1
|
Chen S, Yu B, DU GT, Huang TY, Zhang N, Fu N. KIF18B: an important role in signaling pathways and a potential resistant target in tumor development. Discov Oncol 2024; 15:430. [PMID: 39259333 PMCID: PMC11390998 DOI: 10.1007/s12672-024-01330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024] Open
Abstract
KIF18B is a key member of the kinesin-8 family, involved in regulating various physiological processes such as microtubule length, spindle assembly, and chromosome alignment. This article briefly introduces the structure and physiological functions of KIF18B, examines its role in malignant tumors, and the associated carcinogenic signaling pathways such as PI3K/AKT, Wnt/β-catenin, and mTOR pathways. Research indicates that the upregulation of KIF18B enhances tumor malignancy and resistance to radiotherapy and chemotherapy. KIF18B could become a new target for anticancer drugs, offering significant potential for the treatment of malignant tumors and reducing chemotherapy resistance.
Collapse
Affiliation(s)
- Shicheng Chen
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Bo Yu
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Guo Tu DU
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Tian Yu Huang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China
| | - Neng Zhang
- Department of Urology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China.
| | - Ni Fu
- Department of Urology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P. R. China.
| |
Collapse
|
2
|
Lucas J, Geisler M. Plant Kinesin Repertoires Expand with New Domain Architecture and Contract with the Loss of Flagella. J Mol Evol 2024; 92:381-401. [PMID: 38926179 DOI: 10.1007/s00239-024-10178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Kinesins are eukaryotic microtubule motor proteins subdivided into conserved families with distinct functional roles. While many kinesin families are widespread in eukaryotes, each organismal lineage maintains a unique kinesin repertoire composed of many families with distinct numbers of genes. Previous genomic surveys indicated that land plant kinesin repertoires differ markedly from other eukaryotes. To determine when repertoires diverged during plant evolution, we performed robust phylogenomic analyses of kinesins in 24 representative plants, two algae, two animals, and one yeast. These analyses show that kinesin repertoires expand and contract coincident with major shifts in the biology of algae and land plants. One kinesin family and five subfamilies, each defined by unique domain architectures, emerged in the green algae. Four of those kinesin groups expanded in ancestors of modern land plants, while six other kinesin groups were lost in the ancestors of pollen-bearing plants. Expansions of different kinesin families and subfamilies occurred in moss and angiosperm lineages. Other kinesin families remained stable and did not expand throughout plant evolution. Collectively these data support a radiation of kinesin domain architectures in algae followed by differential positive and negative selection on kinesins families and subfamilies in different lineages of land plants.
Collapse
Affiliation(s)
- Jessica Lucas
- Department of Biology, University of Wisconsin-Oshkosh, 800 Algoma Blvd, Oshkosh, WI, 54901, USA.
| | - Matt Geisler
- School of Biological Science, Southern Illinois University, Carbondale, IL, 54901, USA
| |
Collapse
|
3
|
Zhang JL, Xu MF, Chen J, Wei YL, She ZY. Kinesin-7 CENP-E mediates chromosome alignment and spindle assembly checkpoint in meiosis I. Chromosoma 2024; 133:149-168. [PMID: 38456964 DOI: 10.1007/s00412-024-00818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
In eukaryotes, meiosis is the genetic basis for sexual reproduction, which is important for chromosome stability and species evolution. The defects in meiosis usually lead to chromosome aneuploidy, reduced gamete number, and genetic diseases, but the pathogenic mechanisms are not well clarified. Kinesin-7 CENP-E is a key regulator in chromosome alignment and spindle assembly checkpoint in cell division. However, the functions and mechanisms of CENP-E in male meiosis remain largely unknown. In this study, we have revealed that the CENP-E gene was highly expressed in the rat testis. CENP-E inhibition influences chromosome alignment and spindle organization in metaphase I spermatocytes. We have found that a portion of misaligned homologous chromosomes is located at the spindle poles after CENP-E inhibition, which further activates the spindle assembly checkpoint during the metaphase-to-anaphase transition in rat spermatocytes. Furthermore, CENP-E depletion leads to abnormal spermatogenesis, reduced sperm count, and abnormal sperm head structure. Our findings have elucidated that CENP-E is essential for homologous chromosome alignment and spindle assembly checkpoint in spermatocytes, which further contribute to chromosome stability and sperm cell quality during spermatogenesis.
Collapse
Affiliation(s)
- Jing-Lian Zhang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Jie Chen
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, 350001, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
4
|
Derisoud E, Jouneau L, Dubois C, Archilla C, Jaszczyszyn Y, Legendre R, Daniel N, Peynot N, Dahirel M, Auclair-Ronzaud J, Wimel L, Duranthon V, Chavatte-Palmer P. Maternal age affects equine day 8 embryo gene expression both in trophoblast and inner cell mass. BMC Genomics 2022; 23:443. [PMID: 35705916 PMCID: PMC9199136 DOI: 10.1186/s12864-022-08593-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Breeding a mare until she is not fertile or even until her death is common in equine industry but the fertility decreases as the mare age increases. Embryo loss due to reduced embryo quality is partly accountable for this observation. Here, the effect of mare's age on blastocysts' gene expression was explored. Day 8 post-ovulation embryos were collected from multiparous young (YM, 6-year-old, N = 5) and older (OM, > 10-year-old, N = 6) non-nursing Saddlebred mares, inseminated with the semen of one stallion. Pure or inner cell mass (ICM) enriched trophoblast, obtained by embryo bisection, were RNA sequenced. Deconvolution algorithm was used to discriminate gene expression in the ICM from that in the trophoblast. Differential expression was analyzed with embryo sex and diameter as cofactors. Functional annotation and classification of differentially expressed genes and gene set enrichment analysis were also performed. RESULTS Maternal aging did not affect embryo recovery rate, embryo diameter nor total RNA quantity. In both compartments, the expression of genes involved in mitochondria and protein metabolism were disturbed by maternal age, although more genes were affected in the ICM. Mitosis, signaling and adhesion pathways and embryo development were decreased in the ICM of embryos from old mares. In trophoblast, ion movement pathways were affected. CONCLUSIONS This is the first study showing that maternal age affects gene expression in the equine blastocyst, demonstrating significant effects as early as 10 years of age. These perturbations may affect further embryo development and contribute to decreased fertility due to aging.
