1
|
Xu K, Li Z, Mao L, Guo Z, Chen Z, Chai Y, Xie C, Yang X, Na J, Li W, Ou G. AlphaFold2-guided engineering of split-GFP technology enables labeling of endogenous tubulins across species while preserving function. PLoS Biol 2024; 22:e3002615. [PMID: 39159282 PMCID: PMC11361732 DOI: 10.1371/journal.pbio.3002615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/29/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
Dynamic properties are essential for microtubule (MT) physiology. Current techniques for in vivo imaging of MTs present intrinsic limitations in elucidating the isotype-specific nuances of tubulins, which contribute to their versatile functions. Harnessing the power of the AlphaFold2 pipeline, we engineered a strategy for the minimally invasive fluorescence labeling of endogenous tubulin isotypes or those harboring missense mutations. We demonstrated that a specifically designed 16-amino acid linker, coupled with sfGFP11 from the split-sfGFP system and integration into the H1-S2 loop of tubulin, facilitated tubulin labeling without compromising MT dynamics, embryonic development, or ciliogenesis in Caenorhabditis elegans. Extending this technique to human cells and murine oocytes, we visualized MTs with the minimal background fluorescence and a pathogenic tubulin isoform with fidelity. The utility of our approach across biological contexts and species set an additional paradigm for studying tubulin dynamics and functional specificity, with implications for understanding tubulin-related diseases known as tubulinopathies.
Collapse
Affiliation(s)
- Kaiming Xu
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Zhiyuan Li
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| | - Linfan Mao
- School of Medicine, Tsinghua University, Beijing, China
| | - Zhengyang Guo
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Zhe Chen
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Chao Xie
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Xuerui Yang
- School of Life Sciences, MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China
| | - Jie Na
- School of Medicine, Tsinghua University, Beijing, China
| | - Wei Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Wang J, Zhang Y, Wu J, Meng L, Ren H. AtFH16, [corrected] an Arabidopsis type II formin, binds and bundles both microfilaments and microtubules, and preferentially binds to microtubules. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1002-15. [PMID: 23802884 DOI: 10.1111/jipb.12089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/13/2013] [Indexed: 05/03/2023]
Abstract
Formins are well-known regulators that participate in the organization of the actin cytoskeleton in organisms. The Arabidopsis thaliana L. genome encodes 21 formins, which can be divided into two distinct subfamilies. However, type II formins have to date been less well characterized. Here, we cloned a type II formin, AtFH16, and characterized its biochemical activities on actin and microtubule dynamics. The results show that the FH1FH2 structure of AtFH16 cannot nucleate actin polymerization efficiently, but can bind and bundle microfilaments. AtFH16 FH1FH2 is also able to bind and bundle microtubules, and preferentially binds microtubules over microfilaments in vitro. In addition, AtFH16 FH1FH2 co-localizes with microtubules in onion epidermal cells, indicating a higher binding affinity of AtFH16 FH1FH2 for microtubules rather than microfilaments in vivo. In conclusion, AtFH16 is able to interact with both microfilaments and microtubules, suggesting that AtFH16 probably functions as a bifunctional protein, and may thus participate in plant cellular processes.
Collapse
Affiliation(s)
- Jiaojiao Wang
- The Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | | | | | | | | |
Collapse
|
3
|
BARTON D, GARDINER J, OVERALL R. Towards correlative imaging of plant cortical microtubule arrays: combining ultrastructure with real-time microtubule dynamics. J Microsc 2009; 235:241-51. [DOI: 10.1111/j.1365-2818.2009.03224.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
4
|
Barton DA, Vantard M, Overall RL. Analysis of cortical arrays from Tradescantia virginiana at high resolution reveals discrete microtubule subpopulations and demonstrates that confocal images of arrays can be misleading. THE PLANT CELL 2008; 20:982-94. [PMID: 18430803 PMCID: PMC2390730 DOI: 10.1105/tpc.108.058503] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/30/2008] [Accepted: 04/07/2008] [Indexed: 05/20/2023]
Abstract
Cortical microtubule arrays are highly organized networks involved in directing cellulose microfibril deposition within the cell wall. Their organization results from complex interactions between individual microtubules and microtubule-associated proteins. The precise details of these interactions are often not evident using optical microscopy. Using high-resolution scanning electron microscopy, we analyzed extensive regions of cortical arrays and identified two spatially discrete microtubule subpopulations that exhibited different stabilities. Microtubules that lay adjacent to the plasma membrane were often bundled and more stable than the randomly aligned, discordant microtubules that lay deeper in the cytoplasm. Immunolabeling revealed katanin at microtubule ends, on curves, or at sites along microtubules in line with neighboring microtubule ends. End binding 1 protein also localized along microtubules, at microtubule ends or junctions between microtubules, and on the plasma membrane in direct line with microtubule ends. We show fine bands in vivo that traverse and may encircle microtubules. Comparing confocal and electron microscope images of fluorescently tagged arrays, we demonstrate that optical images are misleading, highlighting the fundamental importance of studying cortical microtubule arrays at high resolution.
Collapse
Affiliation(s)
- Deborah A Barton
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|
5
|
Sousa A, Reis R, Sampaio P, Sunkel CE. TheDrosophilaCLASP homologue, Mast/Orbit regulates the dynamic behaviour of interphase microtubules by promoting the pause state. ACTA ACUST UNITED AC 2007; 64:605-20. [PMID: 17487886 DOI: 10.1002/cm.20208] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An important group of microtubule associated proteins are the plus-end tracking proteins which includes the Mast/Orbit/CLASPs family amongst others. Several of these proteins have important functions during interphase and mitosis in the modulation of the dynamic properties of microtubules, however, the precise mechanism remains to be elucidated. To investigate the role of Mast in the regulation of microtubule behaviour during interphase, we used RNAi in Drosophila S2 culture cells stably expressing GFP-alpha-tubulin and followed the behaviour of microtubules in vivo. Mast depleted cells show a significant reduction of microtubule density and an abnormal interphase microtubule array that rarely reaches the cell cortex. Analysis of the dynamic parameters revealed that in the absence of Mast, microtubules are highly dynamic, constantly growing or shrinking. These alterations are characterized by a severe reduction in the transition frequencies to and from the pause state. Moreover, analysis of de novo microtubule polymerization after cold treatment showed that Mast is not required for nucleation since Mast depleted cells nucleate microtubules soon after return to normal temperature. Taken together these results suggest that Mast plays an essential role in reducing the dynamic behaviour of microtubules by specifically promoting the pause state.
