1
|
Rodemer W, Gallo G, Selzer ME. Mechanisms of Axon Elongation Following CNS Injury: What Is Happening at the Axon Tip? Front Cell Neurosci 2020; 14:177. [PMID: 32719586 PMCID: PMC7347967 DOI: 10.3389/fncel.2020.00177] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
After an injury to the central nervous system (CNS), functional recovery is limited by the inability of severed axons to regenerate and form functional connections with appropriate target neurons beyond the injury. Despite tremendous advances in our understanding of the mechanisms of axon growth, and of the inhibitory factors in the injured CNS that prevent it, disappointingly little progress has been made in restoring function to human patients with CNS injuries, such as spinal cord injury (SCI), through regenerative therapies. Clearly, the large number of overlapping neuron-intrinsic and -extrinsic growth-inhibitory factors attenuates the benefit of neutralizing any one target. More daunting is the distances human axons would have to regenerate to reach some threshold number of target neurons, e.g., those that occupy one complete spinal segment, compared to the distances required in most experimental models, such as mice and rats. However, the difficulties inherent in studying mechanisms of axon regeneration in the mature CNS in vivo have caused researchers to rely heavily on extrapolation from studies of axon regeneration in peripheral nerve, or of growth cone-mediated axon development in vitro and in vivo. Unfortunately, evidence from several animal models, including the transected lamprey spinal cord, has suggested important differences between regeneration of mature CNS axons and growth of axons in peripheral nerve, or during embryonic development. Specifically, long-distance regeneration of severed axons may not involve the actin-myosin molecular motors that guide embryonic growth cones in developing axons. Rather, non-growth cone-mediated axon elongation may be required to propel injured axons in the mature CNS. If so, it may be necessary to use other experimental models to promote regeneration that is sufficient to contact a critical number of target neurons distal to a CNS lesion. This review examines the cytoskeletal underpinnings of axon growth, focusing on the elongating axon tip, to gain insights into how CNS axons respond to injury, and how this might affect the development of regenerative therapies for SCI and other CNS injuries.
Collapse
Affiliation(s)
- William Rodemer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Gianluca Gallo
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
2
|
Bagonis MM, Fusco L, Pertz O, Danuser G. Automated profiling of growth cone heterogeneity defines relations between morphology and motility. J Cell Biol 2019; 218:350-379. [PMID: 30523041 PMCID: PMC6314545 DOI: 10.1083/jcb.201711023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 09/26/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
Growth cones are complex, motile structures at the tip of an outgrowing neurite. They often exhibit a high density of filopodia (thin actin bundles), which complicates the unbiased quantification of their morphologies by software. Contemporary image processing methods require extensive tuning of segmentation parameters, require significant manual curation, and are often not sufficiently adaptable to capture morphology changes associated with switches in regulatory signals. To overcome these limitations, we developed Growth Cone Analyzer (GCA). GCA is designed to quantify growth cone morphodynamics from time-lapse sequences imaged both in vitro and in vivo, but is sufficiently generic that it may be applied to nonneuronal cellular structures. We demonstrate the adaptability of GCA through the analysis of growth cone morphological variation and its relation to motility in both an unperturbed system and in the context of modified Rho GTPase signaling. We find that perturbations inducing similar changes in neurite length exhibit underappreciated phenotypic nuance at the scale of the growth cone.
Collapse
Affiliation(s)
- Maria M Bagonis
- Departments of Bioinformatics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Ludovico Fusco
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Olivier Pertz
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Gaudenz Danuser
- Departments of Bioinformatics and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Cell Biology, Harvard Medical School, Boston, MA
| |
Collapse
|
3
|
Winkle CC, Taylor KL, Dent EW, Gallo G, Greif KF, Gupton SL. Beyond the cytoskeleton: The emerging role of organelles and membrane remodeling in the regulation of axon collateral branches. Dev Neurobiol 2016; 76:1293-1307. [PMID: 27112549 DOI: 10.1002/dneu.22398] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/11/2016] [Accepted: 04/21/2016] [Indexed: 12/19/2022]
Abstract
The generation of axon collateral branches is a fundamental aspect of the development of the nervous system and the response of axons to injury. Although much has been discovered about the signaling pathways and cytoskeletal dynamics underlying branching, additional aspects of the cell biology of axon branching have received less attention. This review summarizes recent advances in our understanding of key factors involved in axon branching. This article focuses on how cytoskeletal mechanisms, intracellular organelles, such as mitochondria and the endoplasmic reticulum, and membrane remodeling (exocytosis and endocytosis) contribute to branch initiation and formation. Together this growing literature provides valuable insight as well as a platform for continued investigation into how multiple aspects of axonal cell biology are spatially and temporally orchestrated to give rise to axon branches. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1293-1307, 2016.