Collapse
Affiliation(s)
- Emilie Derisoud
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Cédric Dubois
- IFCE, Plateau technique de Chamberet, 19370, Chamberet, France
| | - Catherine Archilla
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, CEA, Paris-Sud University F-91198, Gif-sur-Yvette, France
| | - Rachel Legendre
- Institut Pasteur-Bioinformatics and Biostatistics Hub-Department of Computational Biology, Paris, France
| | - Nathalie Daniel
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Nathalie Peynot
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Michèle Dahirel
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | | | - Laurence Wimel
- IFCE, Plateau technique de Chamberet, 19370, Chamberet, France
| | - Véronique Duranthon
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.
- Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.
| |
Collapse
|
5
|
Raudaskoski M. Kinesin Motors in the Filamentous Basidiomycetes in Light of the Schizophyllum commune Genome. J Fungi (Basel) 2022; 8:jof8030294. [PMID: 35330296 PMCID: PMC8950801 DOI: 10.3390/jof8030294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/10/2022] Open
Abstract
Kinesins are essential motor molecules of the microtubule cytoskeleton. All eukaryotic organisms have several genes encoding kinesin proteins, which are necessary for various cell biological functions. During the vegetative growth of filamentous basidiomycetes, the apical cells of long leading hyphae have microtubules extending toward the tip. The reciprocal exchange and migration of nuclei between haploid hyphae at mating is also dependent on cytoskeletal structures, including the microtubules and their motor molecules. In dikaryotic hyphae, resulting from a compatible mating, the nuclear location, synchronous nuclear division, and extensive nuclear separation at telophase are microtubule-dependent processes that involve unidentified molecular motors. The genome of Schizophyllum commune is analyzed as an example of a species belonging to the Basidiomycota subclass, Agaricomycetes. In this subclass, the investigation of cell biology is restricted to a few species. Instead, the whole genome sequences of several species are now available. The analyses of the mating type genes and the genes necessary for fruiting body formation or wood degrading enzymes in several genomes of Agaricomycetes have shown that they are controlled by comparable systems. This supports the idea that the genes regulating the cell biological process in a model fungus, such as the genes encoding kinesin motor molecules, are also functional in other filamentous Agaricomycetes.
Collapse
Affiliation(s)
- Marjatta Raudaskoski
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| |
Collapse
|
6
|
Craske B, Legal T, Welburn JPI. Reconstitution of an active human CENP-E motor. Open Biol 2022; 12:210389. [PMID: 35259950 PMCID: PMC8905165 DOI: 10.1098/rsob.210389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/15/2022] [Indexed: 01/07/2023] Open
Abstract
CENP-E is a large kinesin motor protein which plays pivotal roles in mitosis by facilitating chromosome capture and alignment, and promoting microtubule flux in the spindle. So far, it has not been possible to obtain active human CENP-E to study its molecular properties. Xenopus CENP-E motor has been characterized in vitro and is used as a model motor; however, its protein sequence differs significantly from human CENP-E. Here, we characterize human CENP-E motility in vitro. Full-length CENP-E exhibits an increase in run length and longer residency times on microtubules when compared to CENP-E motor truncations, indicating that the C-terminal microtubule-binding site enhances the processivity when the full-length motor is active. In contrast with constitutively active human CENP-E truncations, full-length human CENP-E has a reduced microtubule landing rate in vitro, suggesting that the non-motor coiled-coil regions self-regulate motor activity. Together, we demonstrate that human CENP-E is a processive motor, providing a useful tool to study the mechanistic basis for how human CENP-E drives chromosome congression and spindle organization during human cell division.
Collapse
Affiliation(s)
- Benjamin Craske
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK
| | - Thibault Legal
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK
| | - Julie P. I. Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland EH9 3BF, UK
| |
Collapse
|
7
|
Christensen JR, Kendrick AA, Truong JB, Aguilar-Maldonado A, Adani V, Dzieciatkowska M, Reck-Peterson SL. Cytoplasmic dynein-1 cargo diversity is mediated by the combinatorial assembly of FTS-Hook-FHIP complexes. eLife 2021; 10:74538. [PMID: 34882091 PMCID: PMC8730729 DOI: 10.7554/elife.74538] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
In eukaryotic cells, intracellular components are organized by the microtubule motors cytoplasmic dynein-1 (dynein) and kinesins, which are linked to cargos via adaptor proteins. While ~40 kinesins transport cargo toward the plus end of microtubules, a single dynein moves cargo in the opposite direction. How dynein transports a wide variety of cargos remains an open question. The FTS–Hook–FHIP (‘FHF’) cargo adaptor complex links dynein to cargo in humans and fungi. As human cells have three Hooks and four FHIP proteins, we hypothesized that the combinatorial assembly of different Hook and FHIP proteins could underlie dynein cargo diversity. Using proteomic approaches, we determine the protein ‘interactome’ of each FHIP protein. Live-cell imaging and biochemical approaches show that different FHF complexes associate with distinct motile cargos. These complexes also move with dynein and its cofactor dynactin in single-molecule in vitro reconstitution assays. Complexes composed of FTS, FHIP1B, and Hook1/Hook3 colocalize with Rab5-tagged early endosomes via a direct interaction between FHIP1B and GTP-bound Rab5. In contrast, complexes composed of FTS, FHIP2A, and Hook2 colocalize with Rab1A-tagged ER-to-Golgi cargos and FHIP2A is involved in the motility of Rab1A tubules. Our findings suggest that combinatorial assembly of different FTS–Hook–FHIP complexes is one mechanism dynein uses to achieve cargo specificity.
