1
|
Arias Padilla LF, Munera Lopez J, Shibata A, Murray JM, Hu K. The initiation and early development of apical-basal polarity in Toxoplasma gondii. J Cell Sci 2024; 137:jcs263436. [PMID: 39239869 PMCID: PMC11491809 DOI: 10.1242/jcs.263436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024] Open
Abstract
The body plan of the human parasite Toxoplasma gondii has a well-defined polarity. The minus ends of the 22 cortical microtubules are anchored to the apical polar ring, which is a putative microtubule-organizing center. The basal complex caps and constricts the parasite posterior end and is crucial for cytokinesis. How this apical-basal polarity is initiated is unknown. Here, we have examined the development of the apical polar ring and the basal complex using expansion microscopy. We found that substructures in the apical polar ring have different sensitivities to perturbations. In addition, apical-basal differentiation is already established upon nucleation of the cortical microtubule array: arc forms of the apical polar ring and basal complex associate with opposite ends of the microtubules. As the nascent daughter framework grows towards the centrioles, the apical and basal arcs co-develop ahead of the microtubule array. Finally, two apical polar ring components, APR2 and KinesinA, act synergistically. The removal of individual proteins has a modest impact on the lytic cycle. However, the loss of both proteins results in abnormalities in the microtubule array and in highly reduced plaquing and invasion efficiency.
Collapse
Affiliation(s)
- Luisa F. Arias Padilla
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jonathan Munera Lopez
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Aika Shibata
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - John M. Murray
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Ke Hu
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
2
|
Arias Padilla LF, Lopez JM, Shibata A, Murray JM, Hu K. The initiation and early development of apical-basal polarity in Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.14.603470. [PMID: 39071409 PMCID: PMC11275826 DOI: 10.1101/2024.07.14.603470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The human parasite Toxoplasma gondii has a distinctive body plan with a well-defined polarity. In the apical complex, the minus ends of the 22 cortical microtubules are anchored to the apical polar ring, a putative microtubule-organizing center. The basal complex caps and constricts the parasite posterior end, and is critical for cytokinesis. How this apical-basal polarity axis is initiated was unknown. Here we examined the development of the apical polar ring and the basal complex in nascent daughters using expansion microscopy. We found that different substructures in the apical polar ring have different sensitivity to stress. In addition, apical-basal differentiation is already established upon nucleation of the cortical microtubule array: arc forms of the apical polar ring and basal complex associate with opposite ends of the microtubules. As the construction of the daughter framework progresses towards the centrioles, the apical and the basal arcs co-develop in striking synchrony ahead of the microtubule array, and close into a ring-form before all the microtubules are nucleated. We also found that two apical polar ring components, APR2 and KinesinA, act synergistically. The removal of each protein individually has modest to no impact on the lytic cycle. However, the loss of both results in abnormalities in the microtubule array and highly reduced plaquing and invasion efficiency.
Collapse
|
3
|
Liffner B, Cepeda Diaz AK, Blauwkamp J, Anaguano D, Frolich S, Muralidharan V, Wilson DW, Dvorin JD, Absalon S. Atlas of Plasmodium falciparum intraerythrocytic development using expansion microscopy. eLife 2023; 12:RP88088. [PMID: 38108809 PMCID: PMC10727503 DOI: 10.7554/elife.88088] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Apicomplexan parasites exhibit tremendous diversity in much of their fundamental cell biology, but study of these organisms using light microscopy is often hindered by their small size. Ultrastructural expansion microscopy (U-ExM) is a microscopy preparation method that physically expands the sample by ~4.5×. Here, we apply U-ExM to the human malaria parasite Plasmodium falciparum during the asexual blood stage of its lifecycle to understand how this parasite is organized in three dimensions. Using a combination of dye-conjugated reagents and immunostaining, we have cataloged 13 different P. falciparum structures or organelles across the intraerythrocytic development of this parasite and made multiple observations about fundamental parasite cell biology. We describe that the outer centriolar plaque and its associated proteins anchor the nucleus to the parasite plasma membrane during mitosis. Furthermore, the rhoptries, Golgi, basal complex, and inner membrane complex, which form around this anchoring site while nuclei are still dividing, are concurrently segregated and maintain an association to the outer centriolar plaque until the start of segmentation. We also show that the mitochondrion and apicoplast undergo sequential fission events while maintaining an association with the outer centriolar plaque during cytokinesis. Collectively, this study represents the most detailed ultrastructural analysis of P. falciparum during its intraerythrocytic development to date and sheds light on multiple poorly understood aspects of its organelle biogenesis and fundamental cell biology.
Collapse
Affiliation(s)
- Benjamin Liffner
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Ana Karla Cepeda Diaz
- Biological and Biomedical Sciences, Harvard Medical SchoolBostonUnited States
- Division of Infectious Diseases, Boston Children’s HospitalBostonUnited States
| | - James Blauwkamp
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - David Anaguano
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of GeorgiaAthensUnited States
| | - Sonja Frolich
- Research Centre for Infectious Diseases, School of Biological Sciences, University of AdelaideAdelaideAustralia
- Institute for Photonics and Advanced Sensing, University of AdelaideAdelaideAustralia
| | - Vasant Muralidharan
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of GeorgiaAthensUnited States
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of AdelaideAdelaideAustralia
- Institute for Photonics and Advanced Sensing, University of AdelaideAdelaideAustralia
- Burnet Institute, 85 Commercial RoadMelbourneAustralia
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children’s HospitalBostonUnited States
- Department of Pediatrics, Harvard Medical SchoolBostonUnited States
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
| |
Collapse
|
4
|
Liffner B, Cepeda Diaz AK, Blauwkamp J, Anaguano D, Frölich S, Muralidharan V, Wilson DW, Dvorin J, Absalon S. Atlas of Plasmodium falciparum intraerythrocytic development using expansion microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533773. [PMID: 36993606 PMCID: PMC10055389 DOI: 10.1101/2023.03.22.533773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Apicomplexan parasites exhibit tremendous diversity in much of their fundamental cell biology, but study of these organisms using light microscopy is often hindered by their small size. Ultrastructural expansion microscopy (U-ExM) is a microscopy preparation method that physically expands the sample ~4.5x. Here, we apply U-ExM to the human malaria parasite Plasmodium falciparum during the asexual blood stage of its lifecycle to understand how this parasite is organized in three-dimensions. Using a combination of dye-conjugated reagents and immunostaining, we have catalogued 13 different P. falciparum structures or organelles across the intraerythrocytic development of this parasite and made multiple observations about fundamental parasite cell biology. We describe that the outer centriolar plaque and its associated proteins anchor the nucleus to the parasite plasma membrane during mitosis. Furthermore, the rhoptries, Golgi, basal complex, and inner membrane complex, which form around this anchoring site while nuclei are still dividing, are concurrently segregated and maintain an association to the outer centriolar plaque until the start of segmentation. We also show that the mitochondrion and apicoplast undergo sequential fission events while maintaining an association with the outer centriolar plaque during cytokinesis. Collectively, this study represents the most detailed ultrastructural analysis of P. falciparum during its intraerythrocytic development to date, and sheds light on multiple poorly understood aspects of its organelle biogenesis and fundamental cell biology.
Collapse
Affiliation(s)
- Benjamin Liffner
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ana Karla Cepeda Diaz
- Biological and Biomedical Sciences, Harvard Medical School, Boston MA, USA
- Division of Infectious Diseases, Boston Children’s Hospital, Boston MA, USA
| | - James Blauwkamp
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Anaguano
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Sonja Frölich
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Vasant Muralidharan
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Danny W. Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA, Australia
- Burnet Institute, 85 Commercial Road, Melbourne, VIC, Australia
| | - Jeffrey Dvorin
- Division of Infectious Diseases, Boston Children’s Hospital, Boston MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
5
|
Morano AA, Rudlaff RM, Dvorin JD. A PPP-type pseudophosphatase is required for the maintenance of basal complex integrity in Plasmodium falciparum. Nat Commun 2023; 14:3916. [PMID: 37400439 DOI: 10.1038/s41467-023-39435-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
During its asexual blood stage, P. falciparum replicates via schizogony, wherein dozens of daughter cells are formed within a single parent. The basal complex, a contractile ring that separates daughter cells, is critical for schizogony. In this study, we identify a Plasmodium basal complex protein essential for basal complex maintenance. Using multiple microscopy techniques, we demonstrate that PfPPP8 is required for uniform basal complex expansion and maintenance of its integrity. We characterize PfPPP8 as the founding member of a novel family of pseudophosphatases with homologs in other Apicomplexan parasites. By co-immunoprecipitation, we identify two additional new basal complex proteins. We characterize the unique temporal localizations of these new basal complex proteins (late-arriving) and of PfPPP8 (early-departing). In this work, we identify a novel basal complex protein, determine its specific role in segmentation, identify a new pseudophosphatase family, and establish that the P. falciparum basal complex is a dynamic structure.
