Unveiling the genetic etiology of primary ciliary dyskinesia: When standard genetic approach is not enough.
Adv Med Sci 2020;
65:1-11. [PMID:
31835165 DOI:
10.1016/j.advms.2019.10.003]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/08/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE
Primary ciliary dyskinesia (PCD) is a ciliopathy caused by dysfunction of motile cilia. As there is still no standard PCD diagnostics, the final diagnosis requires a combination of several tests. The genetic screening is a hallmark for the final diagnosis and requires high-throughput techniques, such as whole-exome sequencing (WES). Nevertheless, WES has limitations that may prevent a definitive genetic diagnosis. Here we present a case that demonstrates how the PCD genetic diagnosis may not be trivial.
MATERIALS/METHODS
A child with PCD and situs inversus totalis (designated as Kartagener syndrome (KS)) was subjected to clinical assessments, ultrastructural analysis of motile cilia, extensive genetic evaluation by WES and chromosomal array analysis, bioinformatic analysis, gene expression analysis and immunofluorescence to identify the genetic etiology. His parents and sister, as well as healthy controls were also evaluated.
RESULTS
Here we show that a disease-causing variant in the USP11 gene and copy number variations in CRHR1 and KRT34 genes may be involved in the patient PCD phenotype. None of these genes were previously reported in PCD patients and here we firstly show its presence and immunolocalization in respiratory cells.
CONCLUSIONS
This work highlights how the genetic diagnosis can turn to be rather complex and that combining several approaches may be needed. Overall, our results contribute to increase the understanding of the genetic factors involved in the pathophysiology of PCD/KS, which is of paramount importance to assist the current diagnosis and future development of newer therapies.
Collapse