Collapse
Affiliation(s)
- Jenna R Christensen
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Agnieszka A Kendrick
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Joey B Truong
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | | | - Vinit Adani
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, United States
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| |
Collapse
|
8
|
Ohi R, Strothman C, Zanic M. Impact of the 'tubulin economy' on the formation and function of the microtubule cytoskeleton. Curr Opin Cell Biol 2021; 68:81-89. [PMID: 33160109 PMCID: PMC7925340 DOI: 10.1016/j.ceb.2020.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
The microtubule cytoskeleton is assembled from a finite pool of α,β-tubulin, the size of which is controlled by an autoregulation mechanism. Cells also tightly regulate the architecture and dynamic behavior of microtubule arrays. Here, we discuss progress in our understanding of how tubulin autoregulation is achieved and highlight work showing that tubulin, in its unassembled state, is relevant for regulating the formation and organization of microtubules. Emerging evidence suggests that tubulin regulates microtubule-associated proteins and kinesin motors that are critical for microtubule nucleation, dynamics, and function. These relationships create feedback loops that connect the tubulin assembly cycle to the organization and dynamics of microtubule networks. We term this concept the 'tubulin economy', which emphasizes the idea that tubulin is a resource that can be deployed for the immediate purpose of creating polymers, or alternatively as a signaling molecule that has more far-reaching consequences for the organization of microtubule arrays.
Collapse
Affiliation(s)
- Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, USA.
| | - Claire Strothman
- Department of Cell and Developmental Biology, Vanderbilt University, USA
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, USA; Department of Biomolecular and Chemical Engineering, Department of Biochemistry, Vanderbilt University, USA.
| |
Collapse
|
9
|
Miguel VN, Ribichich KF, Giacomelli JI, Chan RL. Key role of the motor protein Kinesin 13B in the activity of homeodomain-leucine zipper I transcription factors. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6282-6296. [PMID: 32882705 DOI: 10.1093/jxb/eraa379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
The sunflower (Helianthus annuus) homeodomain-leucine zipper I transcription factor HaHB11 conferred differential phenotypic features when it was expressed in Arabidopsis, alfalfa, and maize plants. Such differences were increased biomass, seed yield, and tolerance to flooding. To elucidate the molecular mechanisms leading to such traits and identify HaHB11-interacting proteins, a yeast two-hybrid screening of an Arabidopsis cDNA library was carried out using HaHB11 as bait. The sole protein identified with high confidence as interacting with HaHB11 was Kinesin 13B. The interaction was confirmed by bimolecular fluorescence complementation and by yeast two-hybrid assay. Kinesin 13B also interacted with AtHB7, the Arabidopsis closest ortholog of HaHB11. Histochemical analyses revealed an overlap between the expression patterns of the three genes in hypocotyls, apical meristems, young leaves, vascular tissue, axillary buds, cauline leaves, and cauline leaf nodes at different developmental stages. AtKinesin 13B mutants did not exhibit a differential phenotype when compared with controls; however, both HaHB11 and AtHB7 overexpressor plants lost, partially or totally, their differential phenotypic characteristics when crossed with such mutants. Altogether, the results indicated that Kinesin 13B is essential for the homeodomain-leucine zipper transcription factors I to exert their functions, probably via regulation of the intracellular distribution of these transcription factors by the motor protein.
Collapse
Affiliation(s)
- Virginia Natali Miguel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Karina Fabiana Ribichich
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Jorge Ignacio Giacomelli
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Raquel Lia Chan
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, FBCB, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| |
Collapse
|
10
|
Amin MA, Agarwal S, Varma D. Mapping the kinetochore MAP functions required for stabilizing microtubule attachments to chromosomes during metaphase. Cytoskeleton (Hoboken) 2019; 76:398-412. [PMID: 31454167 DOI: 10.1002/cm.21559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022]
Abstract
In mitosis, faithful chromosome segregation is orchestrated by the dynamic interactions between the spindle microtubules (MTs) emanating from the opposite poles and the kinetochores of the chromosomes. However, the precise mechanism that coordinates the coupling of the kinetochore components to dynamic MTs has been a long-standing question. Microtubule-associated proteins (MAPs) regulate MT nucleation and dynamics, MT-mediated transport and MT cross-linking in cells. During mitosis, MAPs play an essential role not only in determining spindle length, position, and orientation but also in facilitating robust kinetochore-microtubule (kMT) attachments by linking the kinetochores to spindle MTs efficiently. The stability of MTs imparted by the MAPs is critical to ensure accurate chromosome segregation. This review primarily focuses on the specific function of nonmotor kinetochore MAPs, their recruitment to kinetochores and their MT-binding properties. We also attempt to synthesize and strengthen our understanding of how these MAPs work in coordination with the kinetochore-bound Ndc80 complex (the key component at the MT-binding interface in metaphase and anaphase) to establish stable kMT attachments and control accurate chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Mohammed A Amin
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Shivangi Agarwal
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dileep Varma
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
11
|
Wang Z, Jiang S, Cao J, Liu K, Xu S, Arfat Y, Guo Q, Chang H, Goswami N, Hinghofer‐Szalkay H, Gao Y. Novel findings on ultrastructural protection of skeletal muscle fibers during hibernation of Daurian ground squirrels: Mitochondria, nuclei, cytoskeleton, glycogen. J Cell Physiol 2019; 234:13318-13331. [DOI: 10.1002/jcp.28008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 12/18/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Zhe Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education Xi'an China
| | - Shan‐Feng Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education Xi'an China
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi People's Republic of China
| | - Jin Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education Xi'an China
| | - Kun Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education Xi'an China
| | - Shen‐Hui Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education Xi'an China
| | - Yasir Arfat
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education Xi'an China
| | - Quan‐Ling Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education Xi'an China
| | - Hui Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education Xi'an China
| | - Nandu Goswami
- Physiology Unit, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz Graz Austria
| | - Helmut Hinghofer‐Szalkay
- Physiology Unit, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz Graz Austria
| | | |
Collapse
|
12
|
Parts list for a microtubule depolymerising kinesin. Biochem Soc Trans 2018; 46:1665-1672. [PMID: 30467119 PMCID: PMC6299235 DOI: 10.1042/bst20180350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
Abstract
The Kinesin superfamily is a large group of molecular motors that use the turnover of ATP to regulate their interaction with the microtubule cytoskeleton. The coupled relationship between nucleotide turnover and microtubule binding is harnessed in various ways by these motors allowing them to carry out a variety of cellular functions. The Kinesin-13 family is a group of specialist microtubule depolymerising motors. Members of this family use their microtubule destabilising activity to regulate processes such as chromosome segregation, maintenance of cilia and neuronal development. Here, we describe the current understanding of the structure of this family of kinesins and the role different parts of these proteins play in their microtubule depolymerisation activity and in the wider function of this family of kinesins.
