome protein. J Biol Chem 2007; 282:14309-15. [PMID: 17329259 DOI: 10.1074/jbc.m611505200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldolase plays essential catalytic roles in glycolysis and gluconeogenesis. However, aldolase is a highly abundant protein that is remarkably promiscuous in its interactions with other cellular proteins. In particular, aldolase binds to highly acidic amino acid sequences, including the C terminus of the Wiskott-Aldrich syndrome protein, an actin nucleation-promoting factor. Here we report the crystal structure of tetrameric rabbit muscle aldolase in complex with a C-terminal peptide of Wiskott-Aldrich syndrome protein. Aldolase recognizes a short, four-residue DEWD motif (residues 498-501), which adopts a loose hairpin turn that folds around the central aromatic residue, enabling its tryptophan side chain to fit into a hydrophobic pocket in the active site of aldolase. The flanking acidic residues in this binding motif provide further interactions with conserved aldolase active site residues Arg-42 and Arg-303, aligning their side chains and forming the sides of the hydrophobic pocket. The binding of Wiskott-Aldrich syndrome protein to aldolase precludes intramolecular interactions of its C terminus with its active site and is competitive with substrate as well as with binding by actin and cortactin. Finally, based on this structure, a novel naphthol phosphate-based inhibitor of aldolase was identified, and its structure in complex with aldolase demonstrated mimicry of the Wiskott-Aldrich syndrome protein-aldolase interaction. The data support a model whereby aldolase exists in distinct forms that regulate glycolysis or actin dynamics.
Collapse
Affiliation(s)
- Miguel St-Jean
- Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
17
|
Ridley AJ. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 2006; 16:522-9. [PMID: 16949823 DOI: 10.1016/j.tcb.2006.08.006] [Citation(s) in RCA: 887] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/14/2006] [Accepted: 08/24/2006] [Indexed: 02/08/2023]
Abstract
Rho GTPases are well known to regulate actin dynamics. They activate two types of actin nucleators, WASP/WAVE proteins and Diaphanous-related formins (DRFs), which induce different types of actin organization. Their ability to interact with membranes allows them to target actin polymerization to discrete sites on the plasma membrane and to intracellular membrane compartments and thereby induce membrane protrusions or regulate vesicle movement. Most studies have concentrated on just three of the 22 mammalian Rho proteins, RhoA, Rac1 and Cdc42. However, recent research indicates that several other members of the Rho family, including Rif, RhoD, TC10 and Wrch1, and also related Rho-of-plants proteins (ROPs) in plants, stimulate actin polymerization and affect plasma membrane protrusion and/or vesicular traffic.
Collapse
Affiliation(s)
- Anne J Ridley
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, 91 Riding House Street, London W1W 7BS, UK.
| |
Collapse
|
18
|
Sasaki AT, Firtel RA. Regulation of chemotaxis by the orchestrated activation of Ras, PI3K, and TOR. Eur J Cell Biol 2006; 85:873-95. [PMID: 16740339 DOI: 10.1016/j.ejcb.2006.04.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Directed cell migration and cell polarity are crucial in many facets of biological processes. Cellular motility requires a complex array of signaling pathways, in which orchestrated cross-talk, a feedback loop, and multi-component signaling recur. Almost every signaling molecule requires several regulatory processes to be functionally activated, and a lack of a signaling molecule often leads to chemotaxis defects, suggesting an integral role for each component in the pathway. We outline our current understanding of the signaling event that regulates chemotaxis with an emphasis on recent findings associated with the Ras, PI3K, and target of rapamycin (TOR) pathways and the interplay of these pathways. Ras, PI3K, and TOR are known as key regulators of cellular growth. Deregulation of those pathways is associated with many human diseases, such as cancer, developmental disorders, and immunological deficiency. Recent studies in yeast, mammalian cells, and Dictyostelium discoideum reveal another critical role of Ras, PI3K, and TOR in regulating the actin cytoskeleton, cell polarity, and cellular movement. These findings shed light on the mechanism by which eukaryotic cells maintain cell polarity and directed cell movement, and also demonstrate that multiple steps in the signal transduction pathway coordinately regulate cell motility.