Collapse
Affiliation(s)
- Alexander A Morano
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Rachel M Rudlaff
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Li J, Xiao Q, Tan Q, Chen J, Sun L, Chen X, Chu Z, Wu H, Zhang Z, Li H, Zhao X, Zhang X. TgMORN2, a MORN Family Protein Involved in the Regulation of Endoplasmic Reticulum Stress in Toxoplasma gondii. Int J Mol Sci 2023; 24:10228. [PMID: 37373373 DOI: 10.3390/ijms241210228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
MORN proteins play a key role in the cytoskeletal structure of eukaryotes and are essential for the close arrangement of the endoplasmic reticulum and plasma membrane. A gene with nine MORN motifs (TGGT1_292120, named TgMORN2) was identified in the Toxoplasma gondii genome; it was presumed to belong to the MORN protein family and to have the function of forming the cytoskeleton, which affects the survival of T. gondii. However, the genetic deletion of MORN2 did not noticeably affect parasite growth and virulence. Using adjacent protein labeling techniques, we identified a network of TgMORN2 interactions, which mainly included endoplasmic reticulum stress (ER stress)-related proteins. In exploring these data, we found that the pathogenicity of the KO-TgMORN2 strain was significantly reduced in the case of tunicamycin-induced ER stress. Reticulon TgRTN (TGGT1_226430) and tubulin β-Tubulin were identified as interaction proteins of TgMORN2. Collectively, TgMORN2 plays a role in ER stress, which lays a foundation for further research on the function of the MORN protein in T. gondii.
Collapse
Affiliation(s)
- Jinxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Qianqian Xiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Qianqian Tan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Junpeng Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Xiao Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Ziyu Chu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Hongxia Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Zhenzhao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
7
|
O’Shaughnessy WJ, Hu X, Henriquez SA, Reese ML. Toxoplasma ERK7 protects the apical complex from premature degradation. J Cell Biol 2023; 222:e202209098. [PMID: 37027006 PMCID: PMC10083718 DOI: 10.1083/jcb.202209098] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/01/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Accurate cellular replication balances the biogenesis and turnover of complex structures. In the apicomplexan parasite Toxoplasma gondii, daughter cells form within an intact mother cell, creating additional challenges to ensuring fidelity of division. The apical complex is critical to parasite infectivity and consists of apical secretory organelles and specialized cytoskeletal structures. We previously identified the kinase ERK7 as required for maturation of the apical complex in Toxoplasma. Here, we define the Toxoplasma ERK7 interactome, including a putative E3 ligase, CSAR1. Genetic disruption of CSAR1 fully suppresses loss of the apical complex upon ERK7 knockdown. Furthermore, we show that CSAR1 is normally responsible for turnover of maternal cytoskeleton during cytokinesis, and that its aberrant function is driven by mislocalization from the parasite residual body to the apical complex. These data identify a protein homeostasis pathway critical for Toxoplasma replication and fitness and suggest an unappreciated role for the parasite residual body in compartmentalizing processes that threaten the fidelity of parasite development.
Collapse
Affiliation(s)
| | - Xiaoyu Hu
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Sarah Ana Henriquez
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Michael L. Reese
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
Cytauxzoon felis: An Overview. Pathogens 2023; 12:pathogens12010133. [PMID: 36678481 PMCID: PMC9860807 DOI: 10.3390/pathogens12010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Cytauxzoon felis is a tick-transmitted, obligate, hemoprotozoal, piroplasmid pathogen of felids and the causative agent of cytauxzoonosis. It has a complex life cycle which includes a tick as its definitive host and a felid as its intermediate host. Since its first description in 1976, C. felis infections of felids have been reported in several southeastern and south-central U.S. states, overlapping with the ranges of its two known biological vectors, Amblyomma americanum (Lone star tick) and Dermacentor variabilis (American dog tick). Infected felids demonstrate disease as either an acute, often-fatal, infection, or a subclinical carrier infection. To develop effective C. felis transmission control strategies, the incidence of acute cytauxzoonosis, patient risk factors, the role of domestic cat carriers, and ecological variabilities need to be investigated further. Of equal importance is communicating these strategies for high-risk cat populations, including recommending year-round use of an acaricide product for all cats that spend any time outdoors. More studies are needed to further identify factors affecting C. felis and other Cytauxzoon spp. infection, transmission, disease progression, and treatment options and outcomes within the U.S. and globally. Here we provide an overview of C. felis highlighting its lifecycle within its definitive host, transmission to its intermediate host, symptoms and signs providing evidence of transmission, definitive diagnosis, current treatment and prevention strategies, and future considerations regarding this condition.
Collapse
|
9
|
Haase R, Dos Santos Pacheco N, Soldati-Favre D. Nanoscale imaging of the conoid and functional dissection of its dynamics in Apicomplexa. Curr Opin Microbiol 2022; 70:102226. [PMID: 36332501 DOI: 10.1016/j.mib.2022.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/08/2022]
Abstract
Members of the Apicomplexa phylum are unified by an apical complex tailored for motility and host cell invasion. It includes regulated secretory organelles and a conoid attached to the apical polar ring (APR) from which subpellicular microtubules emerge. In coccidia, the conoid is composed of a cone of spiraling tubulin fibers, two preconoidal rings, and two intraconoidal microtubules. The conoid extrudes through the APR in motile parasites. Recent advances in proteomics, cryo-electron tomography, super-resolution, and expansion microscopy provide a more comprehensive view of the spatial and temporal resolution of proteins belonging to the conoid subcomponents. In combination with the phenotyping of targeted mutants, the biogenesis, turnover, dynamics, and function of the conoid begin to be elucidated.
Collapse
Affiliation(s)
- Romuald Haase
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland.
| |
Collapse
|
10
|
Dos Santos Pacheco N, Brusini L, Haase R, Tosetti N, Maco B, Brochet M, Vadas O, Soldati-Favre D. Conoid extrusion regulates glideosome assembly to control motility and invasion in Apicomplexa. Nat Microbiol 2022; 7:1777-1790. [DOI: 10.1038/s41564-022-01212-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/22/2022] [Indexed: 12/18/2022]
|
11
|
Elaagip A, Absalon S, Florentin A. Apicoplast Dynamics During Plasmodium Cell Cycle. Front Cell Infect Microbiol 2022; 12:864819. [PMID: 35573785 PMCID: PMC9100674 DOI: 10.3389/fcimb.2022.864819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
The deadly malaria parasite, Plasmodium falciparum, contains a unique subcellular organelle termed the apicoplast, which is a clinically-proven antimalarial drug target. The apicoplast is a plastid with essential metabolic functions that evolved via secondary endosymbiosis. As an ancient endosymbiont, the apicoplast retained its own genome and it must be inherited by daughter cells during cell division. During the asexual replication of P. falciparum inside human red blood cells, both the parasite, and the apicoplast inside it, undergo massive morphological changes, including DNA replication and division. The apicoplast is an integral part of the cell and thus its development is tightly synchronized with the cell cycle. At the same time, certain aspects of its dynamics are independent of nuclear division, representing a degree of autonomy in organelle biogenesis. Here, we review the different aspects of organelle dynamics during P. falciparum intraerythrocytic replication, summarize our current understanding of these processes, and describe the many open questions in this area of parasite basic cell biology.