Collapse
|
13
|
Cockburn JJB, Hesketh SJ, Mulhair P, Thomsen M, O'Connell MJ, Way M. Insights into Kinesin-1 Activation from the Crystal Structure of KLC2 Bound to JIP3. Structure 2018; 26:1486-1498.e6. [PMID: 30197037 PMCID: PMC6224480 DOI: 10.1016/j.str.2018.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/03/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
Abstract
Kinesin-1 transports numerous cellular cargoes along microtubules. The kinesin-1 light chain (KLC) mediates cargo binding and regulates kinesin-1 motility. To investigate the molecular basis for kinesin-1 recruitment and activation by cargoes, we solved the crystal structure of the KLC2 tetratricopeptide repeat (TPR) domain bound to the cargo JIP3. This, combined with biophysical and molecular evolutionary analyses, reveals a kinesin-1 cargo binding site, located on KLC TPR1, which is conserved in homologs from sponges to humans. In the complex, JIP3 crosslinks two KLC2 TPR domains via their TPR1s. We show that TPR1 forms a dimer interface that mimics JIP3 binding in all crystal structures of the unbound KLC TPR domain. We propose that cargo-induced dimerization of the KLC TPR domains via TPR1 is a general mechanism for activating kinesin-1. We relate this to activation by tryptophan-acidic cargoes, explaining how different cargoes activate kinesin-1 through related molecular mechanisms.
Collapse
Affiliation(s)
- Joseph J B Cockburn
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Sophie J Hesketh
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Peter Mulhair
- Computational and Molecular Evolutionary Biology Research Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Maren Thomsen
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mary J O'Connell
- Computational and Molecular Evolutionary Biology Research Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
14
|
Fang J, Yuan S, Li C, Jiang D, Zhao L, Peng L, Zhao J, Zhang W, Li X. Reduction of ATPase activity in the rice kinesin protein Stemless Dwarf 1 inhibits cell division and organ development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:620-634. [PMID: 30071144 DOI: 10.1111/tpj.14056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Several kinesins, the ATP-driven microtubule (MT)-based motor proteins, have been reported to be involved in many basic processes of plant development; however, little is known about the biological relevance of their ATPase activity. Here, we characterized the Oryza sativa (rice) stemless dwarf 1 (std1) mutant, showing a severely dwarfed phenotype, with no differentiation of the node and internode structure, abnormal cell shapes, a shortened leaf division zone and a reduced cell division rate. Further analysis revealed that a substantial subset of cells was arrested in the S and G2/M phases, and multinucleate cells were present in the std1 mutant. Map-based cloning revealed that STD1 encodes a phragmoplast-associated kinesin-related protein, a homolog of the Arabidopsis thaliana PAKRP2, and is mainly expressed in the actively dividing tissues. The STD1 protein is localized specifically to the phragmoplast midzone during telophase and cytokinesis. In the std1 mutant, the substitution of Val-40-Glu in the motor domain of STD1 significantly reduced its MT-dependent ATPase activity. Accordingly, the lateral expansion of phragmoplast, a key step in cell plate formation, was arrested during cytokinesis. Therefore, these results indicate that the MT-dependent ATPase activity is indispensible for STD1 in regulating normal cell division and organ development.
Collapse
Affiliation(s)
- Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Chenchen Li
- School of Life Science, Liaocheng University, Liaocheng, 252059, China
| | - Dan Jiang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Linlin Zhao
- School of Life Science, Liaocheng University, Liaocheng, 252059, China
| | - Lixiang Peng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenhui Zhang
- School of Life Science, Liaocheng University, Liaocheng, 252059, China
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
15
|
Wang P, Tseng KF, Gao Y, Cianfrocco M, Guo L, Qiu W. The Central Stalk Determines the Motility of Mitotic Kinesin-14 Homodimers. Curr Biol 2018; 28:2302-2308.e3. [PMID: 30017487 DOI: 10.1016/j.cub.2018.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/09/2018] [Accepted: 05/10/2018] [Indexed: 01/08/2023]
Abstract
Mitotic kinesin-14 homodimers that contain an N-terminal nonmotor microtubule-binding tail contribute to spindle organization by preferentially crosslinking two different spindle microtubules rather than interacting with a single microtubule to generate processive motility. However, the mechanism underlying such selective motility behavior remains poorly understood. Here, we show that when a flexible polypeptide linker is inserted into the coiled-coil central stalk, two homodimeric mitotic kinesin-14s of distinct motility-the processive plus-end-directed KlpA from Aspergillus nidulans [1] and the nonprocessive minus-end-directed Ncd from Drosophila melanogaster [2]-both switch to become processive minus-end-directed motors. Our results demonstrate that the polypeptide linker introduces greater conformational flexibility into the central stalk. Importantly, we find that the linker insertion significantly weakens the ability of Ncd to preferentially localize between and interact with two microtubules. Collectively, our results reveal that besides the canonical role of enabling dimerization, the central stalk also functions as a mechanical component to determine the motility of homodimeric mitotic kinesin-14 motors. We suggest that the central stalk is an evolutionary design that primes these kinesin-14 motors for nontransport roles within the mitotic spindle.
