1
|
A conditional Orco requirement in the somatic cyst cells for maintaining spermatids in a tight bundle in Drosophila testis. J Biosci 2017; 41:219-27. [PMID: 27240982 DOI: 10.1007/s12038-016-9607-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Odorant receptors (OR) heterodimerizes with the OR co-receptor (Orco), forming specific odorant-gated cation channels, which are key to odor reception at the olfactory sensory neurons (OSN). Mammalian ORs are expressed in many other tissues, including testis. However, their biological implications are yet to be fully ascertained. In the mosquito, Orco is localized along the sperm tail and is indicated to maintain fidelity. Here, we show that orco expresses in Drosophila testis. The levels are higher in the somatic cyst cells. The orco-null mutants are perfectly fertile at 25 degree C. At 28 degree C, the coiled spermatid bundles are severely disrupted. The loss of Orco also disrupts the actin cap, which forms inside the head cyst cell at the rostral ends of the spermatid nuclei after coiling, and plays a key role in preventing the abnormal release of spermatids from the cyst enclosure. Both the defects are rescued by the somatic cyst cell-specific expression of the UAS-orco transgene. These results highlight a novel role of Orco in the somatic tissue during sperm release.
Collapse
|
2
|
Piirainen H, Taura J, Kursula P, Ciruela F, Jaakola VP. Calcium modulates calmodulin/α-actinin 1 interaction with and agonist-dependent internalization of the adenosine A 2A receptor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:674-686. [PMID: 28130124 DOI: 10.1016/j.bbamcr.2017.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/14/2017] [Accepted: 01/23/2017] [Indexed: 10/20/2022]
Abstract
Adenosine receptors are G protein-coupled receptors that sense extracellular adenosine to transmit intracellular signals. One of the four adenosine receptor subtypes, the adenosine A2A receptor (A2AR), has an exceptionally long intracellular C terminus (A2AR-ct) that mediates interactions with a large array of proteins, including calmodulin and α-actinin. Here, we aimed to ascertain the α-actinin 1/calmodulin interplay whilst binding to A2AR and the role of Ca2+ in this process. First, we studied the A2AR-α-actinin 1 interaction by means of native polyacrylamide gel electrophoresis, isothermal titration calorimetry, and surface plasmon resonance, using purified recombinant proteins. α-Actinin 1 binds the A2AR-ct through its distal calmodulin-like domain in a Ca2+-independent manner with a dissociation constant of 5-12μM, thus showing an ~100 times lower affinity compared to the A2AR-calmodulin/Ca2+ complex. Importantly, calmodulin displaced α-actinin 1 from the A2AR-ct in a Ca2+-dependent fashion, disrupting the A2AR-α-actinin 1 complex. Finally, we assessed the impact of Ca2+ on A2AR internalization in living cells, a function operated by the A2AR-α-actinin 1 complex. Interestingly, while Ca2+ influx did not affect constitutive A2AR endocytosis, it abolished agonist-dependent internalization. In addition, we demonstrated that the A2AR/α-actinin interaction plays a pivotal role in receptor internalization and function. Overall, our results suggest that the interplay of A2AR with calmodulin and α-actinin 1 is fine-tuned by Ca2+, a fact that might power agonist-mediated receptor internalization and function.
Collapse
Affiliation(s)
- Henni Piirainen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Finland
| | - Jaume Taura
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Spain
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Finland; Department of Biomedicine, University of Bergen, Norway
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Spain.
| | - Veli-Pekka Jaakola
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Finland.
| |
Collapse
|
3
|
Washington RW, Knecht DA. Actin binding domains direct actin-binding proteins to different cytoskeletal locations. BMC Cell Biol 2008; 9:10. [PMID: 18269770 PMCID: PMC2275727 DOI: 10.1186/1471-2121-9-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Accepted: 02/13/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Filamin (FLN) and non-muscle alpha-actinin are members of a family of F-actin cross-linking proteins that utilize Calponin Homology domains (CH-domain) for actin binding. Although these two proteins have been extensively characterized, little is known about what regulates their binding to F-actin filaments in the cell. RESULTS We have constructed fusion proteins consisting of green fluorescent protein (GFP) with either the entire cross-linking protein or its actin-binding domain (ABD) and examined the localization of these fluorescent proteins in living cells under a variety of conditions. The full-length fusion proteins, but not the ABD's complemented the defects of cells lacking both endogenous proteins indicating that they are functional. The localization patterns of filamin (GFP-FLN) and alpha-actinin (GFP-alphaA) were overlapping but distinct. GFP-FLN localized to the peripheral cell cortex as well as to new pseudopods of unpolarized cells, but was observed to localize to the rear of polarized cells during cAMP and folate chemotaxis. GFP-alphaA was enriched in new pseudopods and at the front of polarized cells, but in all cases was absent from the peripheral cortex. Although both proteins appear to be involved in macropinocytosis, the association time of the GFP-probes with the internalized macropinosome differed. Surprisingly, the localization of the GFP-actin-binding domain fusion proteins precisely reflected that of their respective full length constructs, indicating that the localization of the protein was determined by the actin-binding domain alone. When expressed in a cell line lacking both filamin and alpha-actinin, the probes maintain their distinct localization patterns suggesting that they are not functionally redundant. CONCLUSION These observations strongly suggest that the regulation of the binding of these proteins to actin filaments is built into the actin-binding domains. We suggest that different actin binding domains have different affinities for F-actin filaments in functionally distinct regions of the cytoskeleton.