Collapse
Affiliation(s)
- Arwa Elaagip
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Sabrina Absalon, ; Anat Florentin,
| | - Anat Florentin
- The Kuvin Center for the Study of Infectious and Tropical Diseases, Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Sabrina Absalon, ; Anat Florentin,
| |
Collapse
|
12
|
Tomasina R, González FC, Francia ME. Structural and Functional Insights into the Microtubule Organizing Centers of Toxoplasma gondii and Plasmodium spp. Microorganisms 2021; 9:2503. [PMID: 34946106 PMCID: PMC8705618 DOI: 10.3390/microorganisms9122503] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Microtubule organizing centers (MTOCs) perform critical cellular tasks by nucleating, stabilizing, and anchoring microtubule's minus ends. These capacities impact tremendously a wide array of cellular functions ranging from ascribing cell shape to orchestrating cell division and generating motile structures, among others. The phylum Apicomplexa comprises over 6000 single-celled obligate intracellular parasitic species. Many of the apicomplexan are well known pathogens such as Toxoplasma gondii and the Plasmodium species, causative agents of toxoplasmosis and malaria, respectively. Microtubule organization in these parasites is critical for organizing the cortical cytoskeleton, enabling host cell penetration and the positioning of large organelles, driving cell division and directing the formation of flagella in sexual life stages. Apicomplexans are a prime example of MTOC diversity displaying multiple functional and structural MTOCs combinations within a single species. This diversity can only be fully understood in light of each organism's specific MT nucleation requirements and their evolutionary history. Insight into apicomplexan MTOCs had traditionally been limited to classical ultrastructural work by transmission electron microscopy. However, in the past few years, a large body of molecular insight has emerged. In this work we describe the latest insights into nuclear MTOC biology in two major human and animal disease causing Apicomplexans: Toxoplasma gondii and Plasmodium spp.
Collapse
Affiliation(s)
- Ramiro Tomasina
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.)
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Fabiana C. González
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.)
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Maria E. Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (R.T.); (F.C.G.)
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| |
Collapse
|
13
|
Dos Santos Pacheco N, Tosetti N, Krishnan A, Haase R, Maco B, Suarez C, Ren B, Soldati-Favre D. Revisiting the Role of Toxoplasma gondii ERK7 in the Maintenance and Stability of the Apical Complex. mBio 2021; 12:e0205721. [PMID: 34607461 PMCID: PMC8546650 DOI: 10.1128/mbio.02057-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/02/2021] [Indexed: 12/02/2022] Open
Abstract
Toxoplasma gondii extracellular signal-regulated kinase 7 (ERK7) is known to contribute to the integrity of the apical complex and to participate in the final step of conoid biogenesis. In the absence of ERK7, mature parasites lose their conoid complex and are unable to glide, invade, or egress from host cells. In contrast to a previous report, we show here that the depletion of ERK7 phenocopies the depletion of the apical cap protein AC9 or AC10. The absence of ERK7 leads to the loss of the apical polar ring (APR), the disorganization of the basket of subpellicular microtubules (SPMTs), and a severe impairment in microneme secretion. Ultrastructure expansion microscopy (U-ExM), coupled to N-hydroxysuccinimide ester (NHS-ester) staining on intracellular parasites, offers an unprecedented level of resolution and highlights the disorganization of the rhoptries as well as the dilated plasma membrane at the apical pole in the absence of ERK7. Comparative proteomics analysis of wild-type and ERK7-depleted parasites confirmed the disappearance of known apical complex proteins, including markers of the apical polar ring and a new apical cap named AC11. Concomitantly, the absence of ERK7 led to an accumulation of microneme proteins, resulting from the defect in the exocytosis of the organelles. AC9-depleted parasites were included as controls and exhibited an increase in inner membrane complex proteins, with two new proteins assigned to this compartment, namely, IMC33 and IMC34. IMPORTANCE The conoid is an enigmatic, dynamic organelle positioned at the apical tip of the coccidian subgroup of the Apicomplexa, close to the apical polar ring (APR) from which the subpellicular microtubules (SPMTs) emerge and through which the secretory organelles (micronemes and rhoptries) reach the plasma membrane for exocytosis. In Toxoplasma gondii, the conoid protrudes concomitantly with microneme secretion, during egress, motility, and invasion. The conditional depletion of the apical cap structural protein AC9 or AC10 leads to a disorganization of SPMTs as well as the loss of the APR and conoid, resulting in a microneme secretion defect and a block in motility, invasion, and egress. We show here that the depletion of the kinase ERK7 phenocopies AC9 and AC10 mutants. The combination of ultrastructure expansion microscopy and NHS-ester staining revealed that ERK7-depleted parasites exhibit a dilated apical plasma membrane and an altered positioning of the rhoptries, while electron microscopy images unambiguously highlight the loss of the APR.
Collapse
Affiliation(s)
- Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolò Tosetti
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Romuald Haase
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Catherine Suarez
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Bingjian Ren
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Wichers JS, Wunderlich J, Heincke D, Pazicky S, Strauss J, Schmitt M, Kimmel J, Wilcke L, Scharf S, von Thien H, Burda PC, Spielmann T, Löw C, Filarsky M, Bachmann A, Gilberger TW. Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite Plasmodium falciparum. Cell Microbiol 2021; 23:e13341. [PMID: 33830607 DOI: 10.1111/cmi.13341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The inner membrane complex (IMC) is a defining feature of apicomplexan parasites, which confers stability and shape to the cell, functions as a scaffolding compartment during the formation of daughter cells and plays an important role in motility and invasion during different life cycle stages of these single-celled organisms. To explore the IMC proteome of the malaria parasite Plasmodium falciparum we applied a proximity-dependent biotin identification (BioID)-based proteomics approach, using the established IMC marker protein Photosensitized INA-Labelled protein 1 (PhIL1) as bait in asexual blood-stage parasites. Subsequent mass spectrometry-based peptide identification revealed enrichment of 12 known IMC proteins and several uncharacterized candidate proteins. We validated nine of these previously uncharacterized proteins by endogenous GFP-tagging. Six of these represent new IMC proteins, while three proteins have a distinct apical localization that most likely represents structures described as apical annuli in Toxoplasma gondii. Additionally, various Kelch13 interacting candidates were identified, suggesting an association of the Kelch13 compartment and the IMC in schizont and merozoite stages. This work extends the number of validated IMC proteins in the malaria parasite and reveals for the first time the existence of apical annuli proteins in P. falciparum. Additionally, it provides evidence for a spatial association between the Kelch13 compartment and the IMC in late blood-stage parasites.
Collapse
Affiliation(s)
- Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Juliane Wunderlich
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Dorothee Heincke
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Samuel Pazicky
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Marius Schmitt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Kimmel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Louisa Wilcke
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Sarah Scharf
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Heidrun von Thien
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Michael Filarsky
- Centre for Structural Systems Biology, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Braunschweig, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| |
Collapse
|
15
|
Koreny L, Zeeshan M, Barylyuk K, Tromer EC, van Hooff JJE, Brady D, Ke H, Chelaghma S, Ferguson DJP, Eme L, Tewari R, Waller RF. Molecular characterization of the conoid complex in Toxoplasma reveals its conservation in all apicomplexans, including Plasmodium species. PLoS Biol 2021; 19:e3001081. [PMID: 33705380 PMCID: PMC7951837 DOI: 10.1371/journal.pbio.3001081] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
The apical complex is the instrument of invasion used by apicomplexan parasites, and the conoid is a conspicuous feature of this apparatus found throughout this phylum. The conoid, however, is believed to be heavily reduced or missing from Plasmodium species and other members of the class Aconoidasida. Relatively few conoid proteins have previously been identified, making it difficult to address how conserved this feature is throughout the phylum, and whether it is genuinely missing from some major groups. Moreover, parasites such as Plasmodium species cycle through 3 invasive forms, and there is the possibility of differential presence of the conoid between these stages. We have applied spatial proteomics and high-resolution microscopy to develop a more complete molecular inventory and understanding of the organisation of conoid-associated proteins in the model apicomplexan Toxoplasma gondii. These data revealed molecular conservation of all conoid substructures throughout Apicomplexa, including Plasmodium, and even in allied Myzozoa such as Chromera and dinoflagellates. We reporter-tagged and observed the expression and location of several conoid complex proteins in the malaria model P. berghei and revealed equivalent structures in all of its zoite forms, as well as evidence of molecular differentiation between blood-stage merozoites and the ookinetes and sporozoites of the mosquito vector. Collectively, we show that the conoid is a conserved apicomplexan element at the heart of the invasion mechanisms of these highly successful and often devastating parasites.