Collapse
Affiliation(s)
- Pan Wang
- Institute of Photobiophysics, Henan University, Kaifeng, Henan 475004, China; Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Kuo-Fu Tseng
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA
| | - Yuan Gao
- School of Physics, Nankai University, Tianjin 300071, China
| | - Michael Cianfrocco
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lijun Guo
- Institute of Photobiophysics, Henan University, Kaifeng, Henan 475004, China
| | - Weihong Qiu
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
16
|
McHugh T, Gluszek AA, Welburn JPI. Microtubule end tethering of a processive kinesin-8 motor Kif18b is required for spindle positioning. J Cell Biol 2018; 217:2403-2416. [PMID: 29661912 PMCID: PMC6028548 DOI: 10.1083/jcb.201705209] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/22/2017] [Accepted: 03/29/2018] [Indexed: 11/22/2022] Open
Abstract
Mitotic spindle positioning specifies the plane of cell division during anaphase. Spindle orientation and positioning are therefore critical to ensure symmetric division in mitosis and asymmetric division during development. The control of astral microtubule length plays an essential role in positioning the spindle. In this study, using gene knockout, we show that the kinesin-8 Kif18b controls microtubule length to center the mitotic spindle at metaphase. Using in vitro reconstitution, we reveal that Kif18b is a highly processive plus end-directed motor that uses a C-terminal nonmotor microtubule-binding region to accumulate at growing microtubule plus ends. This region is regulated by phosphorylation to spatially control Kif18b accumulation at plus ends and is essential for Kif18b-dependent spindle positioning and regulation of microtubule length. Finally, we demonstrate that Kif18b shortens microtubules by increasing the catastrophe rate of dynamic microtubules. Overall, our work reveals that Kif18b uses its motile properties to reach microtubule ends, where it regulates astral microtubule length to ensure spindle centering.
Collapse
Affiliation(s)
- Toni McHugh
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Agata A Gluszek
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
17
|
Milic B, Chakraborty A, Han K, Bassik MC, Block SM. KIF15 nanomechanics and kinesin inhibitors, with implications for cancer chemotherapeutics. Proc Natl Acad Sci U S A 2018; 115:E4613-E4622. [PMID: 29703754 PMCID: PMC5960320 DOI: 10.1073/pnas.1801242115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Eg5, a mitotic kinesin, has been a target for anticancer drug development. Clinical trials of small-molecule inhibitors of Eg5 have been stymied by the development of resistance, attributable to mitotic rescue by a different endogenous kinesin, KIF15. Compared with Eg5, relatively little is known about the properties of the KIF15 motor. Here, we employed single-molecule optical-trapping techniques to define the KIF15 mechanochemical cycle. We also studied the inhibitory effects of KIF15-IN-1, an uncharacterized, commercially available, small-molecule inhibitor, on KIF15 motility. To explore the complementary behaviors of KIF15 and Eg5, we also scored the effects of small-molecule inhibitors on admixtures of both motors, using both a microtubule (MT)-gliding assay and an assay for cancer cell viability. We found that (i) KIF15 motility differs significantly from Eg5; (ii) KIF15-IN-1 is a potent inhibitor of KIF15 motility; (iii) MT gliding powered by KIF15 and Eg5 only ceases when both motors are inhibited; and (iv) pairing KIF15-IN-1 with Eg5 inhibitors synergistically reduces cancer cell growth. Taken together, our results lend support to the notion that a combination drug therapy employing both inhibitors may be a viable strategy for overcoming chemotherapeutic resistance.
Collapse
Affiliation(s)
- Bojan Milic
- Biophysics Program, Stanford University, Stanford, CA 94305
| | | | - Kyuho Han
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305
- Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA 94305
| | - Steven M Block
- Department of Biology, Stanford University, Stanford, CA 94305;
- Department of Applied Physics, Stanford University, Stanford, CA 94305
| |
Collapse
|
18
|
Kinesin 6 Regulation in Drosophila Female Meiosis by the Non-conserved N- and C- Terminal Domains. G3-GENES GENOMES GENETICS 2018. [PMID: 29514846 PMCID: PMC5940148 DOI: 10.1534/g3.117.300571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bipolar spindle assembly occurs in the absence of centrosomes in the oocytes of most organisms. In the absence of centrosomes in Drosophila oocytes, we have proposed that the kinesin 6 Subito, a MKLP-2 homolog, is required for establishing spindle bipolarity and chromosome biorientation by assembling a robust central spindle during prometaphase I. Although the functions of the conserved motor domains of kinesins is well studied, less is known about the contribution of the poorly conserved N- and C- terminal domains to motor function. In this study, we have investigated the contribution of these domains to kinesin 6 functions in meiosis and early embryonic development. We found that the N-terminal domain has antagonistic elements that regulate localization of the motor to microtubules. Other parts of the N- and C-terminal domains are not required for microtubule localization but are required for motor function. Some of these elements of Subito are more important for either mitosis or meiosis, as revealed by separation-of-function mutants. One of the functions for both the N- and C-terminals domains is to restrict the CPC to the central spindle in a ring around the chromosomes. We also provide evidence that CDK1 phosphorylation of Subito regulates its activity associated with homolog bi-orientation. These results suggest the N- and C-terminal domains of Subito, while not required for localization to the central spindle microtubules, have important roles regulating Subito, by interacting with other spindle proteins and promoting activities such as bipolar spindle formation and homologous chromosome bi-orientation during meiosis.
Collapse
|
19
|
KIFC1 is essential for acrosome formation and nuclear shaping during spermiogenesis in the lobster Procambarus clarkii. Oncotarget 2018; 8:36082-36098. [PMID: 28415605 PMCID: PMC5482640 DOI: 10.18632/oncotarget.16429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/14/2017] [Indexed: 01/13/2023] Open
Abstract
In order to study the function of kinesin-14 motor protein KIFC1 during spermatogenesis of Procambarus clarkii, the full length of kifc1 was cloned from testes cDNA using Rapid-Amplification of cDNA Ends (RACE). The deduced KIFC1 protein sequence showed the highest similarity between Procambarus clarkii and Eriocheir senensis (similarity rate as 64%). According to the results of in situ hybridization (ISH), the kifc1 mRNA was gathered in the acrosome location above nucleus in the mid- and late-stage spermatids. Immunofluorescence results were partly consistent with the ISH in middle spermatids, while in the late spermatids the KIFC1 was distributed around the nucleus which had large deformation and formed four to six nuclear arms. In the mature sperm, KIFC1 and microtubules were distributed around the sperm, playing a role in maintaining the sperm morphology and normal function. Overexpression of P. clarkii kifc1 in GC1 cells for 24 hours resulted in disorganization of microtubules which changed the cell morphology from circular and spherical into fusiform. In addition, the overexpression also resulted in triple centrosomes during mitosis which eventually led to cell apoptosis. RNAi experiments showed that decreased KIFC1 protein levels resulted in total inhibition of spermatogenesis, with only mature sperm found in the RNAi-testis, implying an indispensable role of KIFC1 during P. clarkii spermiogenesis.