Collapse
Affiliation(s)
- Raymond W Washington
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | | |
Collapse
|
4
|
Laevsky G, Knecht DA. Cross-linking of actin filaments by myosin II is a major contributor to cortical integrity and cell motility in restrictive environments. J Cell Sci 2003; 116:3761-70. [PMID: 12890752 DOI: 10.1242/jcs.00684] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells are frequently required to move in a local environment that physically restricts locomotion, such as during extravasation or metastatic invasion. In order to model these events, we have developed an assay in which vegetative Dictyostelium amoebae undergo chemotaxis under a layer of agarose toward a source of folic acid [Laevsky, G. and Knecht, D. A. (2001). Biotechniques 31, 1140-1149]. As the concentration of agarose is increased from 0.5% to 3% the cells are increasingly inhibited in their ability to move under the agarose. The contribution of myosin II and actin cross-linking proteins to the movement of cells in this restrictive environment has now been examined. Cells lacking myosin II heavy chain (mhcA-) are unable to migrate under agarose overlays of greater than 0.5%, and even at this concentration they move only a short distance from the trough. While attempting to move, the cells become stretched and fragmented due to their inability to retract their uropods. At higher agarose concentrations, the mhcA- cells protrude pseudopods under the agarose, but are unable to pull the cell body underneath. Consistent with a role for myosin II in general cortical stability, GFP-myosin dynamically localizes to the lateral and posterior cortex of cells moving under agarose. Cells lacking the essential light chain of myosin II (mlcE-), have no measurable myosin II motor activity, yet were able to move normally under all agarose concentrations. Mutants lacking either ABP-120 or alpha-actinin were also able to move under agarose at rates similar to wild-type cells. We hypothesize that myosin stabilizes the actin cortex through its cross-linking activity rather than its motor function and this activity is necessary and sufficient for the maintenance of cortical integrity of cells undergoing movement in a restrictive environment. The actin cross-linkers alpha-actinin and ABP-120 do not appear to play as major a role as myosin II in providing this cortical integrity.
Collapse
Affiliation(s)
- Gary Laevsky
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
5
|
Furukawa R, Maselli A, Thomson SAM, Lim RWL, Stokes JV, Fechheimer M. Calcium regulation of actin crosslinking is important for function of the actin cytoskeleton in Dictyostelium. J Cell Sci 2003; 116:187-96. [PMID: 12456728 DOI: 10.1242/jcs.00220] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The actin cytoskeleton is sensitive to changes in calcium, which affect contractility, actin-severing proteins, actin-crosslinking proteins and calmodulin-regulated enzymes. To dissect the role of calcium control on the activity of individual proteins from effects of calcium on other processes, calcium-insensitive forms of these proteins were prepared and introduced into living cells to replace a calcium-sensitive form of the same protein. Crosslinking and bundling of actin filaments by the Dictyostelium 34 kDa protein is inhibited in the presence of micromolar free calcium. A modified form of the 34 kDa protein with mutations in the calcium binding EF hand (34 kDa deltaEF2) was prepared using site-directed mutagenesis and expressed in E. coli. Equilibrium dialysis using [(45)Ca]CaCl(2) revealed that the wild-type protein is able to bind one calcium ion with a Kd of 2.4 microM. This calcium binding is absent in the 34 kDa deltaEF2 protein. The actin-binding activity of the 34 kDa deltaEF2 protein was equivalent to wildtype but calcium insensitive in vitro. The wild-type and 34 kDa deltaEF2 proteins were expressed in 34-kDa-null and 34 kDa/alpha-actinin double null mutant Dictyostelium strains to test the hypothesis that calcium regulation of actin crosslinking is important in vivo. The 34 kDa deltaEF2 failed to supply function of the 34 kDa protein important for control of cell size and for normal growth to either of these 34-kDa-null strains. Furthermore, the distribution of the 34 kDa protein and actin were abnormal in cells expressing 34 kDa deltaEF2. Thus, calcium regulation of the formation and/or dissolution of crosslinked actin structures is required for dynamic behavior of the actin cytoskeleton important for cell structure and growth.
Collapse
Affiliation(s)
- Ruth Furukawa
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Schleicher M, Witke W, Isenberg G. Direct photoaffinity labeling of soluble GTP-binding proteins inDictyostelium discoideum. FEBS Lett 2001. [DOI: 10.1016/0014-5793(86)80529-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Fukui Y, Inoué S. Amoeboid movement anchored by eupodia, new actin-rich knobby feet in Dictyostelium. CELL MOTILITY AND THE CYTOSKELETON 2000; 36:339-54. [PMID: 9096956 DOI: 10.1002/(sici)1097-0169(1997)36:4<339::aid-cm4>3.0.co;2-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To date, protrusion of pseudopodia has been considered to be primarily responsible for translocation of free-living amoebae and leukocytes of higher organisms. Although there is little question that the pseudopodium plays an important role, little attention has been given to the cortical structures that are responsible for cell-substratum anchorage in amoeboid movement. Here, we report on a new knobby foot-like structure in amoebae of a cellullar slime mold, Dictyostelium discoideum. These feet, each about 1 micron in diameter, appear transiently in multiple units at the base of certain pseudopodia where the amoeba contacts a partially deformable substrate. The feet were discovered, and their spatial and temporal behavior relative to pseudopodial anchorage and invasive locomotion were observed, by examining Dictyostelium amoebae using a DIC video microscope providing an 0.3 micron depth of field. Key evidence for the anchoring role of the knobby feet was obtained by investigating amoebae, flattened in a specially devised observation chamber, and attracted by chemotaxis towards 3',5' cyclic-adenosine monophosphate (cAMP). The cAMP was released by highly localized, pulsed UV-microbeam irradiation of caged cAMP. We show by indirect immunofluorescence that the knobby feet contain a high concentration of filamentous (F-) actin, myoB (a member of Dictyostelium myosin-I family), and alpha-actinin (an actin-binding protein). Interestingly, myoB exhibits a circular disposition around each foot. Neither myosin-II (conventional myosin) nor the 269 kD protein, which has been recently identified as a talin homologue of Dictyostelium [Kreitmeier et al., 1995: J. Cell Biol. 129:179-188], are concentrated at the feet. We propose that the knobby feet provide anchorage to the substratum needed by lamellipodia to exert projectile forces for invading narrow spaces or otherwise for a flattened amoeba to secure itself to the deformable substratum. Some forms of adhesion plaques in higher organisms such as "podosomes" or "invadopodia" may perform functions similar to the knobby feet, but appear to differ in life time, cytoskeletal organization and composition. We have named the knobby foot "eupodium."