Collapse
Affiliation(s)
- Aureliana Sousa
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | |
Collapse
|
6
|
De Vos KJ, Sheetz MP. Visualization and quantification of mitochondrial dynamics in living animal cells. Methods Cell Biol 2007; 80:627-82. [PMID: 17445716 DOI: 10.1016/s0091-679x(06)80030-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kurt J De Vos
- Department of Neuroscience, MRC Centre for Neurodegeneration Research, The Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London, United Kingdom
| | | |
Collapse
|
7
|
Affiliation(s)
- John Peloquin
- Department of Cell and Molecular Biology, Northwestern University Medical School, 303 E. Chicago Ave., Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
8
|
Terada Y, Uetake Y, Kuriyama R. Interaction of Aurora-A and centrosomin at the microtubule-nucleating site in Drosophila and mammalian cells. J Cell Biol 2003; 162:757-63. [PMID: 12939255 PMCID: PMC2172831 DOI: 10.1083/jcb.200305048] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A mitosis-specific Aurora-A kinase has been implicated in microtubule organization and spindle assembly in diverse organisms. However, exactly how Aurora-A controls the microtubule nucleation onto centrosomes is unknown. Here, we show that Aurora-A specifically binds to the COOH-terminal domain of a Drosophila centrosomal protein, centrosomin (CNN), which has been shown to be important for assembly of mitotic spindles and spindle poles. Aurora-A and CNN are mutually dependent for localization at spindle poles, which is required for proper targeting of gamma-tubulin and other centrosomal components to the centrosome. The NH2-terminal half of CNN interacts with gamma-tubulin, and induces cytoplasmic foci that can initiate microtubule nucleation in vivo and in vitro in both Drosophila and mammalian cells. These results suggest that Aurora-A regulates centrosome assembly by controlling the CNN's ability to targeting and/or anchoring gamma-tubulin to the centrosome and organizing microtubule-nucleating sites via its interaction with the COOH-terminal sequence of CNN.
Collapse
Affiliation(s)
- Yasuhiko Terada
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
9
|
Gard DL. Confocal fluorescence microscopy of the cytoskeleton of amphibian oocytes and embryos. Methods Cell Biol 2003; 70:379-416. [PMID: 12512330 DOI: 10.1016/s0091-679x(02)70011-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- David L Gard
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
10
|
Yvon AM, Wadsworth P, Jordan MA. Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol Biol Cell 1999; 10:947-59. [PMID: 10198049 PMCID: PMC25218 DOI: 10.1091/mbc.10.4.947] [Citation(s) in RCA: 411] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Microtubules are intrinsically dynamic polymers, and their dynamics play a crucial role in mitotic spindle assembly, the mitotic checkpoint, and chromosome movement. We hypothesized that, in living cells, suppression of microtubule dynamics is responsible for the ability of taxol to inhibit mitotic progression and cell proliferation. Using quantitative fluorescence video microscopy, we examined the effects of taxol (30-100 nM) on the dynamics of individual microtubules in two living human tumor cell lines: Caov-3 ovarian adenocarcinoma cells and A-498 kidney carcinoma cells. Taxol accumulated more in Caov-3 cells than in A-498 cells. At equivalent intracellular taxol concentrations, dynamic instability was inhibited similarly in the two cell lines. Microtubule shortening rates were inhibited in Caov-3 cells and in A-498 cells by 32 and 26%, growing rates were inhibited by 24 and 18%, and dynamicity was inhibited by 31 and 63%, respectively. All mitotic spindles were abnormal, and many interphase cells became multinucleate (Caov-3, 30%; A-498, 58%). Taxol blocked cell cycle progress at the metaphase/anaphase transition and inhibited cell proliferation. The results indicate that suppression of microtubule dynamics by taxol deleteriously affects the ability of cancer cells to properly assemble a mitotic spindle, pass the metaphase/anaphase checkpoint, and produce progeny.
Collapse
Affiliation(s)
- A M Yvon
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | | | | |
Collapse
|
11
|
Waterman-Storer CM. Microtubules and microscopes: how the development of light microscopic imaging technologies has contributed to discoveries about microtubule dynamics in living cells. Mol Biol Cell 1998; 9:3263-71. [PMID: 9843568 PMCID: PMC25623 DOI: 10.1091/mbc.9.12.3263] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/1998] [Accepted: 09/10/1998] [Indexed: 11/11/2022] Open
Affiliation(s)
- C M Waterman-Storer
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| |
Collapse
|
12
|
Keating HH, White JG. Centrosome dynamics in early embryos of Caenorhabditis elegans. J Cell Sci 1998; 111 ( Pt 20):3027-33. [PMID: 9739076 DOI: 10.1242/jcs.111.20.3027] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The early Caenorhabditis elegans embryo divides with a stereotyped pattern of cleavages to produce cells that vary in developmental potential. Differences in cleavage plane orientation arise between the anterior and posterior cells of the 2-cell embryo as a result of asymmetries in centrosome positioning. Mechanisms that position centrosomes are thought to involve interactions between microtubules and the cortex, however, these mechanisms remain poorly defined. Interestingly, in the early embryo the shape of the centrosome predicts its subsequent movement. We have used rhodamine-tubulin and live imaging techniques to study the development of asymmetries in centrosome morphology and positioning. In contrast to studies using fixed embryos, our images provide a detailed characterization of the dynamics of centrosome flattening. In addition, our observations of centrosome behavior in vivo challenge previous assumptions regarding centrosome separation by illustrating that centrosome flattening and daughter centrosome separation are distinct processes, and by revealing that nascent daughter centrosomes may become separated from the nucleus. Finally, we provide evidence that the midbody specifies a region of the cortex that directs rotational alignment of the centrosome-nucleus complex and that the process is likely to involve multiple interactions between microtubules and the cortex; the process of alignment involves oscillations and overshoots, suggesting a multiplicity of cortical sites that interact with microtubules.
