1
|
Gutierrez BC, Cantiello HF, Cantero MDR. The electrical properties of isolated microtubules. Sci Rep 2023; 13:10165. [PMID: 37349383 PMCID: PMC10287629 DOI: 10.1038/s41598-023-36801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
This study examines the electrical properties of isolated brain microtubules (MTs), which are long hollow cylinders assembled from αβ-tubulin dimers that form cytoskeletal structures engaged in several functions. MTs are implicated in sensory functions in cilia and flagella and cellular activities that range from cell motility, vesicular traffic, and neuronal processes to cell division in the centrosomes and centrioles. We determined the electrical properties of the MTs with the loose patch clamp technique in either the presence or absence of the MT stabilizer Paclitaxel. We observed electrical oscillations at different holding potentials that responded accordingly in amplitude and polarity. At zero mV in symmetrical ionic conditions, a single MT radiated an electrical power of 10-17 W. The spectral analysis of the time records disclosed a single fundamental peak at 39 Hz in the Paclitaxel-stabilized MTs. However, a richer oscillatory response and two mean conductances were observed in the non-Paclitaxel MTs. The findings evidence that the brain MTs are electrical oscillators that behave as "ionic-based" transistors to generate, propagate, and amplify electrical signals.
Collapse
Affiliation(s)
- Brenda C Gutierrez
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, Argentina
| | - Horacio F Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, Argentina
| | - María Del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, Argentina.
| |
Collapse
|
2
|
Pinotsis DA, Fridman G, Miller EK. Cytoelectric Coupling: Electric fields sculpt neural activity and "tune" the brain's infrastructure. Prog Neurobiol 2023; 226:102465. [PMID: 37210066 DOI: 10.1016/j.pneurobio.2023.102465] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
We propose and present converging evidence for the Cytoelectric Coupling Hypothesis: Electric fields generated by neurons are causal down to the level of the cytoskeleton. This could be achieved via electrodiffusion and mechanotransduction and exchanges between electrical, potential and chemical energy. Ephaptic coupling organizes neural activity, forming neural ensembles at the macroscale level. This information propagates to the neuron level, affecting spiking, and down to molecular level to stabilize the cytoskeleton, "tuning" it to process information more efficiently.
Collapse
Affiliation(s)
- Dimitris A Pinotsis
- Centre for Mathematical Neuroscience and Psychology and Department of Psychology, City -University of London, London EC1V 0HB, United Kingdom; The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Gene Fridman
- Departments of Otolaryngology, Biomedical Engineering, and Electrical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Earl K Miller
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Liebert A, Capon W, Pang V, Vila D, Bicknell B, McLachlan C, Kiat H. Photophysical Mechanisms of Photobiomodulation Therapy as Precision Medicine. Biomedicines 2023; 11:biomedicines11020237. [PMID: 36830774 PMCID: PMC9953702 DOI: 10.3390/biomedicines11020237] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Despite a significant focus on the photochemical and photoelectrical mechanisms underlying photobiomodulation (PBM), its complex functions are yet to be fully elucidated. To date, there has been limited attention to the photophysical aspects of PBM. One effect of photobiomodulation relates to the non-visual phototransduction pathway, which involves mechanotransduction and modulation to cytoskeletal structures, biophotonic signaling, and micro-oscillatory cellular interactions. Herein, we propose a number of mechanisms of PBM that do not depend on cytochrome c oxidase. These include the photophysical aspects of PBM and the interactions with biophotons and mechanotransductive processes. These hypotheses are contingent on the effect of light on ion channels and the cytoskeleton, the production of biophotons, and the properties of light and biological molecules. Specifically, the processes we review are supported by the resonant recognition model (RRM). This previous research demonstrated that protein micro-oscillations act as a signature of their function that can be activated by resonant wavelengths of light. We extend this work by exploring the local oscillatory interactions of proteins and light because they may affect global body circuits and could explain the observed effect of PBM on neuro-cortical electroencephalogram (EEG) oscillations. In particular, since dysrhythmic gamma oscillations are associated with neurodegenerative diseases and pain syndromes, including migraine with aura and fibromyalgia, we suggest that transcranial PBM should target diseases where patients are affected by impaired neural oscillations and aberrant brain wave patterns. This review also highlights examples of disorders potentially treatable with precise wavelengths of light by mimicking protein activity in other tissues, such as the liver, with, for example, Crigler-Najjar syndrome and conditions involving the dysregulation of the cytoskeleton. PBM as a novel therapeutic modality may thus behave as "precision medicine" for the treatment of various neurological diseases and other morbidities. The perspectives presented herein offer a new understanding of the photophysical effects of PBM, which is important when considering the relevance of PBM therapy (PBMt) in clinical applications, including the treatment of diseases and the optimization of health outcomes and performance.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