Collapse
Affiliation(s)
- Y Fukui
- Northwestern University Medical School, Chicago, Illinois 60611-3008, USA.
| | | |
Collapse
|
9
|
Fukui Y, de Hostos E, Yumura S, Kitanishi-Yumura T. Architectural dynamics of F-actin in eupodia suggests their role in invasive locomotion in Dictyostelium. Exp Cell Res 1999; 249:33-45. [PMID: 10328951 DOI: 10.1006/excr.1999.4445] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eupodia are F-actin-containing cortical structures similar to vertebrate podosomes or invadopodia found in metastatic cells. Eupodia are rich in alpha-actinin and myosin IB/D, but not a Dictyostelium homologue of talin. In the present study, we localized other actin-binding proteins, ABP120, cofilin, coronin, and fimbrin, in the eupodia and examined the three-dimensional organization of their F-actin system by confocal microscopy and transmission electron microscopy. To examine their function, we analyzed the assembly and disassembly dynamics of the F-actin system in eupodia and its relation to lamellipodial protrusion. Actin dynamics was examined by monitoring S65T-GFP-coronin and rhodamine-actin using a real-time confocal unit and a digital microscope system. Fluorescence morphometric analysis demonstrates the presence of a precise spatiotemporal coupling between F-actin assembly in eupodia and lamellipodial protrusion. When a lamellipodium advances to invade a tight space, additional rows of eupodia are sequentially formed at the base of that lamellipodium. These results indicate that mechanical stress at the leading edge modulates the structural integrity of actin and its binding proteins, such that eupodia are formed when anchorage is needed to boost for invasive protrusion of the leading edge.
Collapse
Affiliation(s)
- Y Fukui
- Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
10
|
Fisher PR, Noegel AA, Fechheimer M, Rivero F, Prassler J, Gerisch G. Photosensory and thermosensory responses in Dictyostelium slugs are specifically impaired by absence of the F-actin cross-linking gelation factor (ABP-120). Curr Biol 1997; 7:889-92. [PMID: 9480045 DOI: 10.1016/s0960-9822(06)00379-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemotactic aggregation of starving amoebae of Dictyostelium discoideum leads to formation of a motile, multicellular organism - the slug - whose anterior tip controls its phototactic and thermotactic behaviour. To determine whether proteins that regulate the in vitro assembly of actin are involved in these responses, we tested phototaxis and thermotaxis in mutant slugs in which the gene encoding one of five actin-binding proteins had been disrupted. Of the proteins tested - severin, alpha-actinin, fimbrin, the 34 kD actin-bundling protein and the F-actin cross-linking gelation factor (ABP-120) - only ABP-120 proved essential for normal phototaxis and thermotaxis in the multicellular slugs. The related human protein ABP-280 is required for protein phosphorylation cascades initiated by lysophosphatidic acid and tumor necrosis factor alpha. The repeating segments constituting the rod domains of ABP-120 and ABP-280 may be crucial for the function of both proteins in specific signal transduction pathways by mediating interactions with regulatory proteins.
Collapse
Affiliation(s)
- P R Fisher
- School of Microbiology, La Trobe University, Bundoora, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
11
|
Furukawa R, Fechheimer M. The structure, function, and assembly of actin filament bundles. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 175:29-90. [PMID: 9203356 DOI: 10.1016/s0074-7696(08)62125-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cellular organization, function, and molecular composition of selected biological systems with prominent actin filament bundles are reviewed. An overall picture of the great variety of functions served by actin bundles emerges from this overview. A unifying theme is that the actin cross-linking proteins are conserved throughout the eukaryotic kingdom and yet assembled in a variety of combinations to produce actin bundles of differing functions. Mechanisms of actin bundle formation in vitro are considered illustrating the variety of physical and chemical driving forces in this exceedingly complex process. Our limited knowledge regarding the formation of actin filament bundles in vivo is contrasted with the elegant biophysical studies performed in vitro but nonetheless reveals that interactions with membranes, nucleation sites, and other organizational components must contribute to formation of actin bundles in vivo.
Collapse
Affiliation(s)
- R Furukawa
- Department of Cellular Biology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
12
|
Edmonds BT, Murray J, Condeelis J. pH regulation of the F-actin binding properties of Dictyostelium elongation factor 1 alpha. J Biol Chem 1995; 270:15222-30. [PMID: 7797506 DOI: 10.1074/jbc.270.25.15222] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
ABP50, an F-actin bundling protein from Dictyostelium, is also the protein synthesis co-factor, elongation factor 1 alpha (EF1 alpha). Concomitant with cAMP stimulation in Dictyostelium is a cytoplasmic alkalinization (Aerts, R. J., DeWit, R. J. W., and Van Lookeren Campagne, M. M. (1987) FEBS Lett. 220, 366-370) and a redistribution of EF1 alpha (Dharmawardhane, S., Demma, M., Yang, F., and Condeelis, J. (1991) Cell Motil. Cytoskel. 20, 279-288). In addition, others have shown a correlation between intracellular pH and the level of protein synthesis in Dictyostelium (Aerts, R. J., Durston, A. J., and Moolenaar, W. H. (1985) Cell 43, 653-657). The present study investigates the relationship between pH and the F-actin binding properties of EF1 alpha. We found that increasing pH over the physiological range 6.2-7.8 causes a loss of EF1 alpha-mediated F-actin bundling and single filament binding, with corresponding increases in the amount of free EF1 alpha in vitro. Similar results also were obtained by cell fractionation and confocal immunofluorescence microscopy. The EF1 alpha binding constant (Kd) for F-actin is increased from 0.2 microM to > 2.2 microM over the same pH range. In addition, EF1 alpha-induced actin bundle formation is freely reversible by changes in pH. Thus, pH may be a potent modulator of cytoarchitecture in Dictyostelium and may also influence mRNA translation rates by modifying the interactions between the protein synthetic machinery and the actin cytoskeleton.