Collapse
Affiliation(s)
- Ludek Koreny
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mohammad Zeeshan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Konstantin Barylyuk
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Eelco C. Tromer
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jolien J. E. van Hooff
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Declan Brady
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Huiling Ke
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sara Chelaghma
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - David J. P. Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, United Kingdom
| | - Laura Eme
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Rita Tewari
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ross F. Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Dos Santos Pacheco N, Tosetti N, Koreny L, Waller RF, Soldati-Favre D. Evolution, Composition, Assembly, and Function of the Conoid in Apicomplexa. Trends Parasitol 2020; 36:688-704. [DOI: 10.1016/j.pt.2020.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
|
17
|
Wilson SK, Heckendorn J, Martorelli Di Genova B, Koch LL, Rooney PJ, Morrissette N, Lebrun M, Knoll LJ. A Toxoplasma gondii patatin-like phospholipase contributes to host cell invasion. PLoS Pathog 2020; 16:e1008650. [PMID: 32628723 PMCID: PMC7365478 DOI: 10.1371/journal.ppat.1008650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 07/16/2020] [Accepted: 05/22/2020] [Indexed: 11/23/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that can invade any nucleated cell of any warm-blooded animal. In a previous screen to identify virulence determinants, disruption of gene TgME49_305140 generated a T. gondii mutant that could not establish a chronic infection in mice. The protein product of TgME49_305140, here named TgPL3, is a 277 kDa protein with a patatin-like phospholipase (PLP) domain and a microtubule binding domain. Antibodies generated against TgPL3 show that it is localized to the apical cap. Using a rapid selection FACS-based CRISPR/Cas-9 method, a TgPL3 deletion strain (ΔTgPL3) was generated. ΔTgPL3 parasites have defects in host cell invasion, which may be caused by reduced rhoptry secretion. We generated complementation clones with either wild type TgPL3 or an active site mutation in the PLP domain by converting the catalytic serine to an alanine, ΔTgPL3::TgPL3S1409A (S1409A). Complementation of ΔTgPL3 with wild type TgPL3 restored all phenotypes, while S1409A did not, suggesting that phospholipase activity is necessary for these phenotypes. ΔTgPL3 and S1409A parasites are also virtually avirulent in vivo but induce a robust antibody response. Vaccination with ΔTgPL3 and S1409A parasites protected mice against subsequent challenge with a lethal dose of Type I T. gondii parasites, making ΔTgPL3 a compelling vaccine candidate. These results demonstrate that TgPL3 has a role in rhoptry secretion, host cell invasion and survival of T. gondii during acute mouse infection.
Collapse
Affiliation(s)
- Sarah K. Wilson
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| | | | - Bruno Martorelli Di Genova
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| | - Lindsey L. Koch
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| | - Peggy J. Rooney
- Stratatech Corporation, Charmany Drive, Madison, Wisconsin, United States of America
| | - Naomi Morrissette
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | | | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| |
Collapse
|
18
|
Patil H, Hughes KR, Lemgruber L, Philip N, Dickens N, Starnes GL, Waters AP. Zygote morphogenesis but not the establishment of cell polarity in Plasmodium berghei is controlled by the small GTPase, RAB11A. PLoS Pathog 2020; 16:e1008091. [PMID: 32463831 PMCID: PMC7255598 DOI: 10.1371/journal.ppat.1008091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/29/2020] [Indexed: 11/19/2022] Open
Abstract
Plasmodium species are apicomplexan parasites whose zoites are polarized cells with a marked apical organisation where the organelles associated with host cell invasion and colonization reside. Plasmodium gametes mate in the mosquito midgut to form the spherical and presumed apolar zygote that morphs during the following 24 hours into a polarized, elongated and motile zoite form, the ookinete. Endocytosis-mediated protein transport is generally necessary for the establishment and maintenance of polarity in epithelial cells and neurons, and the small GTPase RAB11A is an important regulator of protein transport via recycling endosomes. PbRAB11A is essential in blood stage asexual of Plasmodium. Therefore, a promoter swap strategy was employed to down-regulate PbRAB11A expression in gametocytes and zygotes of the rodent malaria parasite, Plasmodium berghei which demonstrated the essential role of RAB11A in ookinete development. The approach revealed that lack of PbRAB11A had no effect on gamete production and fertility rates however, the zygote to ookinete transition was almost totally inhibited and transmission through the mosquito was prevented. Lack of PbRAB11A did not prevent meiosis and mitosis, nor the establishment of polarity as indicated by the correct formation and positioning of the Inner Membrane Complex (IMC) and apical complex. However, morphological maturation was prevented and parasites remained spherical and immotile and furthermore, they were impaired in the secretion and distribution of microneme cargo. The data are consistent with the previously proposed model of RAB11A endosome mediated delivery of plasma membrane in Toxoplasma gondii if not its role in IMC formation and implicate it in microneme function.
Collapse
Affiliation(s)
- Harshal Patil
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Katie R. Hughes
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Leandro Lemgruber
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Nisha Philip
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Nicholas Dickens
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - G. Lucas Starnes
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Andrew. P. Waters
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Tosetti N, Dos Santos Pacheco N, Bertiaux E, Maco B, Bournonville L, Hamel V, Guichard P, Soldati-Favre D. Essential function of the alveolin network in the subpellicular microtubules and conoid assembly in Toxoplasma gondii. eLife 2020; 9:56635. [PMID: 32379047 PMCID: PMC7228768 DOI: 10.7554/elife.56635] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
The coccidian subgroup of Apicomplexa possesses an apical complex harboring a conoid, made of unique tubulin polymer fibers. This enigmatic organelle extrudes in extracellular invasive parasites and is associated to the apical polar ring (APR). The APR serves as microtubule-organizing center for the 22 subpellicular microtubules (SPMTs) that are linked to a patchwork of flattened vesicles, via an intricate network composed of alveolins. Here, we capitalize on ultrastructure expansion microscopy (U-ExM) to localize the Toxoplasma gondii Apical Cap protein 9 (AC9) and its partner AC10, identified by BioID, to the alveolin network and intercalated between the SPMTs. Parasites conditionally depleted in AC9 or AC10 replicate normally but are defective in microneme secretion and fail to invade and egress from infected cells. Electron microscopy revealed that the mature parasite mutants are conoidless, while U-ExM highlighted the disorganization of the SPMTs which likely results in the catastrophic loss of APR and conoid.
Collapse
Affiliation(s)
- Nicolò Tosetti
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eloïse Bertiaux
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lorène Bournonville
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Virginie Hamel
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Paul Guichard
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Baptista CG, Lis A, Deng B, Gas-Pascual E, Dittmar A, Sigurdson W, West CM, Blader IJ. Toxoplasma F-box protein 1 is required for daughter cell scaffold function during parasite replication. PLoS Pathog 2019; 15:e1007946. [PMID: 31348812 PMCID: PMC6685633 DOI: 10.1371/journal.ppat.1007946] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/07/2019] [Accepted: 06/27/2019] [Indexed: 01/06/2023] Open
Abstract
By binding to the adaptor protein SKP1 and serving as substrate receptors for the SKP1 Cullin, F-box E3 ubiquitin ligase complex, F-box proteins regulate critical cellular processes including cell cycle progression and membrane trafficking. While F-box proteins are conserved throughout eukaryotes and are well studied in yeast, plants, and animals, studies in parasitic protozoa are lagging. We have identified eighteen putative F-box proteins in the Toxoplasma genome of which four have predicted homologs in Plasmodium. Two of the conserved F-box proteins were demonstrated to be important for Toxoplasma fitness and here we focus on an F-box protein, named TgFBXO1, because it is the most highly expressed by replicative tachyzoites and was also identified in an interactome screen as a Toxoplasma SKP1 binding protein. TgFBXO1 interacts with Toxoplasma SKP1 confirming it as a bona fide F-box protein. In interphase parasites, TgFBXO1 is a component of the Inner Membrane Complex (IMC), which is an organelle that underlies the plasma membrane. Early during replication, TgFBXO1 localizes to the developing daughter cell scaffold, which is the site where the daughter cell IMC and microtubules form and extend from. TgFBXO1 localization to the daughter cell scaffold required centrosome duplication but before kinetochore separation was completed. Daughter cell scaffold localization required TgFBXO1 N-myristoylation and was dependent on the small molecular weight GTPase, TgRab11b. Finally, we demonstrate that TgFBXO1 is required for parasite growth due to its function as a daughter cell scaffold effector. TgFBXO1 is the first F-box protein to be studied in apicomplexan parasites and represents the first protein demonstrated to be important for daughter cell scaffold function.