Collapse
|
20
|
Abstract
Kinesins are a superfamily of ATP-dependent motors important for many microtubule-based functions, including multiple roles in mitosis. Small-molecule inhibitors of mitotic kinesins disrupt cell division and are being developed as antimitotic therapies. We investigated the molecular mechanism of the multitasking human mitotic kinesin Kif18A and its inhibition by the small molecule BTB-1. We used cryo-electron microscopy to visualize nucleotide-dependent conformational changes in microtubule-bound Kif18A, and the conformation of microtubule-bound, BTB-1-bound Kif18A. We calculated a putative BTB-1–binding site and validated this site experimentally to reveal the BTB-1 inhibition mechanism. Our work points to a general mechanism of kinesin inhibition, with wide implications for a targeted blockade of these motors in both dividing and interphase cells. Kinesin motors play diverse roles in mitosis and are targets for antimitotic drugs. The clinical significance of these motors emphasizes the importance of understanding the molecular basis of their function. Equally important, investigations into the modes of inhibition of these motors provide crucial information about their molecular mechanisms. Kif18A regulates spindle microtubules through its dual functionality, with microtubule-based stepping and regulation of microtubule dynamics. We investigated the mechanism of Kif18A and its inhibition by the small molecule BTB-1. The Kif18A motor domain drives ATP-dependent plus-end microtubule gliding, and undergoes conformational changes consistent with canonical mechanisms of plus-end–directed motility. The Kif18A motor domain also depolymerizes microtubule plus and minus ends. BTB-1 inhibits both of these microtubule-based Kif18A activities. A reconstruction of BTB-1–bound, microtubule-bound Kif18A, in combination with computational modeling, identified an allosteric BTB-1–binding site near loop5, where it blocks the ATP-dependent conformational changes that we characterized. Strikingly, BTB-1 binding is close to that of well-characterized Kif11 inhibitors that block tight microtubule binding, whereas BTB-1 traps Kif18A on the microtubule. Our work highlights a general mechanism of kinesin inhibition in which small-molecule binding near loop5 prevents a range of conformational changes, blocking motor function.
Collapse
|
21
|
Ma DD, Pan MY, Hou CC, Tan FQ, Yang WX. KIFC1 and myosin Va: two motors for acrosomal biogenesis and nuclear shaping during spermiogenesis of Portunus trituberculatus. Cell Tissue Res 2017. [DOI: 10.1007/s00441-017-2638-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Al-Obaidi N, Mitchison TJ, Crews CM, Mayer TU. Identification of MAC1: A Small Molecule That Rescues Spindle Bipolarity in Monastrol-Treated Cells. ACS Chem Biol 2016; 11:1544-51. [PMID: 27121275 DOI: 10.1021/acschembio.6b00203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The genetic integrity of each organism is intimately tied to the correct segregation of its genome during mitosis. Insights into the underlying mechanisms are fundamental for both basic research and the development of novel strategies to treat mitosis-relevant diseases such as cancer. Due to their fast mode of action, small molecules are invaluable tools to dissect mitosis. Yet, there is a great demand for novel antimitotic compounds. We performed a chemical genetic suppression screen to identify compounds that restore spindle bipolarity in cells treated with Monastrol, an inhibitor of the mitotic kinesin Eg5. We identified one compound-MAC1-that rescued spindle bipolarity in cells lacking Eg5 activity. Mechanistically, MAC1 induces the formation of additional microtubule nucleation centers, which allows kinesin Kif15-dependent bipolar spindle assembly in the absence of Eg5 activity. Thus, our chemical genetic suppression screen revealed novel unexpected insights into the mechanism of spindle assembly in mammalian cells.
Collapse
Affiliation(s)
- Naowras Al-Obaidi
- Department
of Biology and Konstanz Research School Chemical-Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78467 Konstanz, Germany
| | - Timothy J. Mitchison
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Craig M. Crews
- Departments
of Molecular, Cellular, and Developmental Biology, Chemistry, and
Pharmacology, Yale University, 219 Prospect St., New Haven, Connecticut, United States
| | - Thomas U. Mayer
- Department
of Biology and Konstanz Research School Chemical-Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78467 Konstanz, Germany
| |
Collapse
|
23
|
Abstract
Life depends on cell proliferation and the accurate segregation of chromosomes, which are mediated by the microtubule (MT)-based mitotic spindle and ∼200 essential MT-associated proteins. Yet, a mechanistic understanding of how the mitotic spindle is assembled and achieves chromosome segregation is still missing. This is mostly due to the density of MTs in the spindle, which presumably precludes their direct observation. Recent insight has been gained into the molecular building plan of the metaphase spindle using bulk and single-molecule measurements combined with computational modeling. MT nucleation was uncovered as a key principle of spindle assembly, and mechanistic details about MT nucleation pathways and their coordination are starting to be revealed. Lastly, advances in studying spindle assembly can be applied to address the molecular mechanisms of how the spindle segregates chromosomes.
Collapse
Affiliation(s)
- Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014;
| |
Collapse
|
24
|
Tank binding kinase 1 is a centrosome-associated kinase necessary for microtubule dynamics and mitosis. Nat Commun 2015; 6:10072. [PMID: 26656453 PMCID: PMC4682058 DOI: 10.1038/ncomms10072] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022] Open
Abstract
TANK Binding Kinase 1 (TBK1) is a non-canonical IκB kinase that contributes to KRAS-driven lung cancer. Here we report that TBK1 plays essential roles in mammalian cell division. Specifically, levels of active phospho-TBK1 increase during mitosis and localize to centrosomes, mitotic spindles and midbody, and selective inhibition or silencing of TBK1 triggers defects in spindle assembly and prevents mitotic progression. TBK1 binds to the centrosomal protein CEP170 and to the mitotic apparatus protein NuMA, and both CEP170 and NuMA are TBK1 substrates. Further, TBK1 is necessary for CEP170 centrosomal localization and binding to the microtubule depolymerase Kif2b, and for NuMA binding to dynein. Finally, selective disruption of the TBK1–CEP170 complex augments microtubule stability and triggers defects in mitosis, suggesting that TBK1 functions as a mitotic kinase necessary for microtubule dynamics and mitosis. TANK binding kinase 1 (TBK1) is a non-canonical IκB kinase that regulates immunity via NF-κB. Here Pillai et al. show that TBK1 localizes to centrosomes during mitosis, and regulates microtubule dynamics and spindle formation by phosphorylating the centrosomal protein CEP170 and the mitotic apparatus protein NuMa.