Collapse
Affiliation(s)
- B T Edmonds
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
13
|
Zhu G, McDougald LR. Confocal Laser Scanning Microscopy of β-Tubulin and α-Actinin in Asexual Stages of Eimeria tenella (Apicomplexa: Eimeriidae) in Cell Culture. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0003-9365(11)80305-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Furukawa R, Fechheimer M. Differential localization of alpha-actinin and the 30 kD actin-bundling protein in the cleavage furrow, phagocytic cup, and contractile vacuole of Dictyostelium discoideum. CELL MOTILITY AND THE CYTOSKELETON 1994; 29:46-56. [PMID: 7820857 DOI: 10.1002/cm.970290105] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dictyostelium discoideum amoebae possess eight different actin crosslinking proteins. Immunofluorescence microscopy has been employed in this study to investigate the intracellular localization of two of these proteins, alpha-actinin and the 30 kD actin-bundling protein, to investigate whether they are redundant, or alternatively, make distinct contributions to cell structure and movement. The 30 kD protein is concentrated in the cleavage furrow of dividing cells, while enhanced staining for alpha-actinin is not apparent in this region. By contrast, alpha-actinin is concentrated around the contractile vacuole, while the 30 kD protein is not preferentially localized in the area of this organelle. Association of alpha-actinin with the contractile vacuole was confirmed by colocalization with calmodulin, a marker of this organelle. There are temporal differences in the localization of the 30 kD protein and alpha-actinin during phagocytosis. The 30 kD protein is localized in the phagocytic cup, but disassociates from phagosomes soon after internalization [Furukawa et al., 1992: Protoplasma 169: 18-27]. alpha-actinin enters the phagocytic cup after the 30 kD protein, and remains associated with the phagosome after the 30 kD protein has disassociated. These results support the hypothesis that alpha-actinin and the 30 kD protein play distinct roles in cell structure and movement in Dictyostelium.
Collapse
Affiliation(s)
- R Furukawa
- Department of Zoology, University of Georgia, Athens 30602
| | | |
Collapse
|
15
|
Fukui Y. Toward a new concept of cell motility: cytoskeletal dynamics in amoeboid movement and cell division. INTERNATIONAL REVIEW OF CYTOLOGY 1993; 144:85-127. [PMID: 8320063 DOI: 10.1016/s0074-7696(08)61514-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Y Fukui
- Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, Chicago, Illinois 60611
| |
Collapse
|
16
|
Witke W, Schleicher M, Noegel AA. Redundancy in the microfilament system: abnormal development of Dictyostelium cells lacking two F-actin cross-linking proteins. Cell 1992; 68:53-62. [PMID: 1732064 DOI: 10.1016/0092-8674(92)90205-q] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We generated by gene disruption Dictyostelium cells that lacked both the F-actin cross-linking proteins, alpha-actinin and gelation factor. Several major cell functions, such as growth, chemotaxis, phagocytosis, and pinocytosis, were apparently unaltered. However, in all double mutants, development was greatly impaired. After formation of aggregates, cells were very rarely able to form fruiting bodies. This ability was rescued when mutant and wild-type strains were mixed in a ratio of 70 to 30. The developmental program in the mutant was not arrested, since the expression pattern of early and late genes remained unchanged. Development of the mutant was rendered normal when a functional alpha-actinin gene was introduced and expressed, showing the morphogenetic defect to be due to the absence of the two F-actin cross-linking proteins. These findings suggest the existence of a functional network allowing mutual complementation of certain actin-binding proteins.
Collapse
Affiliation(s)
- W Witke
- Max Planck Institute for Biochemistry, Martinsried, Federal Republic of Germany
| | | | | |
Collapse
|
17
|
Chapter 12 Expression and Function of Genetically Engineered Actin-Binding Proteins in Dictyostelium. CURRENT TOPICS IN MEMBRANES 1991. [DOI: 10.1016/s0070-2161(08)60789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Bresnick AR, Condeelis J. Isolation of actin-binding proteins from Dictyostelium discoideum. Methods Enzymol 1991; 196:70-83. [PMID: 1851943 DOI: 10.1016/0076-6879(91)96009-g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Witke W, Noegel AA. A single base exchange in an intron of the Dictyostelium discoideum alpha-actinin gene inhibits correct splicing of the RNA but allows transport to the cytoplasm and translation. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40190-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Luna EJ, Condeelis JS. Actin-associated proteins in Dictyostelium discoideum. DEVELOPMENTAL GENETICS 1990; 11:328-32. [PMID: 2096013 DOI: 10.1002/dvg.1020110503] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cellular slime mold Dictyostelium discoideum is becoming the premier system for the explication of the biochemical and cellular events that occur during motile processes. Proteins associated with the actin cytoskeleton, in particular, appear to play key roles in cellular responses to many external stimuli. This review summarizes our present understanding of the actin-associated proteins in Dictyostelium, including their in vitro activities and their structural and/or functional analogues in mammalian cells.
Collapse
Affiliation(s)
- E J Luna
- Cell Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | |
Collapse
|
21
|
Noegel AA, Leiting B, Witke W, Gurniak C, Harloff C, Hartmann H, Wiesmüller E, Schleicher M. Biological roles of actin-binding proteins in Dictyostelium discoideum examined using genetic techniques. CELL MOTILITY AND THE CYTOSKELETON 1989; 14:69-74. [PMID: 2684430 DOI: 10.1002/cm.970140114] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- A A Noegel
- Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Schleicher M, André E, Hartmann H, Noegel AA. Actin-binding proteins are conserved from slime molds to man. DEVELOPMENTAL GENETICS 1988; 9:521-30. [PMID: 3243032 DOI: 10.1002/dvg.1020090428] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DNA clones encoding the actin-binding proteins alpha-actinin and severin from Dictyostelium discoideum were isolated and sequenced. Comparisons of the deduced amino acid sequences with proteins from other species showed striking similarities at distinct regions. The F-actin cross-linking molecule alpha-actinin carries two characteristic EF-hand structures highly homologous to the Ca2+-binding loops of proteins from the calmodulin superfamily. An N-terminal region that is conserved in alpha-actinin from D. discoideum and vertebrates is also related to parts of the dystrophin sequence and might represent the F-actin binding site. Severin, gelsolin, villin, and fragmin share homologous sequences that are believed to participate in the severing activity of these proteins.
