1
|
Romanelli G, Villarreal L, Espasandín C, Benech JC. Diabetes induces modifications in costameric proteins and increases cardiomyocyte stiffness. Am J Physiol Cell Physiol 2024; 327:C1263-C1273. [PMID: 39374079 DOI: 10.1152/ajpcell.00273.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 10/09/2024]
Abstract
Several studies have demonstrated that diabetes mellitus can increase the risk of cardiovascular disease and remains the principal cause of death in these patients. Costameres connect the sarcolemma with the cytoskeleton and extracellular matrix, facilitating the transmission of mechanical forces and cell signaling. They are related to cardiac physiology because individual cardiac cells are connected by intercalated discs that synchronize muscle contraction. Diabetes impacts the nanomechanical properties of cardiomyocytes, resulting in increased cellular and left ventricular stiffness, as evidenced in clinical studies of these patients. The question of whether costameric proteins are affected by diabetes in the heart has not been studied. This work analyzes whether type 1 diabetes mellitus (T1DM) modifies the costameric proteins and coincidentally changes the cellular mechanics in the same cardiomyocytes. The samples were analyzed by immunotechniques using laser confocal microscopy. Significant statistical differences were found in the spatial arrangement of the costameric proteins. However, these differences are not due to their expression. Atomic force microscopy was used to compare intrinsic cellular stiffness between diabetic and normal cardiomyocytes and obtain the first elasticity map sections of diabetic living cardiomyocytes. Data obtained demonstrated that diabetic cardiomyocytes had higher stiffness than control. The present work shows experimental evidence that intracellular changes related to cell-cell and cell-extracellular matrix communication occur, which could be related to cardiac pathogenic mechanisms. These changes could contribute to alterations in the mechanical and electrical properties of cardiomyocytes and, consequently, to diabetic cardiomyopathy.NEW & NOTEWORTHY The structural organization of cardiomyocyte proteins is critical for their efficient functioning as a contractile unit in the heart. This work shows that diabetes mellitus induces significant changes in the spatial organization of costamere proteins, t tubules, and intercalated discs. We obtained the first elasticity map sections of living diabetic cardiomyocytes. The results show statistical differences in the map sections of diabetic and control cardiomyocytes, with diabetic cardiomyocytes being stiffer than normal ones.
Collapse
Affiliation(s)
- Gerardo Romanelli
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Lihuén Villarreal
- Plataforma de Microscopía de Fuerza Atómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Camila Espasandín
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Juan Claudio Benech
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Plataforma de Microscopía de Fuerza Atómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
2
|
Wang Y, Feng C, Yu B, Wang J, Chen W, Song C, Ji X, Guo R, Cheng G, Chen H, Wang X, Zhang L, Li Z, Jiang J, Xie C, Du H, Zhang X. Enhanced Effects of Intermittent Fasting by Magnetic Fields in Severe Diabetes. RESEARCH (WASHINGTON, D.C.) 2024; 7:0468. [PMID: 39238846 PMCID: PMC11376831 DOI: 10.34133/research.0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
Intermittent fasting (IF) is a convenient dietary intervention for multiple diseases, including type 2 diabetes. However, whether it can be used as a long-term antidiabetic approach is still unknown. Here, we confirm that IF alone is beneficial for both moderate and severe diabetic mice, but its antidiabetic effects clearly diminish at later stages, especially for severe diabetic db/db mice, which have obviously impaired autophagy. We found that static magnetic fields can directly promote actin assembly and boost IF-induced autophagy. Consequently, the pancreatic islet and liver were improved, and the antidiabetic effects of IF were boosted. In fact, at later stages, combined static magnetic field and IF could reduce the blood glucose level of moderate type 2 diabetic mice by 40.5% (P < 0.001) and severe type 2 diabetes by 34.4% (P < 0.05), when IF alone no longer has significant blood glucose reduction effects. Therefore, although IF is generally beneficial for diabetes, our data reveal its insufficiency for late-stage diabetes, which can be compensated by a simple, noninvasive, long-lasting, and nonpharmacological strategy for effective long-term diabetic control.