Collapse
Affiliation(s)
- H H Keating
- Laboratory of Molecular Biology and Department of Anatomy, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
13
|
Wheatley SP, O'Connell CB, Wang YL. Inhibition of chromosomal separation provides insights into cleavage furrow stimulation in cultured epithelial cells. Mol Biol Cell 1998; 9:2173-84. [PMID: 9693374 PMCID: PMC25471 DOI: 10.1091/mbc.9.8.2173] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/1997] [Accepted: 05/18/1998] [Indexed: 01/16/2023] Open
Abstract
While astral microtubules are believed to be primarily responsible for the stimulation of cytokinesis in Echinoderm embryos, it has been suggested that a signal emanating from the chromosomal region and mediated by the interzonal microtubules stimulates cytokinesis in cultured mammalian cells. To test this hypothesis, we examined cytokinesis in normal rat kidney cells treated with an inhibitor of topoisomerase II, (+)-1,2-bis(3,5-dioxopiperaz-inyl-1-yl)propane, which prevents the separation of sister chromatids and the formation of a spindle interzone. The majority of treated cells showed various degrees of abnormality in cytokinesis. Furrows frequently deviated from the equatorial plane, twisting daughter cells into irregular shapes. Some cells developed furrows in regions outside the equator or far away from the spindle. In addition, F-actin and myosin II accumulated at the lateral ingressing margins but did not form a continuous band along the equator as in control cells. Imaging of microinjected 5- (and 6-) carboxymtetramethylrhodamine-tubulin revealed that a unique set of microtubules projected out from the chromosomal vicinity upon anaphase onset. These microtubules emanated toward the lateral cortex, where they delineated sites of microtubule bundle formation, cortical ingression, and F-actin and myosin II accumulation. As centrosome integrity and astral microtubules appeared unperturbed by (+)-1,2-bis(3, 5-dioxopiperaz-inyl-1-yl)propane treatment, the present observations cannot be easily explained by the conventional model involving astral microtubules. We suggest that in cultured epithelial cells the organization of the chromosomes dictates the organization of midzone microtubules, which in turn determines and maintains the cleavage activity.
Collapse
Affiliation(s)
- S P Wheatley
- Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
14
|
Shelden E, Knecht DA. Reconstruction and display of curvilinear objects from optical section data using 3-D curve fitting algorithms. J Microsc 1998; 191:97-107. [PMID: 9723192 DOI: 10.1046/j.1365-2818.1998.00352.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biological objects resembling filaments are often highly elongated while presenting a small cross-sectional area. Examination of such objects requires acquisition of images from regions large enough to contain entire objects, but at sufficiently high resolution to resolve individual filaments. These requirements complicate the application of conventional optical sectioning and volume reconstruction techniques. For example, objective lenses used to acquire images of entire filaments or filament networks may lack sufficient depth (Z) resolution to localize filament cross-sections along the optical axis. Because volume reconstruction techniques consider only the information represented by a single volume element (voxel), views of filament networks reconstructed from images obtained at low Z-resolution will not accurately represent filament morphology. A possible solution to these problems is to simultaneously utilize all available information on the path of an object by fitting 3-D curves through data points localized in 2-D images. Here, we present an application of this approach to the reconstruction of microtubule networks from 2-D optical sections obtained using confocal microscopy, and to synthesized curves which have been distorted using a simple mathematical model of optical sectioning artefacts. Our results demonstrate that this strategy can produce high resolution 3-D views of filamentous objects from a small number of optical sections.
Collapse
Affiliation(s)
- E Shelden
- Department of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor 48109-0616, USA
| | | |
Collapse
|
15
|
Waterman-Storer CM, Salmon ED. Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J Cell Biol 1997; 139:417-34. [PMID: 9334345 PMCID: PMC2139796 DOI: 10.1083/jcb.139.2.417] [Citation(s) in RCA: 364] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/1997] [Indexed: 02/05/2023] Open
Abstract
We have discovered several novel features exhibited by microtubules (MTs) in migrating newt lung epithelial cells by time-lapse imaging of fluorescently labeled, microinjected tubulin. These cells exhibit leading edge ruffling and retrograde flow in the lamella and lamellipodia. The plus ends of lamella MTs persist in growth perpendicular to the leading edge until they reach the base of the lamellipodium, where they oscillate between short phases of growth and shortening. Occasionally "pioneering" MTs grow into the lamellipodium, where microtubule bending and reorientation parallel to the leading edge is associated with retrograde flow. MTs parallel to the leading edge exhibit significantly different dynamics from MTs perpendicular to the cell edge. Both parallel MTs and photoactivated fluorescent marks on perpendicular MTs move rearward at the 0.4 mircon/min rate of retrograde flow in the lamella. MT rearward transport persists when MT dynamic instability is inhibited by 100-nM nocodazole but is blocked by inhibition of actomyosin by cytochalasin D or 2,3-butanedione-2-monoxime. Rearward flow appears to cause MT buckling and breaking in the lamella. 80% of free minus ends produced by breakage are stable; the others shorten and pause, leading to MT treadmilling. Free minus ends of unknown origin also depolymerize into the field of view at the lamella. Analysis of MT dynamics at the centrosome shows that these minus ends do not arise by centrosomal ejection and that approximately 80% of the MTs in the lamella are not centrosome bound. We propose that actomyosin-based retrograde flow of MTs causes MT breakage, forming quasi-stable noncentrosomal MTs whose turnover is regulated primarily at their minus ends.
Collapse
Affiliation(s)
- C M Waterman-Storer
- Department of Biology, 607 Fordham Hall, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA.
| | | |
Collapse
|
16
|
Wheatley SP, Hinchcliffe EH, Glotzer M, Hyman AA, Sluder G, Wang YL. CDK1 inactivation regulates anaphase spindle dynamics and cytokinesis in vivo. J Cell Biol 1997; 138:385-93. [PMID: 9230080 PMCID: PMC2138195 DOI: 10.1083/jcb.138.2.385] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Through association with CDK1, cyclin B accumulation and destruction govern the G2/M/G1 transitions in eukaryotic cells. To identify CDK1 inactivation-dependent events during late mitosis, we expressed a nondestructible form of cyclin B (cyclin BDelta90) by microinjecting its mRNA into prometaphase normal rat kidney cells. The injection inhibited chromosome decondensation and nuclear envelope formation. Chromosome disjunction occurred normally, but anaphase-like movement persisted until the chromosomes reached the cell periphery, whereupon they often somersaulted and returned to the cell center. Injection of rhodamine-tubulin showed that this movement occurred in the absence of a central anaphase spindle. In 82% of cells cytokinesis was inhibited; the remainder split themselves into two parts in a process reminiscent of Dictyostelium cytofission. In all cells injected, F-actin and myosin II were diffusely localized with no detectable organization at the equator. Our results suggest that a primary effect of CDK1 inactivation is on spindle dynamics that regulate chromosome movement and cytokinesis. Prolonged CDK1 activity may prevent cytokinesis through inhibiting midzone microtubule formation, the behavior of proteins such as TD60, or through the phosphorylation of myosin II regulatory light chain.