Collapse
Affiliation(s)
- M Schleicher
- Max-Planck-Institute for Biochemistry, Martinsried, Federal Republic of Germany
| | | | | | | |
Collapse
|
23
|
Simon JR, Furukawa RH, Ware BR, Taylor DL. The molecular mobility of alpha-actinin and actin in a reconstituted model of gelation. CELL MOTILITY AND THE CYTOSKELETON 1988; 11:64-82. [PMID: 2463105 DOI: 10.1002/cm.970110107] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dictyostelium discoideum alpha-actinin (D.d. alpha-actinin) is a calcium and pH-regulated actin-binding protein that can cross-link F-actin into a gel at a submicromolar free calcium concentration and a pH less than 7 [Fechheimer, et al., 1982]. We examined mixtures of actin and D.d. alpha-actinin at four pH and calcium concentrations that exhibited various degrees of gelation or solation. The macroscopic viscosities of these mixtures were measured by falling ball viscometry (FBV) and compared to the translational diffusion coefficients measured by gaussian spot and periodic-pattern fluorescence photobleaching recovery (FPR) of both the actin filaments and D.d. alpha-actinin. A homogeneous, macroscopic gel was not composed of a static actin network. Instead, the filament diffusion coefficient decreased to approximately 65% of the control value. If the D.d. alpha-actinin concentration was increased, the solution became inhomogeneous, consisting of domains of higher actin concentration. These domains were often composed of a static actin network. The mobility of D.d. alpha-actinin consisted of a major fraction that freely diffused and a minor fraction that appeared immobile under the conditions employed. This suggested that D.d. alpha-actinin binding to the actin filaments was static over the time course of measurement (approximately 5 sec). Under solation conditions, there was no apparent interaction of actin with D.d. alpha-actinin. These results demonstrate that 1) actin filaments need not be cross-linked into an immobile, static array in order to have macroscopic properties of a gel; 2) interpretation of the rheological properties of actin:alpha-actinin gels are complicated by spatial heterogeneity of the filament concentration and mobility; and 3) a fraction of D.d. alpha-actinin binds statically to actin in undisturbed gels. The implications of these results are discussed in relation to cytoplasmic structure and contractility.
Collapse
Affiliation(s)
- J R Simon
- Department of Biological Sciences, Carnegie-Mellon University, Pittsburgh, Pennsylvania
| | | | | | | |
Collapse
|
24
|
Tsukita S, Mimura N, Tsukita S, Khono K, Ohtaki T, Oshima T, Ishikawa H, Asano A. Characteristic structures of actin gels induced with hepatic actinogelin or with chicken gizzard alpha-actinin: implication for their function. CELL MOTILITY AND THE CYTOSKELETON 1988; 10:451-63. [PMID: 3208293 DOI: 10.1002/cm.970100402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We studied the properties of actinogelin, a Ca2+-regulated actin cross-linking protein isolated from Ehrlich tumor cells or rat liver. Chicken gizzard alpha-actinin was used as a Ca2+-insensitive control. Actinogelin, which has very high gelation activity under low Ca2+ conditions, was found using electron microscopic or fluorescence studies to induce formation of a characteristic structure in which actin filaments and bundles radiate to (or converge from) all directions from spot-like core structures. A similar structure was induced with actinogelin, even in the presence of 0.7 saturation of tropomyosin. No such structure was detected with actinogelin under high Ca2+ conditions, and only a few were found with gizzard alpha-actinin. Because reconstituted structures are similar to those observed intracellularly, actinogelin may be important in the formation of similar microfilament organization in the cells. It seems also important that these structures are reconstituted with only two purified protein components, i.e., actinogelin and actin. Immunocompetition studies showed that actinogelin and gizzard alpha-actinin partially shared antigenicity, and their molecular shape and peptide maps were similar. Their amino acid compositions [Kuo et al., 1982], subunit and domain structures, and binding sites on actin [Mimura and Asano, 1987] are also very similar. Therefore, it is concluded that actinogelin belongs to alpha-actinin superfamily proteins. Furthermore, the presence of functionally different subfamilies concerned with Ca2+ sensitivity, gelation-efficiency, and others is discussed. Actinogelin, which induces networks of actin filaments, may be classified as high gelation type.
Collapse
Affiliation(s)
- S Tsukita
- Tokyo Metropolital Institute of Medical Science, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Condeelis J, Hall A, Bresnick A, Warren V, Hock R, Bennett H, Ogihara S. Actin polymerization and pseudopod extension during amoeboid chemotaxis. CELL MOTILITY AND THE CYTOSKELETON 1988; 10:77-90. [PMID: 3052871 DOI: 10.1002/cm.970100113] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Amoebae of the cellular slime mold Dictyostelium discoideum are an excellent model system for the study of amoeboid chemotaxis. These cells can be studied as a homogeneous population whose response to chemotactic stimulation is sufficiently synchronous to permit the correlation of the changes in cell shape and biochemical events during chemotaxis. Having demonstrated this synchrony of response, we show that actin polymerization occurs in two stages during stimulation with chemoattractants. The assembly of F-actin that peaks between 40 and 60 sec after the onset of stimulation is temporally correlated with the growth of new pseudopods. F-actin, which is assembled by 60 sec after stimulation begins, is localized in the new pseudopods that are extended at this time. Both stages of actin polymerization during chemotactic stimulation involve polymerization at the barbed ends of actin filaments based on the cytochalasin sensitivity of this response. We present a hypothesis in which actin polymerization is one of the major driving forces for pseudopod extension during chemotaxis. The predictions of this model, that localized regulation of actin nucleation activity and actin filament cross-linking must occur, are discussed in the context of current models for signal transduction and of recent information regarding the types of actin-binding proteins that are present in the cell cortex.
Collapse
Affiliation(s)
- J Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | | | | | | | | |
Collapse
|
26
|
Johns JA, Brock AM, Pardee JD. Colocalization of F-actin and 34-kilodalton actin bundling protein in Dictyostelium amoebae and cultured fibroblasts. CELL MOTILITY AND THE CYTOSKELETON 1988; 9:205-18. [PMID: 3284657 DOI: 10.1002/cm.970090303] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Ca2+-sensitive actin-binding protein isolated from Dictyostelium discoideum, 30,000-D protein (Fechheimer and Taylor: J. Biol. Chem. 259:4514-4520, 1984;) has recently been localized in filipodia of substrate-adhered amoebae (Fechheimer: J. Cell Biol. 104:1539-1551, 1987). We have determined that this protein has a Mr of 34,000 daltons and is strictly colocalized with actin filaments in both substrate-attached Dictyostelium amoebae and cultured fibroblasts. 3T3 fibroblasts, as well as normal and virally transformed rat kidney fibroblasts (NRK) contain a 34-kilodalton (kD) protein that cross-reacts specifically with antibody to the Dictyostelium bundling protein. Mammalian 34-kD protein is colocalized with F-actin in stress fibers and the cortical cytoskeleton in substrate-adhered fibroblasts. In substrate-adhered vegetative Dictyostelium, F-actin and 34-kD protein are concentrated in regions of the cell cortex exhibiting filipodia and membrane ridges. Multiple filipodia formed after exposure to the chemoattractant folic acid stain intensely for 34-kD protein, implying participation in the assembly of actin bundles during filipod formation. The cortex of pseudopodia also contained high concentrations of bundling protein, but pseudopod interiors did not. In contrast to vegetative Dictyostelium, F-actin and 34-kD protein were not colocalized in cells that had progressed through the developmental cycle. In fruiting bodies, 34-kD protein was detected by immunofluorescence microscopy only in prespore cells, while F-actin appeared in stalk cells and spores.
