1
|
Wang P, Driscoll WW, Travisano M. Genomic sequencing reveals convergent adaptation during experimental evolution in two budding yeast species. Commun Biol 2024; 7:825. [PMID: 38971878 PMCID: PMC11227552 DOI: 10.1038/s42003-024-06485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
Convergent evolution is central in the origins of multicellularity. Identifying the basis for convergent multicellular evolution is challenging because of the diverse evolutionary origins and environments involved. Haploid Kluyveromyces lactis populations evolve multicellularity during selection for increased settling in liquid media. Strong genomic and phenotypic convergence is observed between K. lactis and previously selected S. cerevisiae populations under similar selection, despite their >100-million-year divergence. We find K. lactis multicellularity is conferred by mutations in genes ACE2 or AIM44, with ACE2 being predominant. They are a subset of the six genes involved in the S. cerevisiae multicellularity. Both ACE2 and AIM44 regulate cell division, indicating that the genetic convergence is likely due to conserved cellular replication mechanisms. Complex population dynamics involving multiple ACE2/AIM44 genotypes are found in most K. lactis lineages. The results show common ancestry and natural selection shape convergence while chance and contingency determine the degree of divergence.
Collapse
Affiliation(s)
- Pu Wang
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA.
| | - William W Driscoll
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
- Biology Department, Penn State Harrisburg, Harrisburg, PA, 17057, USA
| | - Michael Travisano
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
- Biotechnology Institute, University of Minnesota, Minneapolis, MN, 55108, USA
| |
Collapse
|
2
|
Lecinski S, Shepherd JW, Frame L, Hayton I, MacDonald C, Leake MC. Investigating molecular crowding during cell division and hyperosmotic stress in budding yeast with FRET. CURRENT TOPICS IN MEMBRANES 2021; 88:75-118. [PMID: 34862033 PMCID: PMC7612257 DOI: 10.1016/bs.ctm.2021.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell division, aging, and stress recovery triggers spatial reorganization of cellular components in the cytoplasm, including membrane bound organelles, with molecular changes in their compositions and structures. However, it is not clear how these events are coordinated and how they integrate with regulation of molecular crowding. We use the budding yeast Saccharomyces cerevisiae as a model system to study these questions using recent progress in optical fluorescence microscopy and crowding sensing probe technology. We used a Förster Resonance Energy Transfer (FRET) based sensor, illuminated by confocal microscopy for high throughput analyses and Slimfield microscopy for single-molecule resolution, to quantify molecular crowding. We determine crowding in response to cellular growth of both mother and daughter cells, in addition to osmotic stress, and reveal hot spots of crowding across the bud neck in the burgeoning daughter cell. This crowding might be rationalized by the packing of inherited material, like the vacuole, from mother cells. We discuss recent advances in understanding the role of crowding in cellular regulation and key current challenges and conclude by presenting our recent advances in optimizing FRET-based measurements of crowding while simultaneously imaging a third color, which can be used as a marker that labels organelle membranes. Our approaches can be combined with synchronized cell populations to increase experimental throughput and correlate molecular crowding information with different stages in the cell cycle.
Collapse
Affiliation(s)
- Sarah Lecinski
- Department of Physics, University of York, York, United Kingdom
| | - Jack W Shepherd
- Department of Physics, University of York, York, United Kingdom; Department of Biology, University of York, York, United Kingdom
| | - Lewis Frame
- School of Natural Sciences, University of York, York, United Kingdom
| | - Imogen Hayton
- Department of Biology, University of York, York, United Kingdom
| | - Chris MacDonald
- Department of Biology, University of York, York, United Kingdom
| | - Mark C Leake
- Department of Physics, University of York, York, United Kingdom; Department of Biology, University of York, York, United Kingdom.