Collapse
Affiliation(s)
- S P Wheatley
- Cell Biology Group, Worcester Foundation for Biomedical Research, Shrewsbury, Massachusetts 01545, USA
| | | | | | | | | | | |
Collapse
|
17
|
Kaech S, Ludin B, Matus A. Cytoskeletal plasticity in cells expressing neuronal microtubule-associated proteins. Neuron 1996; 17:1189-99. [PMID: 8982165 DOI: 10.1016/s0896-6273(00)80249-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
MAP2 and tau are the two most prominent neuron-specific microtubule-associated proteins. They have been implicated in the stabilization of microtubules and consequently of neurite morphology. To investigate their influence on microtubule dynamics, we have tagged both proteins with green fluorescent protein and expressed them in non-neuronal cells. Time-lapse recordings of living cells showed that MAP2 and tau did not significantly affect the rates of microtubule growth and shrinkage. Longer recordings revealed the growth and disappearance of MAP-induced microtubule bundles coinciding with changes in cell shape. This supports the idea that microtubule dynamics are influenced by the cortical cytoskeleton. The dynamics-preserving stabilization of microtubules by MAP2 and tau thus provides a molecular basis for the morphological plasticity reported to exist in established neurites.
Collapse
Affiliation(s)
- S Kaech
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | |
Collapse
|
18
|
Wheatley SP, Wang Y. Midzone microtubule bundles are continuously required for cytokinesis in cultured epithelial cells. J Cell Biol 1996; 135:981-9. [PMID: 8922381 PMCID: PMC2133397 DOI: 10.1083/jcb.135.4.981] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The current model of cytokinesis proposes that spindle poles and associated microtubules determine the cleavage plane, and, once the signal has been delivered to the cortex, the entire mitotic apparatus can be removed without affecting cell division. While supported by compelling data from Echinoderm embryos, recent observations suggest that the model may not be universally applicable. In this study, we have examined the relationship(s) among microtubules, chromosomes, and cleavage activity in living normal rat kidney (NRK) cells with multipolar mitotic figures. We found that cleavage activity correlated with the distribution of midzone microtubule bundles and Telophase Disc 60 protein (TD60) rather than the position of spindle poles. In addition, reduction of midzone microtubules near the cortex, by either nocodazole treatment or spontaneous reorganization in tripolar cells, caused inhibition or regression of furrowing. These results demonstrate that continuous interaction between midzone microtubule bundles and the cortex is required for successful cleavage in tissue culture cells.
Collapse
Affiliation(s)
- S P Wheatley
- Cell Biology Group, Worcester Foundation for Biomedical Research, Shrewsbury, Massachusetts 01545, USA
| | | |
Collapse
|
19
|
Wadsworth P, Bottaro DP. Microtubule dynamic turnover is suppressed during polarization and stimulated in hepatocyte growth factor scattered Madin-Darby canine kidney epithelial cells. CELL MOTILITY AND THE CYTOSKELETON 1996; 35:225-36. [PMID: 8913643 DOI: 10.1002/(sici)1097-0169(1996)35:3<225::aid-cm5>3.0.co;2-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The dynamic behavior of microtubules has been measured in non-polarized, polarized, and hepatocyte growth factor treated Madin-Darby canine kidney epithelial cells. In a nocodazole disassembly assay, microtubules in polarized cells were more resistant to depolymerization than microtubules in non-polarized cells; microtubules in scattered cells were nearly completely disassembled. Analysis of fluorescent microtubules in living cells further revealed that individual microtubules in polarized cells were kinetically stabilized and microtubules in scattered cells were highly dynamic. Individual microtubule behavior in polarized cells was characterized by a suppression of the average rate of shortening, an increase in the average duration of pause, a decrease in the frequency of catastrophe transitions, and an increase in the frequency of rescue transitions, when compared with microtubules in non-polarized cells. In contrast, microtubule behavior in epithelial cells treated with hepatocyte growth factor was characterized by increase in the average rates of microtubule growth and shortening, a decrease in the frequency of rescue transitions, and an increase in the frequency of catastrophe transitions, when compared with polarized cells. Dynamicity, a measure of the gain and loss of subunits from microtubule plus ends, was 2.7 microns/min in polarized cells and 11.1 microns/min in scattered cells. These results demonstrate that individual microtubule dynamic behavior is markedly suppressed in polarized epithelial cells. Our results further demonstrate that in addition to its previously characterized effects on cell locomotion, hepatocyte growth factor stimulates microtubule dynamic turnover in lamellar regions of living cells.
Collapse
Affiliation(s)
- P Wadsworth
- Department of Biology, University of Massachusetts, Amherst 01003, USA
| | | |
Collapse
|
20
|
Dhamodharan R, Wadsworth P. Modulation of microtubule dynamic instability in vivo by brain microtubule associated proteins. J Cell Sci 1995; 108 ( Pt 4):1679-89. [PMID: 7615685 DOI: 10.1242/jcs.108.4.1679] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heat-stable brain microtubule associated proteins (MAPs) and purified microtubule associated protein 2 (MAP-2) were microinjected into cultured BSC-1 cells which had been previously injected with rhodamine-labeled tubulin. The dynamic instability behavior of individual microtubules was then examined using low-light-level fluorescence microscopy and quantitative microtubule tracking methods. Both MAP preparations suppressed microtubule dynamics in vivo, by reducing the average rate and extent of both growing and shortening events. The average duration of growing events was not affected. When measured as events/unit time, heat-stable MAPs and MAP-2 did not significantly alter the frequency of rescue; the frequency of catastrophe was decreased approximately two-fold by heat-stable MAPs and MAP-2. When transition frequencies were calculated as events/unit distance, both MAP preparations increased the frequency of rescue, without altering the frequency of catastrophe. The percentage of total time spent in the phases of growth, shrink and pause was determined. Both MAP-2 and heat-stable MAPs decreased the percentage of time spent shortening, increased the percentage of time spent paused, and had no effect on percentage of time spent growing. Heat-stable MAPs increased the average pause duration, decreased the average number of events per minute per microtubule and increased the probability that a paused microtubule would switch to growing rather than shortening. The results demonstrate that addition of MAPs to living cells reduces the dynamic behavior of individual microtubules primarily by suppressing the magnitude of dynamic events and increasing the time spent in pause, where no change in the microtubule length can be detected. The results further suggest that the expression of MAPs directly contributes to cell type-specific microtubule dynamic behavior.