Collapse
Affiliation(s)
- J A Johns
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021
| | | | | |
Collapse
|
27
|
White E, Katz ER. Biochemical and genetic approaches to microtubule function in Dictyostelium discoideum. Methods Cell Biol 1987; 28:245-59. [PMID: 3298993 DOI: 10.1016/s0091-679x(08)61649-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Methods have been developed for analyzing tubulin and microtubules from the cellular slime mold D. discoideum. alpha- and beta-tubulin have been identified on high-resolution 2D gels, and microtubules have been isolated in cytoskeleton preparations from amoebae (White et al., 1983). These studies have revealed properties unique to Dictyostelium tubulin. Amoebal microtubules can be visualized by indirect immunofluorescence, which has aided in the identification of inhibitors which specifically depolymerize microtubules and block amoebae in mitosis. The mitotic inhibitors CIPC, NOC, and TBZ have been used to select resistant mutants which are currently the subjects of biochemical, morphological, and genetic analysis (Katz et al., 1982; White, 1983). One mitotic inhibitor-resistant mutant, CIPC 6, was found to be temperature-sensitive for growth at 27 degrees C as well as CIPC-resistant. At the restrictive temperature amoebae from this mutant are deficient in the passage through mitosis. After incubation for 12 hours at the restrictive temperature, 20% of the CIPC 6 amoebae displayed condensed chromosomes, compared to 2% at the permissive temperature, as determined by Giemsa staining. Examination of the microtubules of this mutant by indirect immunofluorescence showed abnormal spindle microtubule formation at the restrictive temperature, which is the likely cause of the mitotic arrest (White, 1983). Cytoplasmic microtubules were also disrupted in nonmitotic amoebae of CIPC 6 at 27 degrees C. This temperature-sensitive loss of microtubule function suggested the possibility that tubulin from CIPC 6 might be altered. When tubulin from CIPC 6 was examined on 2D gels, no reproducible electrophoretic change was observed from that of the wild type. Through further characterization of mitotic inhibitor-resistant mutants like CIPC 6, more mitotic or microtubule mutants will be identified. Among these mutants, some should contain electrophoretically altered tubulin, microtubule-associated proteins, or components of the amoebal cytoskeleton. Possessing Dictyostelium mutants with known biochemical alterations in cytoskeletal proteins should reveal significant information regarding the function of these proteins in eukaryotic growth and development.
Collapse
|
28
|
Hock RS, Condeelis JS. Isolation of a 240-kilodalton actin-binding protein from Dictyostelium discoideum. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)75940-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Fechheimer M, Taylor DL. Introduction of exogenous molecules into the cytoplasm of Dictyostelium discoideum amoebae by controlled sonication. Methods Cell Biol 1987; 28:179-90. [PMID: 3298991 DOI: 10.1016/s0091-679x(08)61644-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Maeda Y, Kawamoto T. Pinocytosis in Dictyostelium discoideum cells. A possible implication of cytoskeletal actin for pinocytotic activity. Exp Cell Res 1986; 164:516-26. [PMID: 3709682 DOI: 10.1016/0014-4827(86)90049-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pinocytosis in Dictyostelium discoideum axenic strain (Ax-2) cells in the growth phase is progressively inhibited at higher Ca2+ concentrations, the activity being maximal at submicromolar Ca2+ concentrations. The cytoskeletal actin content is also markedly reduced in the presence of 10 mM EGTA. This was confirmed by electronmicroscopy using intact cells and Triton X-100-insoluble cell cortices. Interestingly, the pinocytotic activity seemed to be somewhat increased in response to cytochalasin B (CB). Aggregation-competent Ax-2 cells which are usually devoid of pinocytotic activity can resume their activity considerably following treatment with 10 mM EGTA. Under these conditions, cytoskeletal actin declines markedly, as also was the case for growing Ax-2 cells. Our findings indicate a correlation between the pinocytotic activity and presence of cytoskeletal actin: reduced amounts of actin in the cell cortex seem to favour pinocytosis. Conceivably, membrane-associated actin filaments may function as a powerful anchor, restricting the flexibility of the cell membrane and thereby inhibiting the pinosome formation. Other properties of pinocytosis like a developmental change as well as the effects of pH and temperature are also described and were compared with the properties of wild-type strain, NC-4.
Collapse
|
31
|
Simon JR, Taylor DL. Preparation of a fluorescent analog: acetamidofluoresceinyl-labeled Dictyostelium discoideum alpha-actinin. Methods Enzymol 1986; 134:487-507. [PMID: 3029546 DOI: 10.1016/0076-6879(86)34115-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Pollard TD, Tseng PC, Rimm DL, Bichell DP, Williams RC, Sinard J, Sato M. Characterization of alpha-actinin from Acanthamoeba. CELL MOTILITY AND THE CYTOSKELETON 1986; 6:649-61. [PMID: 2948678 DOI: 10.1002/cm.970060613] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Characterization of a protein from Acanthamoeba that was originally called gelation protein [T.D. Pollard, J. Biol. Chem. 256:7666-7670, 1981] has shown that it resembles the actin filament cross-linking protein, alpha-actinin, found in other cells. It comprises about 1.5% of the total amoeba protein and can be purified by chromatography with a yield of 13%. The native protein has a molecular weight of 180,000 and consists of two polypeptides of 90,000 Da. The Stokes' radius is 8.5 nm, the intrinsic viscosity is 0.35 dl/dm, and the extinction coefficient at 280 mm is 1.8 X 10(5)M-1 X cm-1. Electron micrographs of shadowed specimens show that the molecule is a rod 48 nm long and 7 nm wide with globular domains at both ends and in the middle of the shaft. On gel electrophoresis in sodium dodecylsulfate the pure protein can run as bands with apparent molecular weights of 60,000, 90,000, 95,000, or 134,000 depending on the method of sample preparation. Rabbit antibodies to electrophoretically purified Acanthamoeba alpha-actinin polypeptides react with all of these electrophoretic variants in samples of purified protein and cell extracts. By indirect fluorescent antibody staining of fixed amoebas, alpha-actinin is distributed throughout the cytoplasmic matrix and concentrated in the hyaline cytoplasm of the cortex. The protein cross-links actin filaments in the presence and absence of Ca++. It inhibits slightly the time course of the spontaneous polymerization of actin monomers but has no effect on the critical concentration for actin polymerization even though it increases the apparent rate of elongation to a small extent. Like some other cross-linking proteins, amoeba alpha-actinin inhibits the actin-activated ATPase of muscle myosin subfragment-1. Although Acanthamoeba alpha-actinin resembles the alpha-actinin from other cells in shape and ability to cross-link actin filaments, antibodies to amoeba and smooth muscle alpha-actinins do not cross react and there are substantial differences in the amino acid compositions and molecular dimensions.