Collapse
Affiliation(s)
- Carlos Gustavo Baptista
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Agnieszka Lis
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Bowen Deng
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Ashley Dittmar
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Wade Sigurdson
- Department of Physiology and Biophysics, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Christopher M. West
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| |
Collapse
|
21
|
Rudlaff RM, Kraemer S, Streva VA, Dvorin JD. An essential contractile ring protein controls cell division in Plasmodium falciparum. Nat Commun 2019; 10:2181. [PMID: 31097714 PMCID: PMC6522492 DOI: 10.1038/s41467-019-10214-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/23/2019] [Indexed: 11/09/2022] Open
Abstract
During the blood stage of human malaria, Plasmodium falciparum parasites divide by schizogony-a process wherein components for several daughter cells are produced within a common cytoplasm and then segmentation, a synchronized cytokinesis, produces individual invasive daughters. The basal complex is hypothesized to be required for segmentation, acting as a contractile ring to establish daughter cell boundaries. Here we identify an essential component of the basal complex which we name PfCINCH. Using three-dimensional reconstructions of parasites at electron microscopy resolution, we show that while parasite organelles form and divide normally, PfCINCH-deficient parasites develop inviable conjoined daughters that contain components for multiple cells. Through biochemical evaluation of the PfCINCH-containing complex, we discover multiple previously undescribed basal complex proteins. Therefore, this work provides genetic evidence that the basal complex is required for precise segmentation and lays the groundwork for a mechanistic understanding of how the parasite contractile ring drives cell division.
Collapse
Affiliation(s)
- Rachel M Rudlaff
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Stephan Kraemer
- Center for Nanoscale Systems, Harvard University, Boston, MA, 02138, USA
| | - Vincent A Streva
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Morlon-Guyot J, Berry L, Sauquet I, Singh Pall G, El Hajj H, Meissner M, Daher W. Conditional knock-down of a novel coccidian protein leads to the formation of aberrant apical organelles and abrogates mature rhoptry positioning in Toxoplasma gondii. Mol Biochem Parasitol 2018; 223:19-30. [DOI: 10.1016/j.molbiopara.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/23/2018] [Accepted: 06/23/2018] [Indexed: 01/21/2023]
|
23
|
Preisner H, Habicht J, Garg SG, Gould SB. Intermediate filament protein evolution and protists. Cytoskeleton (Hoboken) 2018; 75:231-243. [PMID: 29573204 DOI: 10.1002/cm.21443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 01/20/2023]
Abstract
Metazoans evolved from a single protist lineage. While all eukaryotes share a conserved actin and tubulin-based cytoskeleton, it is commonly perceived that intermediate filaments (IFs), including lamin, vimentin or keratin among many others, are restricted to metazoans. Actin and tubulin proteins are conserved enough to be detectable across all eukaryotic genomes using standard phylogenetic methods, but IF proteins, in contrast, are notoriously difficult to identify by such means. Since the 1950s, dozens of cytoskeletal proteins in protists have been identified that seemingly do not belong to any of the IF families described for metazoans, yet, from a structural and functional perspective fit criteria that define metazoan IF proteins. Here, we briefly review IF protein discovery in metazoans and the implications this had for the definition of this protein family. We argue that the many cytoskeletal and filament-forming proteins of protists should be incorporated into a more comprehensive picture of IF evolution by aligning it with the recent identification of lamins across the phylogenetic diversity of eukaryotic supergroups. This then brings forth the question of how the diversity of IF proteins has unfolded. The evolution of IF proteins likely represents an example of convergent evolution, which, in combination with the speed with which these cytoskeletal proteins are evolving, generated their current diversity. IF proteins did not first emerge in metazoa, but in protists. Only the emergence of cytosolic IF proteins that appear to stem from a nuclear lamin is unique to animals and coincided with the emergence of true animal multicellularity.
Collapse
Affiliation(s)
- Harald Preisner
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jörn Habicht
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
24
|
A conserved ankyrin repeat-containing protein regulates conoid stability, motility and cell invasion in Toxoplasma gondii. Nat Commun 2017; 8:2236. [PMID: 29269729 PMCID: PMC5740107 DOI: 10.1038/s41467-017-02341-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/22/2017] [Indexed: 11/08/2022] Open
Abstract
Apicomplexan parasites are typified by an apical complex that contains a unique microtubule-organizing center (MTOC) that organizes the cytoskeleton. In apicomplexan parasites such as Toxoplasma gondii, the apical complex includes a spiral cap of tubulin-rich fibers called the conoid. Although described ultrastructurally, the composition and functions of the conoid are largely unknown. Here, we localize 11 previously undescribed apical proteins in T. gondii and identify an essential component named conoid protein hub 1 (CPH1), which is conserved in apicomplexan parasites. CPH1 contains ankyrin repeats that are required for structural integrity of the conoid, parasite motility, and host cell invasion. Proximity labeling and protein interaction network analysis reveal that CPH1 functions as a hub linking key motor and structural proteins that contain intrinsically disordered regions and coiled coil domains. Our findings highlight the importance of essential protein hubs in controlling biological networks of MTOCs in early-branching protozoan parasites. Apicomplexan parasites such as Toxoplasma gondii possess a tubulin-rich structure called the conoid. Here, Long et al. identify a conoid protein that interacts with motor and structural proteins and is required for structural integrity of the conoid, parasite motility, and host cell invasion.
Collapse
|
25
|
Murray JM. An icosahedral virus as a fluorescent calibration standard: a method for counting protein molecules in cells by fluorescence microscopy. J Microsc 2017; 267:193-213. [PMID: 28328099 DOI: 10.1111/jmi.12559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 11/29/2022]
Abstract
The ability to replace genes coding for cellular proteins with DNA that codes for fluorescent protein-tagged versions opens the way to counting the number of molecules of each protein component of macromolecular assemblies in vivo by measuring fluorescence microscopically. Converting fluorescence to absolute numbers of molecules requires a fluorescent standard whose molecular composition is known precisely. In this report, the construction, properties and mode of using a set of fluorescence calibration standards are described. The standards are based on an icosahedral virus engineered to contain exactly 240 copies of one of seven different fluorescent proteins. Two applications of the fluorescent standards to counting molecules in the human parasite Toxoplasma gondii are described. Methods for improving the preciseness of the measurements and minimizing potential inaccuracies are emphasized.
Collapse
Affiliation(s)
- John M Murray
- Department of Biology, Indiana University, Bloomington, Indiana, U.S.A
| |
Collapse
|
26
|
Leung JM, He Y, Zhang F, Hwang YC, Nagayasu E, Liu J, Murray JM, Hu K. Stability and function of a putative microtubule-organizing center in the human parasite Toxoplasma gondii. Mol Biol Cell 2017; 28:1361-1378. [PMID: 28331073 PMCID: PMC5426850 DOI: 10.1091/mbc.e17-01-0045] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/03/2017] [Accepted: 03/17/2017] [Indexed: 12/17/2022] Open
Abstract
KinesinA and APR1 maintain the stability of the apical polar ring, a putative organizing center for the 22 cortical microtubules of Toxoplasma. Parasites lacking these two proteins are defective in invasion, motility, secretion, and growth but can still make 22 cortical microtubules, suggesting that ring stability is not tightly coupled to templating. The organization of the microtubule cytoskeleton is dictated by microtubule nucleators or organizing centers. Toxoplasma gondii, an important human parasite, has an array of 22 regularly spaced cortical microtubules stemming from a hypothesized organizing center, the apical polar ring. Here we examine the functions of the apical polar ring by characterizing two of its components, KinesinA and APR1, and show that its putative role in templating can be separated from its mechanical stability. Parasites that lack both KinesinA and APR1 (ΔkinesinAΔapr1) are capable of generating 22 cortical microtubules. However, the apical polar ring is fragmented in live ΔkinesinAΔapr1 parasites and is undetectable by electron microscopy after detergent extraction. Disintegration of the apical polar ring results in the detachment of groups of microtubules from the apical end of the parasite. These structural defects are linked to a diminished ability of the parasite to move and invade host cells, as well as decreased secretion of effectors important for these processes. Together the findings demonstrate the importance of the structural integrity of the apical polar ring and the microtubule array in the Toxoplasma lytic cycle, which is responsible for massive tissue destruction in acute toxoplasmosis.