Collapse
Affiliation(s)
- R Dhamodharan
- Molecular and Cellular Biology Program, University of Massachusetts at Amherst 01003, USA
| | | |
Collapse
|
21
|
Mikhailov AV, Gundersen GG. Centripetal transport of microtubules in motile cells. CELL MOTILITY AND THE CYTOSKELETON 1995; 32:173-86. [PMID: 8581974 DOI: 10.1002/cm.970320303] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The study of microtubule (MT) dynamics in cells has largely been restricted to events occurring over relatively short periods in nonmotile or stationary cells in culture. By using the antioxidant, Oxyrase, we have reduced the sensitivity of fluorescent MTs to photodamage and this has allowed us to image fluorescent MTs with good temporal resolution over much longer periods of time. We have used our enhanced imaging capabilities to examine MT dynamics in fibroblasts moving directionally into a wound. We found that MTs in these cells exhibited dynamic instability similar to that reported for other cells. More interestingly, we found a novel dynamic behavior of the MTs in which entire MTs were moved inward from the leading edge toward the cell nucleus. This centripetal transport (CT) of MTs only occurred to those MTs that were oriented with their long axis parallel to the leading edge; radially oriented MTs were not transported centripetally. Both small bundles of MTs and individual MTs were observed to undergo CT at a rate of 0.63 +/- 0.37 micron/min. This rate was similar to the rate of CT of latex beads applied to the cell surface and of endogenous pinocytotic vesicles in the cytoplasm. When we imaged both MTs and pinocytotic vesicles, we found that the pinocytotic vesicles were ensheathed by a small group of parallel MTs that moved centripetally in concert with the vesicles. Conversely, we found many instances of MTs moving centripetally without associated vesicles. When cells were treated with nocodazole to depolymerize MTs rapidly, the rate of pinocytotic vesicle CT was inhibited by 75%. This suggests that centripetal transport of MTs may be involved in the movement of pinocytotic vesicles in cells. In conclusion, our results show that MTs in motile cells are redistributed by a novel mechanism, CT, that does not require changes in polymer length. The centripetally transported MTs may play a role in transporting pinocytotic vesicles in the cell.
Collapse
Affiliation(s)
- A V Mikhailov
- Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
22
|
Abstract
We have studied the dynamics of microtubules in black tetra (Gymnocorymbus ternetzi) melanophores to test the possible correlation of microtubule stability and intracellular particle transport. X-rhodamine-or caged fluorescein-conjugated tubulin were microinjected and visualized by fluorescence digital imaging using a cooled charge coupled device and videomicroscopy. Microtubule dynamics were evaluated by determining the time course of tubulin incorporation after pulse injection, by time lapse observation, and by quantitation of fluorescence redistribution after photobleaching and photoactivation. The time course experiments showed that the kinetics of incorporation of labeled tubulin into microtubules were similar for cells with aggregated or dispersed pigment with most microtubules becoming fully labeled within 15-20 min after injection. Quantitation by fluorescence redistribution after photobleaching and photoactivation confirmed that microtubule turnover was rapid in both states, t1/2 = 3.5 +/- 1.5 and 6.1 +/- 3.0 min for cells with aggregated and dispersed pigment, respectively. In addition, immunostaining with antibodies specific to posttranslationally modified alpha-tubulin, which is usually enriched in stable microtubules, showed that microtubules composed exclusively of detyrosinated tubulin were absent and microtubules containing acetylated tubulin were sparse. We conclude that the microtubules of melanophores are very dynamic, that their dynamic properties do not depend critically on the state of pigment distribution, and that their stabilization is not a prerequisite for intracellular transport.
Collapse
Affiliation(s)
- V I Rodionov
- Laboratory of Molecular Biology, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
23
|
Tubulin GTP hydrolysis influences the structure, mechanical properties, and kinesin-driven transport of microtubules. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31582-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Hush JM, Wadsworth P, Callaham DA, Hepler PK. Quantification of microtubule dynamics in living plant cells using fluorescence redistribution after photobleaching. J Cell Sci 1994; 107 ( Pt 4):775-84. [PMID: 8056836 DOI: 10.1242/jcs.107.4.775] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microtubule (MT) turnover within the four principal MT arrays, the cortical array, the preprophase band, the mitotic spindle and the phragmoplast, has been measured in living stamen hair cells of Tradescantia that have been injected with fluorescent neurotubulin. Using the combined techniques of confocal laser scanning microscopy and fluorescence redistribution after photobleaching (FRAP), we report that the half-time of turnover in spindle MTs is t 1/2 = 31 +/- 6 seconds, which is in excellent agreement with previous measurements of turnover in animal cell spindles. Tradescantia interphase MTs, however, exhibit turnover rates (t 1/2 = 67 +/- seconds) that are some 3.4-fold faster than those measured in interphase mammalian cells, and thus are revealed as being highly dynamic. Preprophase band and phragmoplast MTs have turnover rates similar to those of interphase MTs in Tradescantia. The spatial and temporal aspects of the fluorescence redistribution after photobleaching in all four MT arrays are more consistent with subunit exchange by the mechanism of dynamic instability than treadmilling. This is the first quantification of MT dynamics in plant cells.
Collapse
Affiliation(s)
- J M Hush
- Biology Department, University of Massachusetts, Amherst 01003
| | | | | | | |
Collapse
|
25
|
Oakley C, Brunette DM. The sequence of alignment of microtubules, focal contacts and actin filaments in fibroblasts spreading on smooth and grooved titanium substrata. J Cell Sci 1993; 106 ( Pt 1):343-54. [PMID: 8270636 DOI: 10.1242/jcs.106.1.343] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Contact guidance refers to the reactions of cells with the topography of their substratum. Current hypotheses on the mechanism of contact guidance focus on the dynamic behaviour of the cytoskeletal components, but most observations have been made on cells that have already become oriented with topographic features of the substratum. The purpose of this study was to examine the sequence in which microtubules, focal contacts and microfilament bundles become aligned to the substratum topography as fibroblasts spread on grooved substrata. Human gingival fibroblasts were trypsinized and seeded onto grooved titanium surfaces produced by micromachining, as well as onto control smooth surfaces. After observation and photography of the spreading cells at times up to 6 hours, the cells were fixed and exposed to one or more of the following antibodies or fluorescent stains: phallacidin to stain actin filaments, monoclonal anti-tubulin, monoclonal anti-vinculin, anti-mouse IgG labelled with Texas-Red or FITC, and/or an aldehyde-reactive stain to identify the cell outline. The cells were photographed and cell area, shape and orientation were calculated. Cells were also examined with confocal microscopy to obtain optical sections so that cell height as well as the precise locations of the cytoskeletal components with respect to the vertical dimension of the grooved substrata could be determined. Microtubules were the first element to become oriented parallel to the direction of the grooves and were first aligned at the bottom of the grooves. This alignment of microtubules was evident as early as 20 minutes after plating and preceded the orientation of the cell as a whole. Aligned actin microfilament bundles were not observed until 40–60 minutes and were observed first at the wall-ridge edges. At early times, focal contacts were distributed radially, but only after 3 hours did the majority of cells demonstrate aligned focal contacts. If the first cytoskeletal component to become aligned is the prime determinant of cell orientation, then these data suggest that microtubules in human gingival fibroblasts may determine cell orientation on grooved titanium surfaces. By analogy with microtubule behaviour in other systems, we suggest that microtubule orientation on grooved substrata may occur as a result of the substratum establishing shear-free planes.