Collapse
|
33
|
Abstract
Chemotaxis and cell motility have essential roles to play throughout the developmental cycle of the cellular slime molds. The particular emphasis of this review, however, will be on the amoeboid stages of the life cycle. The nature of the chemoattractants and their detection will be discussed as will the possible mechanisms that may account for the directed locomotion of amoebae. Intracellular chemoattractant-elicited molecular responses thought to play a role in transduction of extracellular signals into a motility response will also be examined. Furthermore, relationships of these transduction pathway components with changes in assembly states of the cytoskeletal proteins contributing to shape change and cell movement will be assessed. Theories of amoeboid movement involving these cytoskeletal proteins will be compared and discussed in terms of their relevance to cellular slime mold motility.
Collapse
|
34
|
Ohtaki T, Tsukita S, Mimura N, Tsukita S, Asano A. Interaction of actinogelin with actin. No nucleation but high gelation activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 153:609-20. [PMID: 4076192 DOI: 10.1111/j.1432-1033.1985.tb09344.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nucleation activity of actin polymerization of actinogelin, a calcium-sensitive F-actin cross-linking protein from rat liver, was measured by a fluorescence enhancement method using pyrenyl-actin and by high shear viscometry. No stimulation of nucleation by the addition of actinogelin was observed under several ionic conditions using the fluorescent method. Similar results were also obtained by viscometry. Therefore, it can be concluded that actinogelin has no nucleation activity for actin polymerization. By electron microscopy, it was found that actinogelin molecule has a dumbbell shape, binds to side of F-actin through its end(s), and cross-links actin filaments by binding with its two ends. It was also found that meshwork formation occurred in low Ca2+ conditions from F-actin and actinogelin. Under non-gelling high Ca2+ conditions, binding of actinogelin along the side of F-actin with its one end was still detected in accordance with the binding assay using ultracentrifugation and protein determination. Under low Ca2+ conditions, the critical gelling concentration of actinogelin measured by low shear viscometry at 20 degrees C was 6 micrograms/ml for 250 micrograms/ml of actin. Comparing this value with those of the other actin cross-linking proteins, it was found that actinogelin was one of proteins with the highest gelation activity. On the other hand, gelation activity of actinogelin in high Ca2+ conditions was one order of magnitude lower; more than 50 micrograms/ml of the protein was required for gelation. At 37 degrees C, gelation activity of actinogelin at low Ca2+ concentration was decreased to about a quarter of that at 20 degrees C, but this was still higher than that of gizzard alpha-actinin at 20 degrees C. Thus, role of actinogelin as an efficient and Ca2+-regulated cross-linker of microfilaments was substantiated.
Collapse
|
35
|
Landon F, Gache Y, Touitou H, Olomucki A. Properties of two isoforms of human blood platelet alpha-actinin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 153:231-7. [PMID: 2934249 DOI: 10.1111/j.1432-1033.1985.tb09291.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The structural and functional properties of the aa (2 X 97 kDa) and cc (2 X 94 kDa) isoforms of platelet alpha-actinin have been compared. Structural differences between aa and cc are revealed by their peptide maps, obtained from limited proteolysis, and by their immunological cross-reactivity. Both isoforms stimulate the Mg ATPase activity of actomyosin, bind to F-actin (high-speed sedimentation) and cross-link or gel actin filaments (low-speed sedimentation and viscometry), in a calcium-dependent manner. The study of the interaction with F-actin indicates that the binding of 1 molecule of aa or cc alpha-actinin/9-11 actin monomers is sufficient to produce maximal gelation in the presence of EGTA. CaCl2 at 0.1 mM strongly inhibits the binding of aa to F-actin and weakly that of cc, while it inhibits similarly the cross-linking of either aa or cc. The cross-linking efficiency of cc is 9, 7, 1.7 and 1.3 times higher than that of aa at 4, 20, 30 and 37 degrees C, respectively. The bb form (2 X 96 kDa), which is a proteolytic product of aa [Y. Gache et al. (1984) Biochem. Biophys. Res. Commun. 124, 877-881], behaves roughly as aa, but the calcium sensitivity of its binding to F-actin is intermediate between that of aa and cc. These results suggest that the effect of Ca2+ concentration on the binding of platelet alpha-actinin to F-actin may be partly dissociated from the effect on the cross-linking.
Collapse
|
36
|
Mittal AK, Bereiter-Hahn J. Ionic control of locomotion and shape of epithelial cells: I. Role of calcium influx. CELL MOTILITY 1985; 5:123-36. [PMID: 3921256 DOI: 10.1002/cm.970050205] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The role of calcium in the induction of locomotion, control of direction of locomotion, and modulation of shape of epithelial cells derived from Xenopus laevis tadpole epidermis is investigated. Local influx of calcium is achieved by electrophoretic release of small amounts of calcium from a micropipette (tip diameter 0.1-0.5 micron) closely apposed to the cell body or lamella. The cells are made permeable for calcium by calcium ionophore A23187, and they are kept in Ca++-free, Mg++-rich EGTA Ringer. Another method used to induce Ca++ influx is local application of A23187 while cells move in normal culture medium. Influx of Ca++ into the lamella induces a localised increase in thickness and enlargement of the lamella. Stationary cells become active and show movement in the direction of the Ca++ gradient. Fried-egg-shaped cells tend to acquire a semicircular shape and start moving. Moving cells change the direction of their locomotion, following the direction of Ca++ release. Influx of Ca++ in the cell body region induces its contraction concomitant with an increase in lamellar area. These observations suggest the presence of two different Ca++-sensitive components: an actomyosin meshwork in the cell body and an actin gel in the lamella. Influx of Ca++ induces contraction of actomyosin and solation of actin gel. Interaction of these two systems would explain modulation of shape and generation of locomotion in epithelial cells.