Collapse
Affiliation(s)
| | - Yudou He
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Fangliang Zhang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | | | - Eiji Nagayasu
- Department of Infectious Diseases, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Jun Liu
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - John M Murray
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Ke Hu
- Department of Biology, Indiana University, Bloomington, IN 47405
| |
Collapse
|
27
|
An evolutionarily conserved SSNA1/DIP13 homologue is a component of both basal and apical complexes of Toxoplasma gondii. Sci Rep 2016; 6:27809. [PMID: 27324377 PMCID: PMC4914967 DOI: 10.1038/srep27809] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022] Open
Abstract
Microtubule-based cytoskeletal structures have fundamental roles in several essential eukaryotic processes, including transport of intracellular constituents as well as ciliary and flagellar mobility. Temporal and spatial organisation of microtubules is determined by microtubule organising centers and a number of appendages and accessory proteins. Members of the SSNA1/DIP13 family are coiled coil proteins that are known to localise to microtubular structures like centrosomes and flagella, but are otherwise poorly characterised. We have identified a homologue of SSNA1/DIP13 in the parasitic protist Toxoplasma gondii and found it localises to parasite-specific cytoskeletal structures: the conoid in the apical complex of mature and dividing cells, and the basal complex in elongating daughter cells during cell division. This protein is dispensable for parasite growth in vitro. However, quite remarkably, this coiled coil protein is able to self-associate into higher order structures both in vitro and in vivo, and its overexpression is impairing parasite division.
Collapse
|
28
|
Engelberg K, Ivey FD, Lin A, Kono M, Lorestani A, Faugno-Fusci D, Gilberger TW, White M, Gubbels MJ. A MORN1-associated HAD phosphatase in the basal complex is essential for Toxoplasma gondii daughter budding. Cell Microbiol 2016; 18:1153-71. [PMID: 26840427 DOI: 10.1111/cmi.12574] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/24/2015] [Accepted: 01/19/2016] [Indexed: 12/30/2022]
Abstract
Apicomplexan parasites replicate by several budding mechanisms with two well-characterized examples being Toxoplasma endodyogeny and Plasmodium schizogony. Completion of budding requires the tapering of the nascent daughter buds toward the basal end, driven by contraction of the basal complex. This contraction is not executed by any of the known cell division associated contractile mechanisms and in order to reveal new components of the unusual basal complex we performed a yeast two-hybrid screen with its major scaffolding protein, TgMORN1. Here we report on a conserved protein with a haloacid dehalogenase (HAD) phosphatase domain, hereafter named HAD2a, identified by yeast two-hybrid. HAD2a has demonstrated enzyme-activity in vitro, localizes to the nascent daughter buds, and co-localizes with MORN1 to the basal complex during its contraction. Conditional knockout of HAD2a in Toxoplasma interferes with basal complex assembly, which leads to incomplete cytokinesis and conjoined daughters that ultimately results in disrupted proliferation. In Plasmodium, we further confirmed localization of the HAD2a ortholog to the basal complex toward the end of schizogony. In conclusion, our work highlights an essential role for this HAD phosphatase across apicomplexan budding and suggests a regulatory mechanism of differential phosphorylation on the structure and/or contractile function of the basal complex.
Collapse
Affiliation(s)
- Klemens Engelberg
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - F Douglas Ivey
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Angela Lin
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Maya Kono
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | | | - Dave Faugno-Fusci
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - Tim-Wolf Gilberger
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany.,M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.,Center for Structural Systems Biology, Hamburg, Germany
| | - Michael White
- Departments of Molecular Medicine & Global Health, Florida Center for Drug Discovery and Innovation, Colleges of Medicine and Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
29
|
Graindorge A, Frénal K, Jacot D, Salamun J, Marq JB, Soldati-Favre D. The Conoid Associated Motor MyoH Is Indispensable for Toxoplasma gondii Entry and Exit from Host Cells. PLoS Pathog 2016; 12:e1005388. [PMID: 26760042 PMCID: PMC4711953 DOI: 10.1371/journal.ppat.1005388] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/17/2015] [Indexed: 11/23/2022] Open
Abstract
Many members of the phylum of Apicomplexa have adopted an obligate intracellular life style and critically depend on active invasion and egress from the infected cells to complete their lytic cycle. Toxoplasma gondii belongs to the coccidian subgroup of the Apicomplexa, and as such, the invasive tachyzoite contains an organelle termed the conoid at its extreme apex. This motile organelle consists of a unique polymer of tubulin fibres and protrudes in both gliding and invading parasites. The class XIV myosin A, which is conserved across the Apicomplexa phylum, is known to critically contribute to motility, invasion and egress from infected cells. The MyoA-glideosome is anchored to the inner membrane complex (IMC) and is assumed to translocate the components of the circular junction secreted by the micronemes and rhoptries, to the rear of the parasite. Here we comprehensively characterise the class XIV myosin H (MyoH) and its associated light chains. We show that the 3 alpha-tubulin suppressor domains, located in MyoH tail, are necessary to anchor this motor to the conoid. Despite the presence of an intact MyoA-glideosome, conditional disruption of TgMyoH severely compromises parasite motility, invasion and egress from infected cells. We demonstrate that MyoH is necessary for the translocation of the circular junction from the tip of the parasite, where secretory organelles exocytosis occurs, to the apical position where the IMC starts. This study attributes for the first time a direct function of the conoid in motility and invasion, and establishes the indispensable role of MyoH in initiating the first step of motility along this unique organelle, which is subsequently relayed by MyoA to enact effective gliding and invasion. The Apicomplexa phylum groups important pathogens that infect humans and animals. Host cell invasion and egress from infected cells are key events in the lytic cycle of these obligate intracellular parasites. Host cell entry is powered by gliding motility and initiated by the discharge of apical secretory organelles at the site of contact with the host cell. Anchored to the parasite pellicle, the glideosome composed of myosin A and the gliding associated proteins is the molecular machine which translocates the secreted adhesins from the apical to the posterior pole of the parasite and hence propels the parasite into the host cell. Toxoplasma gondii exhibits a helical form of gliding motility and as member of the coccidian-subgroup of Apicomplexa possesses an apical organelle called the conoid, which protrudes during invasion and egress and consists in helically organized polymer of tubulin fibers. We have deciphered here the function of a novel myosin associated to the microtubules composing the conoid. Myosin H is essential and prerequisite for motility, invasion and egress from infected cells. This unusual motor links actin- and tubulin-based cytoskeletons and uncovers a direct role of the conoid in motility and invasion.
Collapse
Affiliation(s)
- Arnault Graindorge
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karine Frénal
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Damien Jacot
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Salamun
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean Baptiste Marq
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
30
|
Targeting Toxoplasma tubules: tubulin, microtubules, and associated proteins in a human pathogen. EUKARYOTIC CELL 2014; 14:2-12. [PMID: 25380753 DOI: 10.1128/ec.00225-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes serious opportunistic infections, birth defects, and blindness in humans. Microtubules are critically important components of diverse structures that are used throughout the Toxoplasma life cycle. As in other eukaryotes, spindle microtubules are required for chromosome segregation during replication. Additionally, a set of membrane-associated microtubules is essential for the elongated shape of invasive "zoites," and motility follows a spiral trajectory that reflects the path of these microtubules. Toxoplasma zoites also construct an intricate, tubulin-based apical structure, termed the conoid, which is important for host cell invasion and associates with proteins typically found in the flagellar apparatus. Last, microgametes specifically construct a microtubule-containing flagellar axoneme in order to fertilize macrogametes, permitting genetic recombination. The specialized roles of these microtubule populations are mediated by distinct sets of associated proteins. This review summarizes our current understanding of the role of tubulin, microtubule populations, and associated proteins in Toxoplasma; these components are used for both novel and broadly conserved processes that are essential for parasite survival.