Collapse
Affiliation(s)
- C Oakley
- Department of Oral Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
26
|
Okabe S, Hirokawa N. Do photobleached fluorescent microtubules move?: re-evaluation of fluorescence laser photobleaching both in vitro and in growing Xenopus axon. J Biophys Biochem Cytol 1993; 120:1177-86. [PMID: 7679673 PMCID: PMC2119730 DOI: 10.1083/jcb.120.5.1177] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We previously documented differences in the behavior of microtubules in growing axons of two types of neurons, adult mouse sensory neurons and Xenopus embryonal spinal cord neurons. Namely, the bulk of microtubules was stationary in mouse sensory neurons both by the method of photoactivation of caged-fluorescein-labeled tubulin and photobleaching of fluorescein-labeled tubulin, but the bulk of microtubules did translocate anterogradely by the method of photoactivation. Although these results indicated that the stationary nature of photobleached microtubules in mouse neurons is not an artifact derived from the high levels of energy required for the procedure, it has not yet been settled whether the photobleaching method can detect the movement of microtubules properly. Here we report photobleaching experiments on growing axons of Xenopus embryonal neurons. Anterograde movement of photobleached microtubules was observed at a frequency and translocation rate similar to the values determined by the method of photoactivation. Our results suggest that, under appropriate conditions, the photobleaching method is able to reveal the behavior of microtubules as accurately as the photoactivation method.
Collapse
Affiliation(s)
- S Okabe
- Department of Anatomy and Cell Biology, School of Medicine, University of Tokyo, Japan
| | | |
Collapse
|
27
|
Shelden E, Wadsworth P. Observation and quantification of individual microtubule behavior in vivo: microtubule dynamics are cell-type specific. J Cell Biol 1993; 120:935-45. [PMID: 8432733 PMCID: PMC2200071 DOI: 10.1083/jcb.120.4.935] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recent experiments have demonstrated that the behavior of the interphase microtubule array is cell-type specific: microtubules in epithelial cells are less dynamic than microtubules in fibroblasts (Pepper-kok et al., 1990; Wadsworth and McGrail, 1990). To determine which parameters of microtubule dynamic instability behavior are responsible for this difference, we have examined the behavior of individual microtubules in both cell types after injection with rhodamine-labeled tubulin subunits. Individual microtubules in both cell types were observed to grow, shorten, and pause, as expected. The average amount of time microtubules remained within the lamellae of CHO fibroblasts, measured from images acquired at 10-s intervals, was significantly shorter than the average amount of time microtubules remained within lamellae of PtK1 epithelial cells. Further analysis of individual microtubule behavior from images acquired at 2-s intervals reveals that microtubules in PtK1 cells undergo multiple brief episodes of growth and shortening, resulting in little overall change in the microtubule network. In contrast, microtubules in lamellae of CHO fibroblasts are observed to undergo fewer transitions which are of longer average duration, resulting in substantial changes in the microtubule network over time. A small subset of more stable microtubules was also detected in CHO fibroblasts. Quantification of the various parameters of dynamic instability behavior from these sequences demonstrates that the average rates of both growth and shortening are significantly greater for the majority of microtubules in fibroblasts than for microtubules in epithelial cells (19.8 +/- 10.8 microns/min, 32.2 +/- 17.7 microns/min, 11.9 +/- 6.5 microns/min, and 19.7 +/- 8.1 microns/min, respectively). The frequency of catastrophe events (1/interval between catastrophe events) was similar in both cell types, but the frequency of rescue events (1/time spent shrinking) was significantly higher in PtK1 cells. Thus, individual microtubules in PtK1 lamellae undergo frequent excursions of short duration and extent, whereas most microtubules in CHO lamellae undergo more extensive excursions often resulting in the appearance or disappearance of microtubules within the field of view. These observations provide the first direct demonstration of cell-type specific behavior of individual microtubules in living cells, and indicate that these differences can be brought about by modulation of the frequency of rescue. These results directly support the view that microtubule dynamic instability behavior is regulated in a cell-type specific manner.
Collapse
Affiliation(s)
- E Shelden
- Department of Biology, University of Massachusetts, Amherst 01003
| | | |
Collapse
|
28
|
Edson KJ, Lim SS, Borisy GG, Letourneau PC. FRAP analysis of the stability of the microtubule population along the neurites of chick sensory neurons. CELL MOTILITY AND THE CYTOSKELETON 1993; 25:59-72. [PMID: 8519068 DOI: 10.1002/cm.970250108] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In order to study microtubule turnover in elongating neurites, chick embryo sensory neurons were microinjected with x-rhodamine tubulin, and after 6-12 hours, short segments along chosen neurites were photobleached at multiple sites. Previous studies [Lim et al., 1989; 1990] indicated that recovery of fluorescence (FRAP) in neurites occurs by the dynamic turnover of stationary microtubules. In all cases, distal bleached zones recovered fluorescence faster than bleached zones more proximally located along the same neurites. Bleached zones at growth cones completely recovered in 30-40 minutes, while bleached zones located more proximally usually recovered in 50-120 minutes. In the most proximal regions of long neurites, recovery of fluorescence was often incomplete, indicating that a significant fraction of the microtubules in these regions were very stable. These studies indicate that there are differences in microtubule stability along the length of growing neurites. These differences may arise from the combined effects of 1) modifications that stabilize and lengthen microtubules in maturing neurites and 2) the dynamic instability of the distally oriented microtubule plus ends.