Collapse
|
37
|
Brown SS. A Ca2+ insensitive actin-crosslinking protein from Dicytostelium discoideum. CELL MOTILITY 1985; 5:529-43. [PMID: 3841028 DOI: 10.1002/cm.970050608] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have isolated a 30,000-dalton protein from Dictyostelium which cosedimented with and affected the low shear viscosity of actin. At low concentrations, this protein increased the low shear viscosity to greater than that of the actin control, whereas higher concentrations decreased viscosity. The viscosity decrease correlated with the formation of actin filament bundles, as seen electron microscopically. This protein resembled a previously reported actin-binding protein from Dictyostelium [Fechheimer and Taylor, 84, J Biol Chem 259:4514] in electrophoretic mobility, Stokes radius, and ability to crosslink filaments, but was shown to be different by peptide mapping, lack of immunologic crossreactivity, and lack of sensitivity to calcium.
Collapse
|
38
|
Bennett JP, Zaner KS, Stossel TP. Isolation and some properties of macrophage alpha-actinin: evidence that it is not an actin gelling protein. Biochemistry 1984; 23:5081-6. [PMID: 6498177 DOI: 10.1021/bi00316a039] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We have isolated an actin-binding protein from rabbit alveolar macrophages which by virtue of its physical properties we classify as a nonmuscle alpha-actinin. The protein consists of two subunits of Mr 103 000 and has a Stokes' radius of 7.26 nm and a sedimentation coefficient of 6.83 X 10(-13) s-1. Under the electron microscope, rotary-shadowed molecules appeared as short rods with an average length of 39.9 nm. We have examined the nature of the interaction of macrophage alpha-actinin with F-actin. The binding of radioiodinated macrophage alpha-actinin to F-actin is calcium sensitive. At a low concentration of free calcium (less than 10(-9) M), the binding affinity is 4.2 X 10(6) M-1 and is relatively unaffected by changes in temperature, while in the presence of 0.1 mM Ca2+, binding is reduced more than 5-fold. The stoichiometry of binding suggests that alpha-actinin binds all along the length of the actin filaments. The affinity of 45Ca2+ for macrophage alpha-actinin is 4 X 10(6) M-1 with a capacity of four calcium ions per molecule. Although macrophage alpha-actinin has calcium-inhibitable actin gelation activity at 7 degrees C, its effect on the apparent viscosity of F-actin decreases with increasing temperature, and at 37 degrees C, no gel point is observed. Therefore, at the temperature at which macrophages function in vivo, alpha-actinin probably does not promote the isotropic gelation of actin.
Collapse
|
39
|
Isolation and characterization of a 30,000-dalton calcium-sensitive actin cross-linking protein from Dictyostelium discoideum. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43076-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Rockwell MA, Fechheimer M, Taylor DL. A comparison of methods used to characterize gelation of actin in vitro. CELL MOTILITY 1984; 4:197-213. [PMID: 6744386 DOI: 10.1002/cm.970040305] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have compared the meniscus depletion assay and falling ball viscometry, two means of assessing the extent of gelation in actin-based systems using mixtures of actin and the actin-binding protein filamin. We examined the effect of varying the concentrations of actin and filamin in both assays. The interaction of actin and filamin was detected only above a threshold concentration of filamin. This threshold concentration was lower for falling ball viscometry than for the meniscus depletion assay at equal actin concentrations. At constant concentrations of filamin, an increase in actin concentration caused an increase in apparent viscosity measured by the falling ball assay, but a decrease in sedimentability detected by the meniscus depletion assay. The rate of sedimentation of actin was dependent on the molar ratio of actin to filamin. At each molar ratio, the sedimentation of actin was not dependent on the specific concentrations of actin and filamin used. The apparent viscosity was dependent on both the molar ratio and the specific concentrations of actin and filamin. To relate the present results to earlier studies, we examined mixtures of actin and filamin using a macroscopic assay of gelation (tube tipping assay), and polarized light microscopy. The effect of increasing filamin concentration in the four assays was compared at three actin concentrations. Mixtures of actin and filamin whose apparent viscosities were low enough to be estimated by falling ball viscometry were optically isotropic fluids that flowed out of inverted test tubes. Mixtures of actin and filamin in the range of sensitivity of the meniscus depletion assay were either viscous fluids or gels, and were either optically isotropic or anisotropic. Thus, the four assays provide different estimates of gelation. Both the meniscus depletion assay and falling ball viscometry can be used to determine relative gelation activity, but neither can be used as a quantitative assay of gelation.
Collapse
|
41
|
Taylor DL, Fechheimer M. Cytoplasmic structure and contractility: the solation--contraction coupling hypothesis. Philos Trans R Soc Lond B Biol Sci 1982; 299:185-97. [PMID: 6129655 DOI: 10.1098/rstb.1982.0125] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We have briefly described our studies of cytoskeletal and contractile elements in intact cells, in cell extracts, and in mixtures of purified proteins. Changes in the concentration of calcium and of protons have been found to modulate both gelation and contraction in all of these preparations. The distribution of calcium, protons and actin has been studied in intact amoeboid cells. Using these results, we have refined our working model of the relation of cytoskeletal and contractile proteins: the solation-contraction coupling hypothesis. The model is also supported by quantitative analysis of the rates of contraction in a soluble extract of Dictyostelium discoideum amoebae allowed to gel in a capillary and stimulated by the addition of calcium ions at one end. A plausible interpretation of the most prominent cytological features of amoeboid locomotion is obtained by application of the principles of our model. In addition, we propose that the solation-contraction coupling hypothesis may be useful in further study of a variety of motile phenomena observed in many types of cells.
Collapse
|