1
|
Mannherz HG, Budde H, Jarkas M, Hassoun R, Malek-Chudzik N, Mazur AJ, Skuljec J, Pul R, Napirei M, Hamdani N. Reorganization of the actin cytoskeleton during the formation of neutrophil extracellular traps (NETs). Eur J Cell Biol 2024; 103:151407. [PMID: 38555846 DOI: 10.1016/j.ejcb.2024.151407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
We analyzed actin cytoskeleton alterations during NET extrusion by neutrophil-like dHL-60 cells and human neutrophils in the absence of DNase1 containing serum to avoid chromatin degradation and microfilament disassembly. NET-formation by dHL-60 cells and neutrophils was induced by Ionomycin or phorbol-12-myristat-13-acetate (PMA). Subsequent staining with anti-actin and TRITC-phalloidin showed depolymerization of the cortical F-actin at spatially confined areas, the NET extrusion sites, effected by transient activation of the monooxygenase MICAL-1 supported by the G-actin binding proteins cofilin, profilin, thymosin ß4 and probably the F-actin fragmenting activity of gelsolin and/or its fragments, which also decorated the formed NETs. MICAL-1 itself appeared to be proteolyzed by neutrophil elastase possibly to confine its activity to the NET-extrusion area. The F-actin oxidization activity of MICAL-1 is inhibited by Levosimendan leading to reduced NET-formation. Anti-gasdermin-D immunohistochemistry showed a cytoplasmic distribution in non-stimulated cells. After stimulation the NET-extrusion pore displayed reduced anti-gasdermin-D staining but accumulated underneath the plasma membrane of the remaining cell body. A similar distribution was observed for myosin that concentrated together with cortical F-actin along the periphery of the remaining cell body suggesting force production by acto-myosin interactions supporting NET expulsion as indicated by the inhibitory action of the myosin ATPase inhibitor blebbistatin. Isolated human neutrophils displayed differences in their content of certain cytoskeletal proteins. After stimulation neutrophils with high gelsolin content preferentially formed "cloud"-like NETs, whereas those with low or no gelsolin formed long "filamentous" NETs.
Collapse
Affiliation(s)
- Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Germany; Department of Cellular and Translational Physiology, Institute of Physiology, Medical Faculty, Ruhr-University Bochum, and Molecular and Experimental Cardiology, Institute for Research and Education, St. Josef Hospital, Clinics of the Ruhr-University Bochum, Germany.
| | - Heidi Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Medical Faculty, Ruhr-University Bochum, and Molecular and Experimental Cardiology, Institute for Research and Education, St. Josef Hospital, Clinics of the Ruhr-University Bochum, Germany.
| | - Muhammad Jarkas
- Department of Cellular and Translational Physiology, Institute of Physiology, Medical Faculty, Ruhr-University Bochum, and Molecular and Experimental Cardiology, Institute for Research and Education, St. Josef Hospital, Clinics of the Ruhr-University Bochum, Germany.
| | - Roua Hassoun
- Department of Cellular and Translational Physiology, Institute of Physiology, Medical Faculty, Ruhr-University Bochum, and Molecular and Experimental Cardiology, Institute for Research and Education, St. Josef Hospital, Clinics of the Ruhr-University Bochum, Germany.
| | - Natalia Malek-Chudzik
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, University of Wroclaw, Poland.
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland.
| | - Jelena Skuljec
- Department of Neurology, University Medicine Essen, Germany; Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, Germany.
| | - Refik Pul
- Department of Neurology, University Medicine Essen, Germany; Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, Germany.
| | - Markus Napirei
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Germany
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Medical Faculty, Ruhr-University Bochum, and Molecular and Experimental Cardiology, Institute for Research and Education, St. Josef Hospital, Clinics of the Ruhr-University Bochum, Germany; Department of Physiology, University Maastricht, Maastricht, the Netherlands; HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest 1089, Hungary.