Collapse
|
25
|
Abstract
The microtubule (MT) cytoskeleton gives cells their shape, organizes the cellular interior, and segregates chromosomes. These functions rely on the precise arrangement of MTs, which is achieved by the coordinated action of MT-associated proteins (MAPs). We highlight the first and most important examples of how different MAP activities are combined in vitro to create an ensemble function that exceeds the simple addition of their individual activities, and how the Xenopus laevis egg extract system has been utilized as a powerful intermediate between cellular and purified systems to uncover the design principles of self-organized MT networks in the cell.
Collapse
Affiliation(s)
- Ray Alfaro-Aco
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | - Sabine Petry
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
26
|
Talapatra SK, Harker B, Welburn JPI. The C-terminal region of the motor protein MCAK controls its structure and activity through a conformational switch. eLife 2015; 4. [PMID: 25915621 PMCID: PMC4443670 DOI: 10.7554/elife.06421] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/24/2015] [Indexed: 11/29/2022] Open
Abstract
The precise regulation of microtubule dynamics is essential during cell division. The
kinesin-13 motor protein MCAK is a potent microtubule depolymerase. The divergent
non-motor regions flanking the ATPase domain are critical in regulating its targeting
and activity. However, the molecular basis for the function of the non-motor regions
within the context of full-length MCAK is unknown. Here, we determine the structure
of MCAK motor domain bound to its regulatory C-terminus. Our analysis reveals that
the MCAK C-terminus binds to two motor domains in solution and is displaced
allosterically upon microtubule binding, which allows its robust accumulation at
microtubule ends. These results demonstrate that MCAK undergoes long-range
conformational changes involving its C-terminus during the soluble to
microtubule-bound transition and that the C-terminus-motor interaction represents a
structural intermediate in the MCAK catalytic cycle. Together, our work reveals
intrinsic molecular mechanisms underlying the regulation of kinesin-13 activity. DOI:http://dx.doi.org/10.7554/eLife.06421.001 Within a cell, there is a scaffold-like structure called the cytoskeleton that
provides shape and structural support, and acts as a transport network for the
movement of molecules around the cell. This scaffold contains highly dynamic polymers
called microtubules that are made from a protein called tubulin. The constant growth
and shrinking of the ends of the microtubules is essential to rebuild and adapt the
cytoskeleton according to the needs of the cell. A protein called MCAK belongs to a family of motor proteins that can move along
microtubules. It generally binds to the ends of the microtubules to shorten them.
Previous studies have found that a single MCAK protein binds to another MCAK protein
to form a larger molecule known as a dimer. Part of the MCAK protein forms a
so-called motor domain, which enables this protein to bind to the microtubules. One
end of the protein, known as the C-terminus, controls the activity of this motor
domain. However, it is not clear how this works. Talapatra et al. have now revealed the three-dimensional structure of MCAK's
motor domain with the C-terminus using a technique called X-ray crystallography. The
experiments show that the C-terminus binds to the motor domain, which promotes the
formation of the dimers. A short stretch of amino acids—the building blocks of
proteins—in the C-terminus interacts with two motor molecules. This
‘motif’ is also found in other similar proteins from a variety of
animals. However, once MCAK binds to a microtubule, the microtubule triggers the
release of the C-terminus from the motor domain. This allows MCAK to bind more
strongly to the microtubule. The experiments also show that the binding of the C-terminus to the motor domain
alters the ability of MCAK to associate with microtubules, which encourages the
protein to reach the ends of the polymers. Future work is required to see whether
other motor proteins work in a similar way. DOI:http://dx.doi.org/10.7554/eLife.06421.002
Collapse
Affiliation(s)
- Sandeep K Talapatra
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Bethany Harker
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
27
|
Katsetos CD, Reginato MJ, Baas PW, D'Agostino L, Legido A, Tuszyn Ski JA, Dráberová E, Dráber P. Emerging microtubule targets in glioma therapy. Semin Pediatr Neurol 2015; 22:49-72. [PMID: 25976261 DOI: 10.1016/j.spen.2015.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Major advances in the genomics and epigenomics of diffuse gliomas and glioblastoma to date have not been translated into effective therapy, necessitating pursuit of alternative treatment approaches for these therapeutically challenging tumors. Current knowledge of microtubules in cancer and the development of new microtubule-based treatment strategies for high-grade gliomas are the topic in this review article. Discussed are cellular, molecular, and pharmacologic aspects of the microtubule cytoskeleton underlying mitosis and interactions with other cellular partners involved in cell cycle progression, directional cell migration, and tumor invasion. Special focus is placed on (1) the aberrant overexpression of βIII-tubulin, a survival factor associated with hypoxic tumor microenvironment and dynamic instability of microtubules; (2) the ectopic overexpression of γ-tubulin, which in addition to its conventional role as a microtubule-nucleating protein has recently emerged as a transcription factor interacting with oncogenes and kinases; (3) the microtubule-severing ATPase spastin and its emerging role in cell motility of glioblastoma cells; and (4) the modulating role of posttranslational modifications of tubulin in the context of interaction of microtubules with motor proteins. Specific antineoplastic strategies discussed include downregulation of targeted molecules aimed at achieving a sensitization effect on currently used mainstay therapies. The potential role of new classes of tubulin-binding agents and ATPase inhibitors is also examined. Understanding the cellular and molecular mechanisms underpinning the distinct behaviors of microtubules in glioma tumorigenesis and drug resistance is key to the discovery of novel molecular targets that will fundamentally change the prognostic outlook of patients with diffuse high-grade gliomas.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA.