| |
Collapse
|
3
|
Kim M, van Hoof A. Suppressors of mRNA Decapping Defects Restore Growth Without Major Effects on mRNA Decay Rates or Abundance. Genetics 2020; 216:1051-1069. [PMID: 32998951 PMCID: PMC7768250 DOI: 10.1534/genetics.120.303641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023] Open
Abstract
Faithful degradation of mRNAs is a critical step in gene expression, and eukaryotes share a major conserved mRNA decay pathway. In this major pathway, the two rate-determining steps in mRNA degradation are the initial gradual removal of the poly(A) tail, followed by removal of the cap structure. Removal of the cap structure is carried out by the decapping enzyme, containing the Dcp2 catalytic subunit. Although the mechanism and regulation of mRNA decay is well understood, the consequences of defects in mRNA degradation are less clear. Dcp2 has been reported as either essential or nonessential. Here, we clarify that Dcp2 is not absolutely required for spore germination and extremely slow growth, but in practical terms it is impossible to continuously culture dcp2∆ under laboratory conditions without suppressors arising. We show that null mutations in at least three different genes are each sufficient to restore growth to a dcp2∆, of which kap123∆ and tl(gag)g∆ appear the most specific. We show that kap123∆ and tl(gag)g∆ suppress dcp2 by mechanisms that are different from each other and from previously isolated dcp2 suppressors. The suppression mechanism for tL(GAG)G is determined by the unique GAG anticodon of this tRNA, and thus likely by translation of some CUC or CUU codons. Unlike previously reported suppressors of decapping defects, these suppressors do not detectably restore decapping or mRNA decay to normal rates, but instead allow survival while only modestly affecting RNA homeostasis. These results provide important new insight into the importance of decapping, resolve previously conflicting publications about the essentiality of DCP2, provide the first phenotype for a tl(gag)g mutant, and show that multiple distinct mechanisms can bypass Dcp2 requirement.
Collapse
Affiliation(s)
- Minseon Kim
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Ambro van Hoof
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center at Houston, Houston, Texas 77030
| |
Collapse
|
4
|
Ma J, Liu X, Liu P, Lu W, Shen X, Ma R, Zong H. Identification of a new p53 responsive element in the promoter region of anillin. Int J Mol Med 2020; 45:1563-1570. [PMID: 32323752 DOI: 10.3892/ijmm.2020.4527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/06/2019] [Indexed: 11/06/2022] Open
Abstract
The expression of anillin mRNA and protein is regulated in a cell cycle‑dependent manner. However, the mechanism underlying this process is unclear. Previous studies analyzing the sequence of the 5'‑untranslated region of anillin have unveiled several putative p53 binding sites. Therefore, the present study hypothesized that the anillin gene may be repressed by p53 and that the commonly observed mutation (or loss of function) of p53 may serve a role in this phenotype. Bioinformatic analysis of the anillin promoter region revealed potential p53 responsive elements. Of those identified, 2 were able to bind p53 protein, as determined via a chromatin immunoprecipitation assay. Although it was hypothesized that DNA damage and resultant p53 expression would repress anillin expression, the results revealed that anillin mRNA and protein expression levels were negatively regulated by DNA damage in the wild‑type p53 cells, but not in the isogenic p53 null cells. Furthermore, DNA sequences encompassing the p53 binding site downregulated luciferase transgenes in a p53 dependent manner. Taken together, these data indicated that anillin was negatively regulated by p53 and that anillin overexpression observed in cancer may be a p53‑mediated phenomenon. The data from the present study provided further evidence for the role of p53 in the biologically crucial process of cytokinesis.