| |
Collapse
|
2
|
Spencer HL, Sanders R, Boulberdaa M, Meloni M, Cochrane A, Spiroski AM, Mountford J, Emanueli C, Caporali A, Brittan M, Rodor J, Baker AH. The LINC00961 transcript and its encoded micropeptide, small regulatory polypeptide of amino acid response, regulate endothelial cell function. Cardiovasc Res 2020; 116:1981-1994. [PMID: 31990292 PMCID: PMC8216332 DOI: 10.1093/cvr/cvaa008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/10/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS Long non-coding RNAs (lncRNAs) play functional roles in physiology and disease, yet understanding of their contribution to endothelial cell (EC) function is incomplete. We identified lncRNAs regulated during EC differentiation and investigated the role of LINC00961 and its encoded micropeptide, small regulatory polypeptide of amino acid response (SPAAR), in EC function. METHODS AND RESULTS Deep sequencing of human embryonic stem cell differentiation to ECs was combined with Encyclopedia of DNA Elements (ENCODE) RNA-seq data from vascular cells, identifying 278 endothelial enriched genes, including 6 lncRNAs. Expression of LINC00961, first annotated as an lncRNA but reassigned as a protein-coding gene for the SPAAR micropeptide, was increased during the differentiation and was EC enriched. LINC00961 transcript depletion significantly reduced EC adhesion, tube formation, migration, proliferation, and barrier integrity in primary ECs. Overexpression of the SPAAR open reading frame increased tubule formation; however, overexpression of the full-length transcript did not, despite production of SPAAR. Furthermore, overexpression of an ATG mutant of the full-length transcript reduced network formation, suggesting a bona fide non-coding RNA function of the transcript with opposing effects to SPAAR. As the LINC00961 locus is conserved in mouse, we generated an LINC00961 locus knockout (KO) mouse that underwent hind limb ischaemia (HLI) to investigate the angiogenic role of this locus in vivo. In agreement with in vitro data, KO animals had a reduced capillary density in the ischaemic adductor muscle after 7 days. Finally, to characterize LINC00961 and SPAAR independent functions in ECs, we performed pull-downs of both molecules and identified protein-binding partners. LINC00961 RNA binds the G-actin sequestering protein thymosin beta-4x (Tβ4) and Tβ4 depletion phenocopied the overexpression of the ATG mutant. SPAAR binding partners included the actin-binding protein, SYNE1. CONCLUSION The LINC00961 locus regulates EC function in vitro and in vivo. The gene produces two molecules with opposing effects on angiogenesis: SPAAR and LINC00961.
Collapse
Affiliation(s)
- Helen L Spencer
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Rachel Sanders
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Mounia Boulberdaa
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Marco Meloni
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Amy Cochrane
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Ana-Mishel Spiroski
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Joanne Mountford
- Institute of Cardiovascular and Medical Sciences, University of
Glasgow, 126 University Pl, Glasgow G12 8TA, UK
| | - Costanza Emanueli
- National Heart and Lung Institute, Vascular Sciences and Cardiac Function,
Imperial Centre for Translational and Experimental Medicine, Imperial College
London, London W12 0NN, UK
| | - Andrea Caporali
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Mairi Brittan
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Julie Rodor
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
| | - Andrew H Baker
- University/BHF Centre for Cardiovascular Science, Queens Medical Research
Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh
EH16 4TJ, UK
- Institute of Cardiovascular and Medical Sciences, University of
Glasgow, 126 University Pl, Glasgow G12 8TA, UK
| |
Collapse
|
3
|
Vasilopoulou E, Riley PR, Long DA. Thymosin-β4: A key modifier of renal disease. Expert Opin Biol Ther 2018; 18:185-192. [DOI: 10.1080/14712598.2018.1473371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Elisavet Vasilopoulou
- Medway School of Pharmacy, University of Kent, Chatham Maritime, UK
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK
| | - Paul R. Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David A. Long
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, UK
| |
Collapse
|
4
|
Schlau M, Terheyden-Keighley D, Theis V, Mannherz HG, Theiss C. VEGF Triggers the Activation of Cofilin and the Arp2/3 Complex within the Growth Cone. Int J Mol Sci 2018; 19:ijms19020384. [PMID: 29382077 PMCID: PMC5855606 DOI: 10.3390/ijms19020384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 01/05/2023] Open