- Adventist Hospital Group, Wahroonga 2076, Australia
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Correspondence:
| | - William Capon
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Vincent Pang
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Damien Vila
- Faculty of Medicine of Montpellier-Nîmes, University of Montpellier, 34090 Montpellier, France
| | - Brian Bicknell
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Craig McLachlan
- Faculty of Health, Torrens University, Adelaide 5000, Australia
| | - Hosen Kiat
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Faculty of Health, Torrens University, Adelaide 5000, Australia
- Cardiac Health Institute, Sydney 2121, Australia
- ANU College of Health and Medicine, Australian National University, Canberra 2600, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park 2109, Australia
| |
Collapse
|
4
|
Priel A, Dai XQ, Chen XZ, Scarinci N, Cantero MDR, Cantiello HF. Electrical recordings from dendritic spines of adult mouse hippocampus and effect of the actin cytoskeleton. Front Mol Neurosci 2022; 15:769725. [PMID: 36090255 PMCID: PMC9453158 DOI: 10.3389/fnmol.2022.769725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 07/26/2022] [Indexed: 11/28/2022] Open
Abstract
Dendritic spines (DS) are tiny protrusions implicated in excitatory postsynaptic responses in the CNS. To achieve their function, DS concentrate a high density of ion channels and dynamic actin networks in a tiny specialized compartment. However, to date there is no direct information on DS ionic conductances. Here, we used several experimental techniques to obtain direct electrical information from DS of the adult mouse hippocampus. First, we optimized a method to isolate DS from the dissected hippocampus. Second, we used the lipid bilayer membrane (BLM) reconstitution and patch clamping techniques and obtained heretofore unavailable electrical phenotypes on ion channels present in the DS membrane. Third, we also patch clamped DS directly in cultured adult mouse hippocampal neurons, to validate the electrical information observed with the isolated preparation. Electron microscopy and immunochemistry of PDS-95 and NMDA receptors and intrinsic actin networks confirmed the enrichment of the isolated DS preparation, showing open and closed DS, and multi-headed DS. The preparation was used to identify single channel activities and “whole-DS” electrical conductance. We identified NMDA and Ca2+-dependent intrinsic electrical activity in isolated DS and in situ DS of cultured adult mouse hippocampal neurons. In situ recordings in the presence of local NMDA, showed that individual DS intrinsic electrical activity often back-propagated to the dendrite from which it sprouted. The DS electrical oscillations were modulated by changes in actin cytoskeleton dynamics by addition of the F-actin disrupter agent, cytochalasin D, and exogenous actin-binding proteins. The data indicate that DS are elaborate excitable electrical devices, whose activity is a functional interplay between ion channels and the underlying actin networks. The data argue in favor of the active contribution of individual DS to the electrical activity of neurons at the level of both the membrane conductance and cytoskeletal signaling.
Collapse
Affiliation(s)
- Avner Priel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Xiao-Qing Dai
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Noelia Scarinci
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - María del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Horacio F. Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
- *Correspondence: Horacio F. Cantiello,
| |
Collapse
|
5
|
Kalra AP, Eakins BB, Vagin SI, Wang H, Patel SD, Winter P, Aminpour M, Lewis JD, Rezania V, Shankar K, Scholes GD, Tuszynski JA, Rieger B, Meldrum A. A Nanometric Probe of the Local Proton Concentration in Microtubule-Based Biophysical Systems. NANO LETTERS 2022; 22:517-523. [PMID: 34962401 DOI: 10.1021/acs.nanolett.1c04487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We show a double-functional fluorescence sensing paradigm that can retrieve nanometric pH information on biological structures. We use this method to measure the extent of protonic condensation around microtubules, which are protein polymers that play many roles crucial to cell function. While microtubules are believed to have a profound impact on the local cytoplasmic pH, this has been hard to show experimentally due to the limitations of conventional sensing techniques. We show that subtle changes in the local electrochemical surroundings cause a double-functional sensor to transform its spectrum, thus allowing a direct measurement of the protonic concentration at the microtubule surface. Microtubules concentrate protons by as much as one unit on the pH scale, indicating a charge storage role within the cell via the localized ionic condensation. These results confirm the bioelectrical significance of microtubules and reveal a sensing concept that can deliver localized biochemical information on intracellular structures.