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| | - Luca D'Agostino
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Agustin Legido
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Jack A Tuszyn Ski
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Eduarda Dráberová
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
28
|
Braun J, Möckel MM, Strittmatter T, Marx A, Groth U, Mayer TU. Synthesis and biological evaluation of optimized inhibitors of the mitotic kinesin Kif18A. ACS Chem Biol 2015; 10:554-60. [PMID: 25402598 DOI: 10.1021/cb500789h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mitotic spindle, a highly dynamic structure composed of microtubules, mediates the segregation of the previously duplicated genome into the two nascent daughter cells. Errors in this process contribute to pathology including tumor formation. Key for the shape and function of the mitotic spindle are kinesins, molecular motor proteins that convert chemical energy into mechanical work. Due to their fast mode of action, small molecules are valuable tools to dissect the dynamic functions of kinesins during mitosis. In this study, we report the identification of optimized small molecule inhibitors of the mitotic kinesin Kif18A. Using BTB-1, the first identified Kif18A inhibitor, as a lead compound, we synthesized a collection of derivatives. We demonstrate that some of the synthesized derivatives potently inhibited the ATPase activity of Kif18A with a half maximal inhibitory concentration (IC50) value in the low micromolar range. In vitro analysis of a panel of Kif18A-related kinesins revealed that the two most potent compounds show improved selectivity compared to BTB-1. Structure-activity relationship studies identified substituents mediating undesired inhibitory effects on microtubule polymerization. In summary, our study provides key insights into the mechanism of action of BTB-1 and its analogs, which will have a great impact on the further development of highly selective and bioactive Kif18A inhibitors. Since Kif18A is frequently overexpressed in solid tumors, such compounds are not only of great interest for basic research but also have the potential to open up new strategies for the treatment of human diseases.
Collapse
Affiliation(s)
- Joachim Braun
- Department
of Chemistry and Konstanz Research School Chemical-Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78467 Konstanz, Germany
| | - Martin M. Möckel
- Department
of Biology and Konstanz Research School Chemical-Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78467 Konstanz, Germany
| | - Tobias Strittmatter
- Department
of Chemistry and Konstanz Research School Chemical-Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78467 Konstanz, Germany
| | - Andreas Marx
- Department
of Chemistry and Konstanz Research School Chemical-Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78467 Konstanz, Germany
| | - Ulrich Groth
- Department
of Chemistry and Konstanz Research School Chemical-Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78467 Konstanz, Germany
| | - Thomas U. Mayer
- Department
of Biology and Konstanz Research School Chemical-Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78467 Konstanz, Germany
| |
Collapse
|
29
|
Sturgill EG, Das DK, Takizawa Y, Shin Y, Collier SE, Ohi MD, Hwang W, Lang MJ, Ohi R. Kinesin-12 Kif15 targets kinetochore fibers through an intrinsic two-step mechanism. Curr Biol 2014; 24:2307-13. [PMID: 25264249 DOI: 10.1016/j.cub.2014.08.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/28/2014] [Accepted: 08/13/2014] [Indexed: 12/27/2022]
Abstract
Proteins that recognize and act on specific subsets of microtubules (MTs) enable the varied functions of the MT cytoskeleton. We recently discovered that Kif15 localizes exclusively to kinetochore fibers (K-fibers) or bundles of kinetochore-MTs within the mitotic spindle. It is currently speculated that the MT-associated protein TPX2 loads Kif15 onto spindle MTs, but this model has not been rigorously tested. Here, we show that Kif15 accumulates on MT bundles as a consequence of two inherent biochemical properties. First, Kif15 is self-repressed by its C terminus. Second, Kif15 harbors a nonmotor MT-binding site, enabling dimeric Kif15 to crosslink and slide MTs. Two-MT binding activates Kif15, resulting in its accumulation on and motility within MT bundles but not on individual MTs. We propose that Kif15 targets K-fibers via an intrinsic two-step mechanism involving molecular unfolding and two-MT binding. This work challenges the current model of Kif15 regulation and provides the first account of a kinesin that specifically recognizes a higher-order MT array.
Collapse
Affiliation(s)
- Emma G Sturgill
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dibyendu Kumar Das
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Yoshimasa Takizawa
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yongdae Shin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott E Collier
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M, College Station, TX 77843, USA; School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-722, Korea
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
30
|
Cross RA, McAinsh A. Prime movers: the mechanochemistry of mitotic kinesins. Nat Rev Mol Cell Biol 2014; 15:257-71. [PMID: 24651543 DOI: 10.1038/nrm3768] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation.
Collapse
Affiliation(s)
- Robert A Cross
- Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, UK
| | - Andrew McAinsh
- Warwick Medical School, Gibbet Hill, Coventry CV4 7AL, UK
| |
Collapse
|
31
|
O'Donnell L, O'Bryan MK. Microtubules and spermatogenesis. Semin Cell Dev Biol 2014; 30:45-54. [PMID: 24440897 DOI: 10.1016/j.semcdb.2014.01.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/04/2014] [Accepted: 01/08/2014] [Indexed: 12/28/2022]
Abstract
Microtubules are dynamic polymers of tubulin subunits that underpin many essential cellular processes, such as cell division and migration. Spermatogenesis is the process by which spermatogenic stem cells undergo mitotic and meiotic division and differentiation to produce streamlined spermatozoa capable of motility and fertilization. This review summarizes the current knowledge of microtubule-based processes in spermatogenesis. We describe the involvement of microtubule dynamics in Sertoli cell shape and function, as well as in the mitotic and meiotic division of germ cells. The roles of microtubules in sperm head shaping, via the development and function of the manchette, and in sperm flagella development are also discussed. The review brings together data from microscopy studies and genetically modified mouse models, and reveals that the regulation of microtubule dynamics is essential for male fertility.
Collapse
Affiliation(s)
- Liza O'Donnell
- MIMR-PHI Institute of Medical Research, Clayton, Victoria 3168, Australia; Department of Anatomy and Developmental Biology, Monash University, Victoria 3800, Australia.
| | - Moira K O'Bryan
- Department of Anatomy and Developmental Biology, Monash University, Victoria 3800, Australia
| |
Collapse
|