Abstract
A crucial neuronal structure for the development and regeneration of neuronal networks is the axonal growth cone. Affected by different guidance cues, it grows in a predetermined direction to reach its final destination. One of those cues is the vascular endothelial growth factor (VEGF), which was identified as a positive effector for growth cone movement. These positive effects are mainly mediated by a reorganization of the actin network. This study shows that VEGF triggers a tight colocalization of cofilin and the Arp2/3 complex to the actin cytoskeleton within chicken dorsal root ganglia (DRG). Live cell imaging after microinjection of GFP (green fluorescent protein)-cofilin and RFP (red fluorescent protein)-LifeAct revealed that both labeled proteins rapidly redistributed within growth cones, and showed a congruent distribution pattern after VEGF supplementation. Disruption of signaling upstream of cofilin via blocking LIM-kinase (LIMK) activity resulted in growth cones displaying regressive growth behavior. Microinjection of GFP-p16b (a subunit of the Arp2/3 complex) and RFP-LifeAct revealed that both proteins redistributed into lamellipodia of the growth cone within minutes after VEGF stimulation. Disruption of the signaling to the Arp2/3 complex in the presence of VEGF by inhibition of N-WASP (neuronal Wiskott–Aldrich–Scott protein) caused retraction of growth cones. Hence, cofilin and the Arp2/3 complex appear to be downstream effector proteins of VEGF signaling to the actin cytoskeleton of DRG growth cones. Our data suggest that VEGF simultaneously affects different pathways for signaling to the actin cytoskeleton, since activation of cofilin occurs via inhibition of LIMK, whereas activation of Arp2/3 is achieved by stimulation of N-WASP.
Collapse
Affiliation(s)
- Matthias Schlau
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Daniel Terheyden-Keighley
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Verena Theis
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | - Hans Georg Mannherz
- Research Group Molecular Cardiology, University Hospital Bergmannsheil and St. Josef Hospital, c/o Clinical Pharmacology, Ruhr-University, 44780 Bochum, Germany.
| | - Carsten Theiss
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| |
Collapse
|
5
|
Carlier MF, Shekhar S. Global treadmilling coordinates actin turnover and controls the size of actin networks. Nat Rev Mol Cell Biol 2017; 18:389-401. [DOI: 10.1038/nrm.2016.172] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Thymosin β4 overexpression regulates neuron production and spatial distribution in the developing avian optic tectum. Histochem Cell Biol 2016; 147:555-564. [DOI: 10.1007/s00418-016-1529-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2016] [Indexed: 12/11/2022]
|
7
|
Lang AE, Qu Z, Schwan C, Silvan U, Unger A, Schoenenberger CA, Aktories K, Mannherz HG. Actin ADP-ribosylation at Threonine148 by Photorhabdus luminescens toxin TccC3 induces aggregation of intracellular F-actin. Cell Microbiol 2016; 19. [PMID: 27341322 DOI: 10.1111/cmi.12636] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/10/2016] [Accepted: 06/18/2016] [Indexed: 02/03/2023]
Abstract
Intoxication of eukaryotic cells by Photorhabdus luminescens toxin TccC3 induces cell rounding and detachment from the substratum within a few hours and compromises a number of cell functions like phagocytosis. Here, we used morphological and biochemical procedures to analyse the mechanism of TccC3 intoxication. Life imaging of TccC3-intoxicated HeLa cells transfected with AcGFP-actin shows condensation of F-actin into large aggregates. Life cell total internal reflection fluorescence (TIRF) microscopy of identically treated HeLa cells confirmed the formation of actin aggregates but also disassembly of F-actin stress fibres. Recombinant TccC3 toxin ADP-ribosylates purified skeletal and non-muscle actin at threonine148 leading to a strong propensity to polymerize and F-actin bundle formation as shown by TIRF and electron microscopy. Native gel electrophoresis shows strongly reduced binding of Thr148-ADP-ribosylated actin to the severing proteins gelsolin and its fragments G1 and G1-3, and to ADF/cofilin. Complexation of actin with these proteins inhibits its ADP-ribosylation. TIRF microscopy demonstrates rapid polymerization of Thr148-ADP-ribosylated actin to curled F-actin bundles even in the presence of thymosin β4, gelsolin or G1-3. Thr148-ADP-ribosylated F-actin cannot be depolymerized by gelsolin or G1-3 as verified by TIRF, co-sedimentation and electron microscopy and shows reduced treadmilling as indicated by a lack of stimulation of its ATPase activity after addition of cofilin-1.