Collapse
Affiliation(s)
- Atsuo T Sasaki
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, Natural Sciences Building, Room 6316, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | | |
Collapse
|
19
|
Li WYF, Wong FL, Tsai SN, Phang TH, Shao G, Lam HM. Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. PLANT, CELL & ENVIRONMENT 2006; 29:1122-37. [PMID: 17080938 DOI: 10.1111/j.1365-3040.2005.01487.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Genes encoding ion transporters that regulate ion homeostasis in soybean have not been carefully investigated. Using degenerate primers, we cloned a putative chloride channel gene (GmCLC1) and a putative Na+/H+ antiporter gene (GmNHX1) from soybean. Confocal microscopic studies using yellow fluorescent fusion proteins revealed that GmCLC1 and GmNHX1 were both localized on tonoplast. The expressions of GmCLC1 and GmNHX1 were both induced by NaCl or dehydration stress imposed by polyethylene glycol (PEG). Using mitochondrial integrity and cell death as the damage indicators, a clear alleviation under NaCl stress (but not PEG stress) was observed in both GmCLC1 and GmNHX1 transgenic cells. Using fluorescent dye staining and quenching, respectively, a higher concentration of chloride ion (Cl-) or sodium ion (Na+) was observed in isolated vacuoles in the cells of GmCLC1 and of GmNHX1 transgenic lines. Our result suggested that these vacuolar-located ion transporters function to sequester ions from cytoplasm into vacuole to reduce its toxic effects.
Collapse
Affiliation(s)
- Wing-Yen Francisca Li
- Department of Biology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | | | | | | | | | | |
Collapse
|
20
|
Buscaglia CA, Penesetti D, Tao M, Nussenzweig V. Characterization of an Aldolase-binding Site in the Wiskott-Aldrich Syndrome Protein. J Biol Chem 2006; 281:1324-31. [PMID: 16278221 DOI: 10.1074/jbc.m506346200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thrombospondin-related anonymous protein (TRAP) is an essential transmembrane molecule in Plasmodium sporozoites. TRAP displays adhesive motifs on the extracellular portion, whereas its cytoplasmic tail connects to actin via aldolase, thus driving parasite motility and host cell invasion. The minimal requirements for the TRAP binding to aldolase were scanned here and found to be shared by different human proteins, including the Wiskott-Aldrich syndrome protein (WASp) family members. In vitro and in vivo binding of WASp members to aldolase was characterized by biochemical, deletion mapping, mutagenesis, and co-immunoprecipitation studies. As in the case of TRAP, the binding of WASp to aldolase is competitively inhibited by the enzyme substrate/products. Furthermore, TRAP and WASp, but not other unrelated aldolase binders, compete for the binding to the enzyme in vitro. Together, our results define a conserved aldolase binding motif in the WASp family members and suggest that aldolase modulates the motility and actin dynamics of mammalian cells. These findings along with the presence of similar aldolase binding motifs in additional human proteins, some of which indeed interact with aldolase in pull-down assays, suggest supplementary, non-glycolytic roles for this enzyme.
Collapse
Affiliation(s)
- Carlos A Buscaglia
- Michael Heidelberg Division of Immunology, Department of Pathology, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
21
|
Mouneimne G, Soon L, DesMarais V, Sidani M, Song X, Yip SC, Ghosh M, Eddy R, Backer JM, Condeelis J. Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. ACTA ACUST UNITED AC 2004; 166:697-708. [PMID: 15337778 PMCID: PMC2172433 DOI: 10.1083/jcb.200405156] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The epidermal growth factor (EGF)–induced increase in free barbed ends, resulting in actin polymerization at the leading edge of the lamellipodium in carcinoma cells, occurs as two transients: an early one at 1 min and a late one at 3 min. Our results reveal that phospholipase (PLC) is required for triggering the early barbed end transient. Phosphoinositide-3 kinase selectively regulates the late barbed end transient. Inhibition of PLC inhibits cofilin activity in cells during the early transient, delays the initiation of protrusions, and inhibits the ability of cells to sense a gradient of EGF. Suppression of cofilin, using either small interfering RNA silencing or function-blocking antibodies, selectively inhibits the early transient. Therefore, our results demonstrate that the early PLC and cofilin-dependent barbed end transient is required for the initiation of protrusions and is involved in setting the direction of cell movement in response to EGF.
Collapse
Affiliation(s)
- Ghassan Mouneimne
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|