Collapse
Affiliation(s)
- K J Edson
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis 55455
| | | | | | | |
Collapse
|
29
|
Gard DL. Confocal immunofluorescence microscopy of microtubules in amphibian oocytes and eggs. Methods Cell Biol 1993; 38:241-64. [PMID: 8246784 DOI: 10.1016/s0091-679x(08)61006-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- D L Gard
- Department of Biology, University of Utah, Salt Lake City 84112
| |
Collapse
|
30
|
Vikstrom KL, Lim SS, Goldman RD, Borisy GG. Steady state dynamics of intermediate filament networks. J Biophys Biochem Cytol 1992; 118:121-9. [PMID: 1618899 PMCID: PMC2289530 DOI: 10.1083/jcb.118.1.121] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have conducted experiments to examine the dynamic exchange between subunit and polymer of vimentin intermediate filaments (IF) at steady state through the use of xrhodamine-labeled vimentin in fluorescence recovery after photobleaching (FRAP) analysis. The xrhodamine-vimentin incorporated into the endogenous vimentin IF network after microinjection into fibroblasts and could be visualized with a cooled charge-coupled device (CCD) camera and digital imaging fluorescence microscopy. Bar shaped regions were bleached in the fluorescent IF network using a beam from an argon ion laser and the cells were monitored at various times after bleaching to assess recovery of fluorescence in the bleached zones. We determined that bleached vimentin fibers can recover their fluorescence over relatively short time periods. Vimentin fibers in living cells also can exhibit significant movements, but the recovery of fluorescence was not dependent upon movement of fibers. Fluorescence recovery within individual fibers did not exhibit any marked polarity and was most consistent with a steady state exchange of vimentin subunits along the lengths of IF.
Collapse
Affiliation(s)
- K L Vikstrom
- Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | | | | | | |
Collapse
|
31
|
Gard DL. Microtubule organization during maturation of Xenopus oocytes: assembly and rotation of the meiotic spindles. Dev Biol 1992; 151:516-30. [PMID: 1601183 DOI: 10.1016/0012-1606(92)90190-r] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Assembly of the meiotic spindles during progesterone-induced maturation of Xenopus oocytes was examined by confocal fluorescence microscopy using anti-tubulin antibodies and by time-lapse confocal microscopy of living oocytes microinjected with fluorescent tubulin. Assembly of a transient microtubule array from a disk-shaped MTOC was observed soon after germinal vesicle breakdown. This MTOC-TMA complex rapidly migrated toward the animal pole, in association with the condensing meiotic chromosomes. Four common stages were observed during the assembly of both M1 and M2 spindles: (1) formation of a compact aggregate of microtubules and chromosomes; (2) reorganization of this aggregate resulting in formation of a short bipolar spindle; (3) an anaphase-B-like elongation of the prometaphase spindle, transversely oriented with respect to the oocyte A-V axis; and (4) rotation of the spindle into alignment with the oocyte axis. The rate of spindle elongation observed in M1 (0.7 microns min-1) was slower than that observed in M2 (1.8 microns min-1). Examination of spindles by immunofluorescence with antitubulin revealed numerous interdigitating microtubules, suggesting that prometaphase elongation of meiotic spindles in Xenopus oocytes results from active sliding of antiparallel microtubules. A substantial number of maturing oocytes formed monopolar microtubule asters during M1, nucleated by hollow spherical MTOCs. These monasters were subsequently observed to develop into bipolar M1 spindles and proceed through meiosis. The results presented define a complex pathway for assembly and rotation of the meiotic spindles during maturation of Xenopus oocytes.
Collapse
Affiliation(s)
- D L Gard
- Department of Biology, University of Utah, Salt Lake City 84112
| |
Collapse
|
32
|
Sabry JH, O'Connor TP, Evans L, Toroian-Raymond A, Kirschner M, Bentley D. Microtubule behavior during guidance of pioneer neuron growth cones in situ. J Cell Biol 1991; 115:381-95. [PMID: 1918146 PMCID: PMC2289145 DOI: 10.1083/jcb.115.2.381] [Citation(s) in RCA: 183] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The growth of an axon toward its target results from the reorganization of the cytoskeleton in response to environmental guidance cues. Recently developed imaging technology makes it possible to address the effect of such cues on the neural cytoskeleton directly. Although high resolution studies can be carried out on neurons in vitro, these circumstances do not recreate the complexity of the natural environment. We report here on the arrangement and dynamics of microtubules in live neurons pathfinding in response to natural guidance cues in situ using the embryonic grasshopper limb fillet preparation. A rich microtubule network was present within the body of the growth cone and normally extended into the distal growth cone margin. Complex microtubule loops often formed transiently within the growth cone. Branches both with and without microtubules were regularly observed. Microtubules did not extend into filopodia. During growth cone steering events in response to identified guidance cues, microtubule behaviour could be monitored. In turns towards guidepost cells, microtubules selectively invaded branches derived from filopodia that had contacted the guidepost cell. At limb segment boundaries, microtubules displayed a variety of behaviors, including selective branch invasion, and also invasion of multiple branches followed by selective retention in branches oriented in the correct direction. Microtubule invasion of multiple branches also was seen in growth cones migrating on intrasegmental epithelium. Both selective invasion and selective retention generate asymmetrical microtubule arrangements within the growth cone, and may play a key role in growth cone steering events.
Collapse
Affiliation(s)
- J H Sabry
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143
| | | | | | | | | | | |
Collapse
|
33
|
Orientation of Cortical Microtubules in Interphase Plant Cells. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/s0074-7696(08)60511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
34
|
Lim SS, Edson KJ, Letourneau PC, Borisy GG. A test of microtubule translocation during neurite elongation. J Cell Biol 1990; 111:123-30. [PMID: 2195037 PMCID: PMC2116169 DOI: 10.1083/jcb.111.1.123] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In a previous study using PC-12 cells (Lim, S. S., P. J. Sammak, and G. G. Borisy, 1989. J. Cell Biol. 109:253-263), we presented evidence that the microtubule component of the neuronal cytoskeleton is differentially dynamic but stationary. However, neurites of PC-12 cells grow slowly, hindering a stringent test of slow axonal transport mechanisms under conditions where growth was substantial. We therefore extended our studies to primary cultures of dorsal root ganglion cells where the rate of neurite outgrowth is rapid. Cells were microinjected with X-rhodamine-labeled tubulin 7-16 h after plating. After a further incubation for 6-18 h, the cells were photobleached with an argon ion laser. Using a cooled charged couple device and video microscopy, the cells were monitored for growth of the neurite and movement and recovery of fluorescence in the bleached zone. As for PC-12 cells, all bleached zones in the neurite recovered their fluorescence, indicating that incorporation of tubulin occurred along the neurite. Despite increases in neurite length of up to 70 microns, and periods of observation of up to 5 h, no movement of bleached zones was observed. We conclude that neurite elongation cannot be accounted for by the transport of a microtubule network assembled only at the cell body. Rather, microtubules turn over all along the length of the neurite and neurite elongation occurs by net assembly at the tip.