Collapse
Affiliation(s)
- Alexander E Lang
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Zheng Qu
- Abteilung für Anatomie und Molekulare Embryologie, Ruhr-Universität Bochum, Bochum, Germany
| | - Carsten Schwan
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Unai Silvan
- ETH Zürich, Institute for Biomechanics, University of Zürich, Balgrist Campus, Zürich, Switzerland
| | - Andreas Unger
- Department of Cardiovascular Physiology, Ruhr-University Bochum, Bochum, Germany
| | | | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Hans Georg Mannherz
- Abteilung für Anatomie und Molekulare Embryologie, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
8
|
Photo-enhancement of macrophage phagocytic activity via Rac1-mediated signaling pathway: Implications for bacterial infection. Int J Biochem Cell Biol 2016; 78:206-216. [PMID: 27345261 DOI: 10.1016/j.biocel.2016.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/12/2016] [Accepted: 06/19/2016] [Indexed: 11/20/2022]
Abstract
Phagocytosis and the subsequent destruction of invading pathogens by macrophages are indispensable steps in host immune responses to microbial infections. Low-power laser irradiation (LPLI) has been found to exert photobiological effects on immune responses, but the signaling mechanisms underlying this photobiomodulation of phagocytosis remains largely unknown. Here, we demonstrated for the first time that LPLI enhanced the phagocytic activity of macrophages by stimulating the activation of Rac1. The overexpression of constitutively activated Rac1 clearly enhanced LPLI-induced phagocytosis, whereas the overexpression of dominant negative Rac1 exerted the opposite effect. The phosphorylation of cofilin was involved in the effects of LPLI on phagocytosis, which was regulated by the membrane translocation and activation of Rac1. Furthermore, the photoactivation of Rac1 was dependent on the Src/PI3K/Vav1 pathway. The inhibition of the Src/PI3K pathway significantly suppressed LPLI-induced actin polymerization and phagocytosis enhancement. Additionally, LPLI-treated mice exhibited increased survival and a decreased organ bacterial load when challenged with Listeria monocytogenes, indicating that LPLI enhanced macrophage phagocytosis in vivo. These findings highlight the important roles of the Src/PI3K/Vav1/Rac1/cofilin pathway in regulating macrophage phagocytosis and provide a potential strategy for treating phagocytic deficiency via LPLI.