Collapse
Affiliation(s)
- Jiao Ma
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University Medical School, Shanghai 200025, P.R. China
| | - Xinying Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University Medical School, Shanghai 200025, P.R. China
| | - Pengyi Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University Medical School, Shanghai 200025, P.R. China
| | - Wenqing Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University Medical School, Shanghai 200025, P.R. China
| | - Xinxin Shen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University Medical School, Shanghai 200025, P.R. China
| | - Ruixiang Ma
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University Medical School, Shanghai 200025, P.R. China
| | - Hongliang Zong
- Shanghai PerHum Therapeutics Co. Ltd., Shanghai 200052, P.R. China
| |
Collapse
|
5
|
Jiménez‐Gutiérrez E, Alegría‐Carrasco E, Alonso‐Rodríguez E, Fernández‐Acero T, Molina M, Martín H. Rewiring the yeast cell wall integrity (CWI) pathway through a synthetic positive feedback circuit unveils a novel role for the MAPKKK Ssk2 in CWI pathway activation. FEBS J 2020; 287:4881-4901. [DOI: 10.1111/febs.15288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Elena Jiménez‐Gutiérrez
- Departamento de Microbiología y Parasitología Facultad de Farmacia Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS) Universidad Complutense de Madrid Spain
| | - Estíbaliz Alegría‐Carrasco
- Departamento de Microbiología y Parasitología Facultad de Farmacia Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS) Universidad Complutense de Madrid Spain
| | - Esmeralda Alonso‐Rodríguez
- Departamento de Microbiología y Parasitología Facultad de Farmacia Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS) Universidad Complutense de Madrid Spain
| | - Teresa Fernández‐Acero
- Departamento de Microbiología y Parasitología Facultad de Farmacia Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS) Universidad Complutense de Madrid Spain
| | - María Molina
- Departamento de Microbiología y Parasitología Facultad de Farmacia Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS) Universidad Complutense de Madrid Spain
| | - Humberto Martín
- Departamento de Microbiología y Parasitología Facultad de Farmacia Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS) Universidad Complutense de Madrid Spain
| |
Collapse
|
6
|
Mostowy S, Ewers H. Editorial overview: The molecular and cellular biology of septins. Cytoskeleton (Hoboken) 2019; 76:5-6. [PMID: 30932337 DOI: 10.1002/cm.21519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Serge Mostowy
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Helge Ewers
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Perez AM, Thorner J. Septin-associated proteins Aim44 and Nis1 traffic between the bud neck and the nucleus in the yeast Saccharomyces cerevisiae. Cytoskeleton (Hoboken) 2019; 76:15-32. [PMID: 30341817 PMCID: PMC6474838 DOI: 10.1002/cm.21500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
Abstract
In budding yeast, a collar of septin filaments at the neck between a mother cell and its bud marks the incipient site for cell division and serves as a scaffold that recruits proteins required for proper spatial and temporal execution of cytokinesis. A set of interacting proteins that localize at or near the bud neck, including Aim44/Gps1, Nba1 and Nis1, also has been implicated in preventing Cdc42-dependent bud site re-establishment at the division site. We found that, at their endogenous level, Aim44 and Nis1 robustly localize sequentially at the septin collar. Strikingly, however, when overproduced, both proteins shift their subcellular distribution predominantly to the nucleus. Aim44 localizes with the inner nuclear envelope, as well as at the plasma membrane, whereas Nis1 accumulates within the nucleus, indicating that these proteins normally undergo nucleocytoplasmic shuttling. Of the 14 yeast karyopherins, Kap123/Yrb4 is the primary importin for Aim44, whereas several importins mediate Nis1 nuclear entry. Conversely, Kap124/Xpo1/Crm1 is the primary exportin for Nis1, whereas both Xpo1 and Cse1/Kap109 likely contribute to Aim44 nuclear export. Even when endogenously expressed, Nis1 accumulates in the nucleus when Nba1 is absent. When either Aim44 or Nis1 are overexpressed, Nba1 is displaced from the bud neck, further consistent with the mutual interactions of these proteins. Collectively, our results indicate that a previously unappreciated level at which localization of septin-associated proteins is controlled is via regulation of their nucleocytoplasmic shuttling, which places constraints on their availability for complex formation with other partners at the bud neck.
Collapse
Affiliation(s)
- Adam M. Perez
- Division of Biochemistry, Biophysics and Structural BiologyDepartment of Molecular and Cell Biology, University of CaliforniaBerkeleyCalifornia
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural BiologyDepartment of Molecular and Cell Biology, University of CaliforniaBerkeleyCalifornia
| |
Collapse
|