Collapse
|
31
|
The apical complex provides a regulated gateway for secretion of invasion factors in Toxoplasma. PLoS Pathog 2014; 10:e1004074. [PMID: 24743791 PMCID: PMC3990729 DOI: 10.1371/journal.ppat.1004074] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 03/04/2014] [Indexed: 11/19/2022] Open
Abstract
The apical complex is the definitive cell structure of phylum Apicomplexa, and is the focus of the events of host cell penetration and the establishment of intracellular parasitism. Despite the importance of this structure, its molecular composition is relatively poorly known and few studies have experimentally tested its functions. We have characterized a novel Toxoplasma gondii protein, RNG2, that is located at the apical polar ring--the common structural element of apical complexes. During cell division, RNG2 is first recruited to centrosomes immediately after their duplication, confirming that assembly of the new apical complex commences as one of the earliest events of cell replication. RNG2 subsequently forms a ring, with the carboxy- and amino-termini anchored to the apical polar ring and mobile conoid, respectively, linking these two structures. Super-resolution microscopy resolves these two termini, and reveals that RNG2 orientation flips during invasion when the conoid is extruded. Inducible knockdown of RNG2 strongly inhibits host cell invasion. Consistent with this, secretion of micronemes is prevented in the absence of RNG2. This block, however, can be fully or partially overcome by exogenous stimulation of calcium or cGMP signaling pathways, respectively, implicating the apical complex directly in these signaling events. RNG2 demonstrates for the first time a role for the apical complex in controlling secretion of invasion factors in this important group of parasites.
Collapse
|
32
|
Okamoto N, Keeling PJ. The 3D structure of the apical complex and association with the flagellar apparatus revealed by serial TEM tomography in Psammosa pacifica, a distant relative of the Apicomplexa. PLoS One 2014; 9:e84653. [PMID: 24392150 PMCID: PMC3879320 DOI: 10.1371/journal.pone.0084653] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 11/17/2013] [Indexed: 11/18/2022] Open
Abstract
The apical complex is one of the defining features of apicomplexan parasites, including the malaria parasite Plasmodium, where it mediates host penetration and invasion. The apical complex is also known in a few related lineages, including several non-parasitic heterotrophs, where it mediates feeding behaviour. The origin of the apical complex is unclear, and one reason for this is that in apicomplexans it exists in only part of the life cycle, and never simultaneously with other major cytoskeletal structures like flagella and basal bodies. Here, we used conventional TEM and serial TEM tomography to reconstruct the three dimensional structure of the apical complex in Psammosa pacifica, a predatory relative of apicomplexans and dinoflagellates that retains the archetype apical complex and the flagellar apparatus simultaneously. The P. pacifica apical complex is associated with the gullet and consists of the pseudoconoid, micronemes, and electron dense vesicles. The pseudoconoid is a convex sheet consisting of eight short microtubules, plus a band made up of microtubules that originate from the flagellar apparatus. The flagellar apparatus consists of three microtubular roots. One of the microtubular roots attached to the posterior basal body is connected to bypassing microtubular strands, which are themselves connected to the extension of the pseudoconoid. These complex connections where the apical complex is an extension of the flagellar apparatus, reflect the ancestral state of both, dating back to the common ancestor of apicaomplexans and dinoflagellates.
Collapse
Affiliation(s)
- Noriko Okamoto
- The Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick J. Keeling
- The Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
33
|
Abstract
Toxoplasma gondii and Plasmodium falciparum are important human pathogens. These parasites and many of their apicomplexan relatives undergo a complex developmental process in the cells of their hosts, which includes genome replication, cell division and the assembly of new invasive stages. Apicomplexan cell cycle progression is both globally and locally regulated. Global regulation is carried out throughout the cytoplasm by diffusible factors that include cell cycle-specific kinases, cyclins and transcription factors. Local regulation acts on individual nuclei and daughter cells that are developing inside the mother cell. We propose that the centrosome is a master regulator that physically tethers cellular components and that provides spatial and temporal control of apicomplexan cell division.
Collapse
Affiliation(s)
- Maria E Francia
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Boris Striepen
- 1] Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA. [2] Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
34
|
A SAS-6-like protein suggests that the Toxoplasma conoid complex evolved from flagellar components. EUKARYOTIC CELL 2013; 12:1009-19. [PMID: 23687115 PMCID: PMC3697468 DOI: 10.1128/ec.00096-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SAS-6 is required for centriole biogenesis in diverse eukaryotes. Here, we describe a novel family of SAS-6-like (SAS6L) proteins that share an N-terminal domain with SAS-6 but lack coiled-coil tails. SAS6L proteins are found in a subset of eukaryotes that contain SAS-6, including diverse protozoa and green algae. In the apicomplexan parasite Toxoplasma gondii, SAS-6 localizes to the centriole but SAS6L is found above the conoid, an enigmatic tubulin-containing structure found at the apex of a subset of alveolate organisms. Loss of SAS6L causes reduced fitness in Toxoplasma. The Trypanosoma brucei homolog of SAS6L localizes to the basal-plate region, the site in the axoneme where the central-pair microtubules are nucleated. When endogenous SAS6L is overexpressed in Toxoplasma tachyzoites or Trypanosoma trypomastigotes, it forms prominent filaments that extend through the cell cytoplasm, indicating that it retains a capacity to form higher-order structures despite lacking a coiled-coil domain. We conclude that although SAS6L proteins share a conserved domain with SAS-6, they are a functionally distinct family that predates the last common ancestor of eukaryotes. Moreover, the distinct localization of the SAS6L protein in Trypanosoma and Toxoplasma adds weight to the hypothesis that the conoid complex evolved from flagellar components.
Collapse
|
35
|
Characterization of TtALV2, an essential charged repeat motif protein of the Tetrahymena thermophila membrane skeleton. EUKARYOTIC CELL 2013; 12:932-40. [PMID: 23606287 DOI: 10.1128/ec.00050-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alveolins are a recently described class of proteins common to all members of the superphylum Alveolata that are characterized by conserved charged repeat motifs (CRMs) but whose exact function remains unknown. We have analyzed the smaller of the two alveolins of Tetrahymena thermophila, TtALV2. The protein localizes to dispersed, broken patches arranged between the rows of the longitudinal microtubules. Macronuclear knockdown of Ttalv2 leads to multinuclear cells with no apparent cell polarity and randomly occurring cell protrusions, either by interrupting pellicle integrity or by disturbing cytokinesis. Correct association of TtALV2 with the alveoli or the pellicle is complex and depends on both the termini as well as the charged repeat motifs of the protein. Proteins containing similar CRMs are a dominant part of the ciliate membrane cytoskeleton, suggesting that these motifs may play a more general role in mediating membrane attachment and/or cytoskeletal association. To better understand their integration into the cytoskeleton, we localized a range of CRM-based fusion proteins, which suggested there is an inherent tendency for proteins with CRMs to be located in the peripheral cytoskeleton, some nucleating as filaments at the basal bodies. Even a synthetic protein, mimicking the charge and repeat pattern of these proteins, directed a reporter protein to a variety of peripheral cytoskeletal structures in Tetrahymena. These motifs might provide a blueprint for membrane and cytoskeleton affiliation in the complex pellicles of Alveolata.