Collapse
|
9
|
Qu Z, Silvan U, Jockusch BM, Aebi U, Schoenenberger CA, Mannherz HG. Distinct actin oligomers modulate differently the activity of actin nucleators. FEBS J 2015. [DOI: 10.1111/febs.13381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Zheng Qu
- Department of Anatomy and Molecular Embryology; Ruhr-University; Bochum Germany
| | - Unai Silvan
- Institute for Biomechanics; Balgrist University Hospital; ETH and University of Zürich; Switzerland
| | - Brigitte M. Jockusch
- Department of Cell Biology; Institute of Zoology; Technical University; Braunschweig Germany
| | - Ueli Aebi
- Focal Area Structural Biology and Biophysics; Biozentrum; University of Basel; Switzerland
| | | | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology; Ruhr-University; Bochum Germany
| |
Collapse
|
10
|
Al Haj A, Mazur AJ, Radaszkiewicz K, Radaszkiewicz T, Makowiecka A, Stopschinski BE, Schönichen A, Geyer M, Mannherz HG. Distribution of formins in cardiac muscle: FHOD1 is a component of intercalated discs and costameres. Eur J Cell Biol 2014; 94:101-13. [PMID: 25555464 DOI: 10.1016/j.ejcb.2014.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/21/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022] Open
Abstract
The formin homology domain-containing protein1 (FHOD1) suppresses actin polymerization by inhibiting nucleation, but bundles actin filaments and caps filament barbed ends. Two polyclonal antibodies against FHOD1 were generated against (i) its N-terminal sequence (residues 1-339) and (ii) a peptide corresponding the sequence from position 358-371, which is unique for FHOD1 and does not occur in its close relative FHOD3. After affinity purification both antibodies specifically stain purified full length FHOD1 and a band of similar molecular mass in homogenates of cardiac muscle. The antibody against the N-terminus of FHOD1 was used for immunostaining cells of established lines, primary neonatal (NRC) and adult (ARC) rat cardiomyocytes and demonstrated the presence of FHOD1 in HeLa and fibroblastic cells along stress fibers and within presumed lamellipodia and actin arcs. In NRCs and ARCs we observed a prominent staining of presumed intercalated discs (ICD). Immunostaining of sections of hearts with both anti-FHOD1 antibodies confirmed the presence of FHOD1 in ICDs and double immunostaining demonstrated its colocalisation with cadherin, plakoglobin and a probably slightly shifted localization to connexin43. Similarly, immunostaining of isolated mouse or pig ICDs corroborated the presence of FHOD1 and its colocalisation with the mentioned cell junctional components. Anti-FHOD1 immunoblots of isolated ICDs demonstrated the presence of an immunoreactive band comigrating with purified FHOD1. Conversely, an anti-peptide antibody specific for FHOD3 with no cross-reactivity against FHOD1 immunostained on sections of cardiac muscle and ARCs the myofibrils in a cross-striated pattern but not the ICDs. In addition, the anti-peptide-FHOD1 antibody stained the lateral sarcolemma of ARCs in a banded pattern. Double immunostaining with anti-cadherin and -integrin-ß1 indicated the additional localization of FHOD1 in costameres. Immunostaining of cardiac muscle sections or ARCs with antibodies against mDia3-FH2-domain showed colocalisation with cadherin along the lateral border of cardiomyocytes suggesting also its presence in costameres.
Collapse
Affiliation(s)
- Abdulatif Al Haj
- Department of Anatomy and Molecular Embryology, Ruhr-University, Bochum, Germany
| | - Antonina J Mazur
- Department of Anatomy and Molecular Embryology, Ruhr-University, Bochum, Germany; Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland
| | - Katarzyna Radaszkiewicz
- Department of Anatomy and Molecular Embryology, Ruhr-University, Bochum, Germany; Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland
| | - Tomasz Radaszkiewicz
- Department of Anatomy and Molecular Embryology, Ruhr-University, Bochum, Germany; Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland
| | - Aleksandra Makowiecka
- Department of Anatomy and Molecular Embryology, Ruhr-University, Bochum, Germany; Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland
| | - Barbara E Stopschinski
- Department of Anatomy and Molecular Embryology, Ruhr-University, Bochum, Germany; Department of Physical Biochemistry, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - André Schönichen
- Department of Physical Biochemistry, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Matthias Geyer
- Department of Physical Biochemistry, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany; Center of Advanced European Studies and Research (CAESAR), Bonn, Germany
| | - Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Ruhr-University, Bochum, Germany.
| |
Collapse
|