Collapse
Affiliation(s)
- S S Lim
- Molecular-Biology Laboratory, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
35
|
Webster DR, Wehland J, Weber K, Borisy GG. Detyrosination of alpha tubulin does not stabilize microtubules in vivo. J Biophys Biochem Cytol 1990; 111:113-22. [PMID: 1973168 PMCID: PMC2116167 DOI: 10.1083/jcb.111.1.113] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The relationship between alpha tubulin detyrosination and microtubule (MT) stability was examined directly in cultured fibroblasts by experimentally converting the predominantly tyrosinated MT array to a detyrosinated (Glu) array and then assaying MT stability. MTs in mouse Swiss 3T3 cells displayed an increase in Glu immunostaining fluorescence approximately 1 h after microinjecting antibodies to the tyrosinating enzyme, tubulin tyrosine ligase. Detyrosination progressed to virtual completion after 12 h and persisted for 30-35 h before tyrosinated subunits within MTs were again detected. The stability of these experimentally detyrosinated MTs was tested by first injecting either biotinylated or Xrhodamine-labeled tubulin and then measuring bulk turnover by hapten-mediated immunocytochemistry or fluorescence recovery after photobleaching, respectively. By both methods, turnover was found to be similarly rapid, possessing a half time of approximately 3 min. As a final test of MT stability, the level of acetylated tubulin staining in antibody-injected cells was compared with that observed in adjacent, uninjected cells and also with the staining observed in cells whose MTs had been stabilized with taxol. Although intense Glu staining was observed in both injected and taxol-treated cells, increased acetylated tubulin staining was observed only in the taxol-stabilized MTs, indicating that the MTs were not stabilized by detyrosination. Together, these results demonstrated clearly that detyrosination does not directly confer stability on MTs. Therefore, the stable MTs observed in these and other cell lines must have arisen by another mechanism, and may have become posttranslationally modified after their stabilization.
Collapse
Affiliation(s)
- D R Webster
- Laboratory of Molecular Biology, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
36
|
Abstract
The growth cone is a crucial structure in effecting neurite elongation and guiding the neurite onto correct pathways by responding to environmental cues. Recently developed techniques in light and electron microscopy have greatly improved our understanding of the dynamic organization of membrane and cytoskeleton within the growth cone. The growth cone can now be directly observed to undergo a sequence of developmental changes to produce the neurite. The importance, in elongation and steering, of pulling of growth cone protrusions against adhesive contacts on the substrate is re-evaluated in the light of these findings.
Collapse
|
37
|
Gorbsky GJ, Borisy GG. Microtubules of the kinetochore fiber turn over in metaphase but not in anaphase. J Cell Biol 1989; 109:653-62. [PMID: 2668301 PMCID: PMC2115738 DOI: 10.1083/jcb.109.2.653] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In previous work we injected mitotic cells with fluorescent tubulin and photobleached them to mark domains on the spindle microtubules. We concluded that chromosomes move poleward along kinetochore fiber microtubules that remain stationary with respect to the pole while depolymerizing at the kinetochore. In those experiments, bleached zones in anaphase spindles showed some recovery of fluorescence with time. We wished to determine the nature of this recovery. Was it due to turnover of kinetochore fiber microtubules or of nonkinetochore microtubules or both? We also wished to investigate the question of turnover of kinetochore microtubules in metaphase. We microinjected cells with x-rhodamine tubulin (x-rh tubulin) and photobleached spindles in anaphase and metaphase. At various times after photobleaching, cells were detergent lysed in a cold buffer containing 80 microM calcium, conditions that led to the disassembly of almost all nonkinetochore microtubules. Quantitative analysis with a charge coupled device image sensor revealed that the bleached zones in anaphase cells showed no fluorescence recovery, suggesting that these kinetochore fiber microtubules do not turn over. Thus, the partial fluorescence recovery seen in our earlier anaphase experiments was likely due to turnover of nonkinetochore microtubules. In contrast fluorescence in metaphase cells recovered to approximately 70% the control level within 7 min suggesting that many, but perhaps not all, kinetochore fiber microtubules of metaphase cells do turn over. Analysis of the movements of metaphase bleached zones suggested that a slow poleward translocation of kinetochore microtubules occurred. However, within the variation of the data (0.12 +/- 0.24 micron/min), it could not be determined whether the apparent movement was real or artifactual.
Collapse
Affiliation(s)
- G J Gorbsky
- Laboratory of Molecular Biology, University of Wisconsin, Madison 53706
| | | |
Collapse
|
38
|
Lim SS, Sammak PJ, Borisy GG. Progressive and spatially differentiated stability of microtubules in developing neuronal cells. J Biophys Biochem Cytol 1989; 109:253-63. [PMID: 2745551 PMCID: PMC2115470 DOI: 10.1083/jcb.109.1.253] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The establishment of neural circuits requires both stable and plastic properties in the neuronal cytoskeleton. In this study we show that properties of stability and lability reside in microtubules and these are governed by cellular differentiation and intracellular location. After culture for 3, 7, and 14 d in nerve growth factor-containing medium, PC-12 cells were microinjected with X-rhodamine-labeled tubulin. 8-24 h later, cells were photobleached with a laser microbeam at the cell body, neurite shaft, and growth cone. Replacement of fluorescence in bleached zones was monitored by digital video microscopy. In 3-d cultures, fluorescence recovery in all regions occurred by 26 +/- 17 min. Similarly, in older cultures, complete fluorescence recovery at the cell body and growth cone occurred by 10-30 min. However, in neurite shafts, fluorescence recovery was markedly slower (71 +/- 48 min for 7-d and 201 +/- 94 min for 14-d cultures). This progressive increase in the stability of microtubules in the neurite shafts correlated with an increase of acetylated microtubules. Acetylated microtubules were present specifically in the neurite shaft and not in the regions of fast microtubule turnover, the cell body and growth cone. During the recovery of fluorescence, bleached zones did not move with respect to the cell body. We conclude that the microtubule component of the neuronal cytoskeleton is differentially dynamic but stationary.
Collapse
Affiliation(s)
- S S Lim
- Molecular Biology Laboratory, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|