Collapse
Affiliation(s)
- Ying Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Chuanlin Feng
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Biao Yu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Junjun Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Weili Chen
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Chao Song
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Xinmiao Ji
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Ruowen Guo
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Guofeng Cheng
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Hanxiao Chen
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinyu Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Lei Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Zhiyuan Li
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jialiang Jiang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Can Xie
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
| | - Haifeng Du
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Xin Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| |
Collapse
|
3
|
Kunnath AN, Parker SK, Crasta DN, Kunhiraman JP, Madhvacharya VV, Kumari S, Nayak G, Vani Lakshmi R, Modi PK, Keshava Prasad TS, Kumar A, Khandelwal A, Ghani NK, Kabekkodu SP, Adiga SK, Kalthur G. Metformin augments major cytoplasmic organization except for spindle organization in oocytes cultured under hyperglycemic and hyperlipidemic conditions: An in vitro study. Toxicol Appl Pharmacol 2024; 490:117039. [PMID: 39019093 DOI: 10.1016/j.taap.2024.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
The present study aimed to investigate the role of antidiabetic drug metformin on the cytoplasmic organization of oocytes. Germinal vesicle (GV) stage oocytes were collected from adult female Swiss albino mice and subjected to in vitro maturation (IVM) in various experimental groups- control, vehicle control (0.3% ethanol), metformin (50 μg/mL), high glucose and high lipid (HGHL, 10 mM glucose; 150 μM palmitic acid; 75 μM stearic acid and 200 μM oleic acid in ethanol), and HGHL supplemented with metformin. The metaphase II (MII) oocytes were analyzed for lipid accumulation, mitochondrial and endoplasmic reticulum (ER) distribution pattern, oxidative and ER stress, actin filament organization, cortical granule distribution pattern, spindle organization and chromosome alignment. An early polar body extrusion was observed in the HGHL group. However, the maturation rate at 24 h did not differ significantly among the experimental groups compared to the control. The HGHL conditions exhibited significantly higher levels of oxidative stress, ER stress, poor actin filament organization, increased lipid accumulation, altered mitochondrial distribution, spindle abnormalities, and chromosome misalignment compared to the control. Except for spindle organization, supplementation of metformin to the HGHL conditions improved all the parameters (non-significant for ER and actin distribution pattern). These results show that metformin exposure in the culture media helped to improve the hyperglycemia and hyperlipidemia-induced cytoplasmic anomalies except for spindle organization. Given the crucial role of spindle organization in proper chromosome segregation during oocyte maturation and meiotic resumption, the implications of metformin's limitations in this aspect warrant careful evaluation and further investigation.
Collapse
Affiliation(s)
- Amrutha Nedumbrakkad Kunnath
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shravani Kanakadas Parker
- Center of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Daphne Norma Crasta
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Jyolsna Ponnaratta Kunhiraman
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Vanishree Vasave Madhvacharya
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sandhya Kumari
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Guruprasad Nayak
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - R Vani Lakshmi
- Department of Data Science, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal 576104, India
| | - Prashanth Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, University Road, Mangalore 575018, India
| | | | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allasandra, Yelahanka, Bangalore 560065, India
| | - Ayush Khandelwal
- Department of Cell and Molecular Biology, Manipal School of Life sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Nadeem Khan Ghani
- Department of Cell and Molecular Biology, Manipal School of Life sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Satish Kumar Adiga
- Center of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
4
|
Benech JC, Romanelli G. Atomic force microscopy indentation for nanomechanical characterization of live pathological cardiovascular/heart tissue and cells. Micron 2022; 158:103287. [DOI: 10.1016/j.micron.2022.103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 02/10/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
|
5
|