Collapse
Affiliation(s)
- Aarat P Kalra
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States of America
| | - Boden B Eakins
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
| | - Sergei I Vagin
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85747 Garching bei München, Germany
| | - Hui Wang
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta T6G 2E1, Canada
| | - Sahil D Patel
- Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106, United States of America
| | - Philip Winter
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Maral Aminpour
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Vahid Rezania
- Department of Physical Sciences, MacEwan University, Edmonton, Alberta T5J 4S2, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States of America
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta T6G 2E1, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Torino 10129, Italy
| | - Bernhard Rieger
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85747 Garching bei München, Germany
| | - Alkiviathes Meldrum
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
6
|
Gutierrez BC, Pita Almenar MR, Martínez LJ, Siñeriz Louis M, Albarracín VH, Cantero MDR, Cantiello HF. Honeybee Brain Oscillations Are Generated by Microtubules. The Concept of a Brain Central Oscillator. Front Mol Neurosci 2021; 14:727025. [PMID: 34658784 PMCID: PMC8511451 DOI: 10.3389/fnmol.2021.727025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/06/2021] [Indexed: 12/30/2022] Open
Abstract
Microtubules (MTs) are important structures of the cytoskeleton in neurons. Mammalian brain MTs act as biomolecular transistors that generate highly synchronous electrical oscillations. However, their role in brain function is largely unknown. To gain insight into the MT electrical oscillatory activity of the brain, we turned to the honeybee (Apis mellifera) as a useful model to isolate brains and MTs. The patch clamp technique was applied to MT sheets of purified honeybee brain MTs. High resistance seal patches showed electrical oscillations that linearly depended on the holding potential between ± 200 mV and had an average conductance in the order of ~9 nS. To place these oscillations in the context of the brain, we also explored local field potential (LFP) recordings from the Triton X-permeabilized whole honeybee brain unmasking spontaneous oscillations after but not before tissue permeabilization. Frequency domain spectral analysis of time records indicated at least two major peaks at approximately ~38 Hz and ~93 Hz in both preparations. The present data provide evidence that MT electrical oscillations are a novel signaling mechanism implicated in brain wave activity observed in the insect brain.
Collapse
Affiliation(s)
- Brenda C. Gutierrez
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, Argentina
| | - Marcelo R. Pita Almenar
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, Argentina
| | - Luciano J. Martínez
- Centro Integral de Microscopía Electrónica (CIME-CONICET-UNT), Tucumán, Argentina
| | - Manuel Siñeriz Louis
- Centro Integral de Microscopía Electrónica (CIME-CONICET-UNT), Tucumán, Argentina
| | | | - María del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, Argentina
| | - Horacio F. Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, Argentina
| |
Collapse
|
7
|
Kalra AP, Eakins BB, Patel SD, Ciniero G, Rezania V, Shankar K, Tuszynski JA. All Wired Up: An Exploration of the Electrical Properties of Microtubules and Tubulin. ACS NANO 2020; 14:16301-16320. [PMID: 33213135 DOI: 10.1021/acsnano.0c06945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microtubules are hollow, cylindrical polymers of the protein α, β tubulin, that interact mechanochemically with a variety of macromolecules. Due to their mechanically robust nature, microtubules have gained attention as tracks for precisely directed transport of nanomaterials within lab-on-a-chip devices. Primarily due to the unusually negative tail-like C-termini of tubulin, recent work demonstrates that these biopolymers are also involved in a broad spectrum of intracellular electrical signaling. Microtubules and their electrostatic properties are discussed in this Review, followed by an evaluation of how these biopolymers respond mechanically to electrical stimuli, through microtubule migration, electrorotation and C-termini conformation changes. Literature focusing on how microtubules act as nanowires capable of intracellular ionic transport, charge storage, and ionic signal amplification is reviewed, illustrating how these biopolymers attenuate ionic movement in response to electrical stimuli. The Review ends with a discussion on the important questions, challenges, and future opportunities for intracellular microtubule-based electrical signaling.
Collapse
Affiliation(s)
- Aarat P Kalra
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta T6G 2M9, Canada
| | - Boden B Eakins
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
| | - Sahil D Patel
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
| | - Gloria Ciniero
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Torino 10129, Italy
| | - Vahid Rezania
- Department of Physical Sciences, MacEwan University, Edmonton, Alberta T5J 4S2, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta T6G 2M9, Canada
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Torino 10129, Italy
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|