Collapse
|
36
|
Cell division in Apicomplexan parasites is organized by a homolog of the striated rootlet fiber of algal flagella. PLoS Biol 2012; 10:e1001444. [PMID: 23239939 PMCID: PMC3519896 DOI: 10.1371/journal.pbio.1001444] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/30/2012] [Indexed: 01/08/2023] Open
Abstract
Apicomplexan parasites undergo cell division using an evolutionarily conserved mechanism first described in the positioning and assembly of flagella in algae. Apicomplexa are intracellular parasites that cause important human diseases including malaria and toxoplasmosis. During host cell infection new parasites are formed through a budding process that parcels out nuclei and organelles into multiple daughters. Budding is remarkably flexible in output and can produce two to thousands of progeny cells. How genomes and daughters are counted and coordinated is unknown. Apicomplexa evolved from single celled flagellated algae, but with the exception of the gametes, lack flagella. Here we demonstrate that a structure that in the algal ancestor served as the rootlet of the flagellar basal bodies is required for parasite cell division. Parasite striated fiber assemblins (SFA) polymerize into a dynamic fiber that emerges from the centrosomes immediately after their duplication. The fiber grows in a polarized fashion and daughter cells form at its distal tip. As the daughter cell is further elaborated it remains physically tethered at its apical end, the conoid and polar ring. Genetic experiments in Toxoplasma gondii demonstrate two essential components of the fiber, TgSFA2 and 3. In the absence of either of these proteins cytokinesis is blocked at its earliest point, the initiation of the daughter microtubule organizing center (MTOC). Mitosis remains unimpeded and mutant cells accumulate numerous nuclei but fail to form daughter cells. The SFA fiber provides a robust spatial and temporal organizer of parasite cell division, a process that appears hard-wired to the centrosome by multiple tethers. Our findings have broader evolutionary implications. We propose that Apicomplexa abandoned flagella for most stages yet retained the organizing principle of the flagellar MTOC. Instead of ensuring appropriate numbers of flagella, the system now positions the apical invasion complexes. This suggests that elements of the invasion apparatus may be derived from flagella or flagellum associated structures. Malaria, toxoplasmosis, and related diseases are caused by infection with unicellular parasites called Apicomplexa. Their name refers to the elaborate invasion machinery that occupies the apical end of the parasite cell. This apparatus allows the parasite to force its way into the cells of its host, and to deliver factors that will manipulate host cell structure, gene expression, and metabolism. Once in the host cell the parasite will begin to grow. The parasite replicates its genome and organelles numerous times and then loads these various elements into numerous daughter cells that will further spread the infection. Here we report a fiber that coordinates the daughter cell budding process. The fiber links the centrosome, which controls the mitotic spindle, and the genome with the microtubule organizing center of the budding daughter. Parasite mutants lacking the proteins that build the fiber fail to form daughter cells at the earliest step. The fiber and its components are remarkably similar to fibers that coordinate flagella in algae. While Apicomplexa are not flagellated (with the exception of certain gamete stages) they evolved from flagellated algae. We propose that elements of the invasion apparatus evolved from the flagellum or flagellum associated structures.
Collapse
|
37
|
Lorestani A, Ivey FD, Thirugnanam S, Busby MA, Marth GT, Cheeseman IM, Gubbels MJ. Targeted proteomic dissection of Toxoplasma cytoskeleton sub-compartments using MORN1. Cytoskeleton (Hoboken) 2012; 69:1069-85. [PMID: 23027733 DOI: 10.1002/cm.21077] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 12/25/2022]
Abstract
The basal complex in Toxoplasma functions as the contractile ring in the cell division process. Basal complex contraction tapers the daughter cytoskeleton toward the basal end and is required for daughter segregation. We have previously shown that the protein MORN1 is essential for basal complex assembly and likely acts as a scaffolding protein. To further our understanding of the basal complex, we combined subcellular fractionation with an affinity purification of the MORN1 complex and identified its protein composition. We identified two new components of the basal complex, one of which uniquely associated with the basal complex in mature parasites, the first of its kind. In addition, we identified several other novel cytoskeleton proteins with different spatiotemporal dynamics throughout cell division. Since many of these proteins are unique to Apicomplexa this study significantly contributes to the annotation of their unique cytoskeleton. Furthermore, we show that G-actin binding protein TgCAP is localized at the apical cap region in intracellular parasites, but quickly redistributes to a cytoplasmic localization pattern upon egress. © 2012 Wiley Periodicals, Inc.
Collapse
|
38
|
Anderson-White B, Beck JR, Chen CT, Meissner M, Bradley PJ, Gubbels MJ. Cytoskeleton assembly in Toxoplasma gondii cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:1-31. [PMID: 22878103 PMCID: PMC4066374 DOI: 10.1016/b978-0-12-394309-5.00001-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cell division across members of the protozoan parasite phylum Apicomplexa displays a surprising diversity between different species as well as between different life stages of the same parasite. In most cases, infection of a host cell by a single parasite results in the formation of a polyploid cell from which individual daughters bud in a process dependent on a final round of mitosis. Unlike other apicomplexans, Toxoplasma gondii divides by a binary process consisting of internal budding that results in only two daughter cells per round of division. Since T. gondii is experimentally accessible and displays the simplest division mode, it has manifested itself as a model for apicomplexan daughter formation. Here, we review newly emerging insights in the prominent role that assembly of the cortical cytoskeletal scaffold plays in the process of daughter parasite formation.
Collapse
Affiliation(s)
| | - Josh R. Beck
- University of California Los Angeles, Department of Microbiology, Immunology and Molecular Genetics, Los Angeles, CA 90095, USA
| | - Chun-Ti Chen
- Boston College, Department of Biology, Chestnut Hill, MA 02467, USA
| | - Markus Meissner
- Division of Infection and Immunity, Institute of Biomedical Life Sciences, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Peter J. Bradley
- University of California Los Angeles, Department of Microbiology, Immunology and Molecular Genetics, Los Angeles, CA 90095, USA
| | - Marc-Jan Gubbels
- Boston College, Department of Biology, Chestnut Hill, MA 02467, USA
| |
Collapse
|
39
|
SPM1 stabilizes subpellicular microtubules in Toxoplasma gondii. EUKARYOTIC CELL 2011; 11:206-16. [PMID: 22021240 DOI: 10.1128/ec.05161-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified two novel proteins that colocalize with the subpellicular microtubules in the protozoan parasite Toxoplasma gondii and named these proteins SPM1 and SPM2. These proteins have basic isoelectric points and both have homologs in other apicomplexan parasites. SPM1 contains six tandem copies of a 32-amino-acid repeat, whereas SPM2 lacks defined protein signatures. Alignment of Toxoplasma SPM2 with apparent Plasmodium SPM2 homologs indicates that the greatest degree of conservation lies in the carboxy-terminal half of the protein. Analysis of Plasmodium homologs of SPM1 indicates that while the central 32-amino-acid repeats have expanded to different degrees (7, 8, 9, 12, or 13 repeats), the amino- and carboxy-terminal regions remain conserved. In contrast, although the Cryptosporidium SPM1 homolog has a conserved carboxy tail, the five repeats are considerably diverged, and it has a smaller amino-terminal domain. SPM1 is localized along the full length of the subpellicular microtubules but does not associate with the conoid or spindle microtubules. SPM2 has a restricted localization along the middle region of the subpellicular microtubules. Domain deletion analysis indicates that four or more copies of the SPM1 repeat are required for localization to microtubules, and the amino-terminal 63 residues of SPM2 are required for localization to the subpellicular microtubules. Gene deletion studies indicate that neither SPM1 nor SPM2 is essential for tachyzoite viability. However, loss of SPM1 decreases overall parasite fitness and eliminates the stability of subpellicular microtubules to detergent extraction.
Collapse
|
40
|
Tyler JS, Treeck M, Boothroyd JC. Focus on the ringleader: the role of AMA1 in apicomplexan invasion and replication. Trends Parasitol 2011; 27:410-20. [PMID: 21659001 DOI: 10.1016/j.pt.2011.04.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/08/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
Abstract
Apicomplexan parasites exhibit an unusual mechanism of host cell penetration. A central player in this process is the protein apical membrane antigen 1 (AMA1). Although essential for invasion, the precise functional roles AMA1 plays have been unclear. Several recent studies have provided important functional insight into its role within the multiprotein complex that comprises the moving junction (MJ). Initially formed at the apical tip of the invading parasite, the MJ represents a ring-like region of contact between the surfaces of the invading parasite and the host cell as the invaginated host plasma membrane is forced inward by the penetrating parasite. This review discusses these and other recent insights into AMA1 with particular emphasis on studies conducted in Plasmodium and Toxoplasma.
Collapse
Affiliation(s)
- Jessica S Tyler
- Department of Microbiology and Immunology, Stanford University School of Medicine, CA 94305, USA
| | | | | |
Collapse
|