Ninčević V, Zjalić M, Kolarić TO, Smolić M, Kizivat T, Kuna L, Včev A, Tabll A, Ćurčić IB. Renoprotective Effect of Liraglutide Is Mediated via the Inhibition of TGF-Beta 1 in an LLC-PK1 Cell Model of Diabetic Nephropathy. Curr Issues Mol Biol 2022; 44:1087-1114. [PMID: 35723295 PMCID: PMC8947663 DOI: 10.3390/cimb44030072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
Background: Recently published research demonstrated direct renoprotective effects of the glucagon-like peptide-1 receptor agonist GLP 1 RA, but the relevant molecular mechanisms are still not clear. The aim of this research was to assess the effects of Liraglutide in a cell culture model of diabetic nephropathy on cell viability, antioxidant (GSH) and transforming growth factor beta 1 (TGF- β1) levels and extracellular matrix (ECM) expression. The metabolic activity in hyperglycemic conditions and the effect of Liraglutide treatment were assessed by measuring Akt, pAkt, GSK3β, pGSK3β, pSTAT3, SOCS3, iNOS and NOX4 protein expression with Western blot. F actin distribution was used to assess the structural changes of the cells upon treatment. Materials and methods: The cells were exposed to high glucose (HG30 mM) followed by 0.5 mM H2O2 and a combination of glucose and H2O2 during 24 h. Subsequently, the cells were treated with different combinations of HG30, H2O2 and Liraglutide. Cell viability was determined by an MTT colorimetric test, and the GSH, TGF-β1 concentration and ECM expression were measured using a spectrophotometric/microplate reader assay and an ELISA kit, respectively. Western blotting was used to detect the protein level of Akt, pAkt, GSK3β, pGSK3β, pSTAT3, SOCS3, iNOS and NOX4. The F-actin cytoskeleton was visualized with Phalloidin stain and subsequently quantified. Results: Cell viability was decreased as well as GSH levels in cells treated with a combination of HG30/H2O2, and HG30 alone (p < 0.001). The addition of Liraglutide improved the viability in cells treated with HG30, but it did not affect the cell viability in the cell treated with the addition of H2O2. GSH increased with the addition of Liraglutide in HG30/H2O2 (p < 0.001) treated cells, with no effect in cells treated only with HG30. TGF-β1 levels (p < 0.001) were significantly increased in HG30 and HG30/H2O2. The addition of Liraglutide significantly decreased the TGF-β1 levels (p < 0.01; p < 0.05) in all treated cells. The synthesis of collagen was significantly increased in HG30/H2O2 (p < 0.001), while the addition of Liraglutide in HG30/H2O2 significantly decreased collagen (p < 0.001). Akt signaling was not significantly affected by treatment. The GSK3b and NOX4 levels were significantly reduced (p < 0.01) after the peroxide and glucose treatment, with the observable restoration upon the addition of Liraglutide suggesting an important role of Liraglutide in oxidative status regulation and mitochondrial activity. The treatment with Liraglutide significantly upregulated STAT3 (p < 0.01) activity, with no change in SOCS3 indicating a selective regulation of the STAT 3 signaling pathway in glucose and the oxidative overloaded environment. A significant reduction in the distribution of F-actin was observed in cells treated with HG30/H2O2 (p < 0.01). The addition of Liraglutide to HG30-treated cells led to a significant decrease of distribution of F-actin (p < 0.001). Conclusion: The protective effect of Liraglutide is mediated through the inhibition of TGF beta, but this effect is dependent on the extent of cellular damage and the type of toxic environment. Based on the WB analysis we have revealed the signaling pathways involved in cytoprotective and cytotoxic effects of the drug itself, and further molecular studies in vitro and vivo are required to elucidate the complexity of the pathophysiological mechanisms of Liraglutide under conditions of hyperglycemia and oxidative stress.
Collapse
Affiliation(s)
- Vjera Ninčević
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (M.S.); (L.K.)
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Milorad Zjalić
- Department of Medical Biology and Genetics, Faculty of Medicine, J.J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia;
| | - Tea Omanović Kolarić
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (M.S.); (L.K.)
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Martina Smolić
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (M.S.); (L.K.)
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Tomislav Kizivat
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, 31000 Osijek, Croatia;
- Department for Nuclear Medicine and Oncology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
| | - Lucija Kuna
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (M.S.); (L.K.)
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Aleksandar Včev
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Ashraf Tabll
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Division, National Research Center, Cairo 12622, Egypt;
| | - Ines Bilić Ćurčić
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (V.N.); (T.O.K.); (M.S.); (L.K.)
- Department of Diabetes, Endocrinology and Metabolism Disorders, University Hospital Osijek, 31000 Osijek, Croatia
- Correspondence:
| |
Collapse
|
6
|
Acosta FM, Jia UTA, Stojkova K, Howland KK, Guda T, Pacelli S, Brey EM, Rathbone CR. Diabetic Conditions Confer Metabolic and Structural Modifications to Tissue-Engineered Skeletal Muscle. Tissue Eng Part A 2021; 27:549-560. [PMID: 32878567 PMCID: PMC8126424 DOI: 10.1089/ten.tea.2020.0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is a tissue that is directly involved in the progression and persistence of type 2 diabetes (T2D), a disease that is becoming increasingly common. Gaining better insight into the mechanisms that are affecting skeletal muscle dysfunction in the context of T2D has the potential to lead to novel treatments for a large number of patients. Through its ability to emulate skeletal muscle architecture while also incorporating aspects of disease, tissue-engineered skeletal muscle (TE-SkM) has the potential to provide a means for rapid high-throughput discovery of therapies to treat skeletal muscle dysfunction, to include that which occurs with T2D. Muscle precursor cells isolated from lean or obese male Zucker diabetic fatty rats were used to generate TE-SkM constructs. Some constructs were treated with adipogenic induction media to accentuate the presence of adipocytes that is a characteristic feature of T2D skeletal muscle. The maturity (compaction and creatine kinase activity), mechanical integrity (Young's modulus), organization (myotube orientation), and metabolic capacity (insulin-stimulated glucose uptake) were all reduced by diabetes. Treating constructs with adipogenic induction media increased the quantity of lipid within the diabetic TE-SkM constructs, and caused changes in construct compaction, cell orientation, and insulin-stimulated glucose uptake in both lean and diabetic samples. Collectively, the findings herein suggest that the recapitulation of structural and metabolic aspects of T2D can be accomplished by engineering skeletal muscle in vitro.
Collapse
Affiliation(s)
- Francisca M. Acosta
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
- UTSA-UTHSCSA Joint Graduate Program in Biomedical Engineering, San Antonio, Texas, USA
| | - U-Ter Aonda Jia
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
- UTSA-UTHSCSA Joint Graduate Program in Biomedical Engineering, San Antonio, Texas, USA
| | - Katerina Stojkova
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Kennedy K. Howland
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Settimio Pacelli
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Eric M. Brey
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Christopher R. Rathbone
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
7
|
Varela R, Rauschert I, Romanelli G, Alberro A, Benech JC. Hyperglycemia and hyperlipidemia can induce morphophysiological changes in rat cardiac cell line. Biochem Biophys Rep 2021; 26:100983. [PMID: 33912691 PMCID: PMC8063753 DOI: 10.1016/j.bbrep.2021.100983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/04/2021] [Accepted: 03/08/2021] [Indexed: 01/04/2023] Open
Abstract
H9c2 cardiac cells were incubated under the control condition and at different hyperglycemic and hyperlipidemic media, and the following parameters were determined and quantified: a) cell death, b) type of cell death, and c) changes in cell length, width and height. Of all the proven media, the one that showed the greatest differences compared to the control was the medium glucose (G) 33 mM + 500 μM palmitic acid. This condition was called the hyperglycemic and hyperlipidemic condition (HHC). Incubation of H9c2 cells in HHC promoted 5.2 times greater total cell death when compared to the control. Of the total death ofthe HHC cells, 38.6% was late apoptotic and 8.3% early apoptotic. HHC also changes cell morphology. The reordering of the actin cytoskeleton and cell stiffness was also studied in control and HHC cells. The actin cytoskeleton was quantified and the number and distance of actin bundles were not the same in the control as under HHC. Young's modulus images show a map of cell stiffness. Cells incubated in HHC with the reordered actin cytoskeleton were stiffer than those incubated in control. The region of greatest stiffness was the peripheral zone of HHC cells (where the number of actin bundles was higher and the distance between them smaller). Our results suggest a correlation between the reordering of the actin cytoskeleton and cell stiffness. Thus, our study showed that HHC can promote morphophysiological changes in rat cardiac cells confirming that gluco-and lipotoxicity may play a central role in the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Rocío Varela
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia, 3318, CP, 11600, Montevideo, Uruguay
| | - Inés Rauschert
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia, 3318, CP, 11600, Montevideo, Uruguay.,Plataforma de Microscopía de Fuerza Atómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia, 3318, CP, 11600, Montevideo, Uruguay
| | - Gerardo Romanelli
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia, 3318, CP, 11600, Montevideo, Uruguay
| | - Andrés Alberro
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia, 3318, CP, 11600, Montevideo, Uruguay
| | - Juan C Benech
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia, 3318, CP, 11600, Montevideo, Uruguay.,Plataforma de Microscopía de Fuerza Atómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia, 3318, CP, 11600, Montevideo, Uruguay
| |
Collapse
|