Collapse
Affiliation(s)
- Cortney C Winkle
- Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Kendra L Taylor
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Erik W Dent
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Gianluca Gallo
- Lewis Katz School of Medicine, Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, Pennsylvania, 19140
| | - Karen F Greif
- Department of Biology, Bryn Mawr College, Bryn Mawr, Pennsylvania, 19010
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, 27599
| |
Collapse
|
4
|
Steketee MB, Oboudiyat C, Daneman R, Trakhtenberg E, Lamoureux P, Weinstein JE, Heidemann S, Barres BA, Goldberg JL. Regulation of intrinsic axon growth ability at retinal ganglion cell growth cones. Invest Ophthalmol Vis Sci 2014; 55:4369-77. [PMID: 24906860 DOI: 10.1167/iovs.14-13882] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mammalian central nervous system neurons fail to regenerate after injury or disease, in part due to a progressive loss in intrinsic axon growth ability after birth. Whether lost axon growth ability is due to limited growth resources or to changes in the axonal growth cone is unknown. METHODS Static and time-lapse images of purified retinal ganglion cells (RGCs) were analyzed for axon growth rate and growth cone morphology and dynamics without treatment and after manipulating Kruppel-like transcription factor (KLF) expression or applying mechanical tension. RESULTS Retinal ganglion cells undergo a developmental switch in growth cone dynamics that mirrors the decline in postnatal axon growth rates, with increased filopodial adhesion and decreased lamellar protrusion area in postnatal axonal growth cones. Moreover, expressing growth-suppressive KLF4 or growth-enhancing KLF6 transcription factors elicits similar changes in postnatal growth cones that correlate with axon growth rates. Postnatal RGC axon growth rate is not limited by an inability to achieve axon growth rates similar to embryonic RGCs; indeed, postnatal axons support elongation rates up to 100-fold faster than postnatal axonal growth rates. Rather, the intrinsic capacity for rapid axon growth is due to both growth cone pausing and retraction, as well as to a slightly decreased ability to achieve rapid instantaneous rates of forward progression. Finally, we observed that RGC axon and dendrite growth are regulated independently in vitro. CONCLUSIONS Together, these data support the hypothesis that intrinsic axon growth rate is regulated by an axon-specific growth program that differentially regulates growth cone motility.
Collapse
Affiliation(s)
- Michael B Steketee
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States Department of Ophthalmology and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Carly Oboudiyat
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Richard Daneman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States
| | - Ephraim Trakhtenberg
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Philip Lamoureux
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| | - Jessica E Weinstein
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Steve Heidemann
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States
| | - Jeffrey L Goldberg
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States Department of Ophthalmology, Shiley Eye Center, University of California San Diego, San Diego, California, United States
| |
Collapse
|
5
|
Liu W, Xing S, Yuan B, Zheng W, Jiang X. Change of laminin density stimulates axon branching via growth cone myosin II-mediated adhesion. Integr Biol (Camb) 2014; 5:1244-52. [PMID: 23959160 DOI: 10.1039/c3ib40131f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Axon branching enables neurons to contact with multiple targets and respond to their microenvironment. Owing to its importance in neuronal network formation, axon branching has been studied extensively during the past decades. The chemical properties of extracellular matrices have been proposed to regulate axonal development, but the effects of their density changes on axon branching are not well understood. Here, we demonstrate that both the sharp broadening of substrate geometry and the sharp change of laminin density stimulate axon branching by using microcontact printing (μCP) and microfluidic printing (μFP) techniques. We also found that the change of axon branching stimulated by laminin density depends on myosin II activity. The change of laminin density induces asymmetric extensions of filopodia on the growth cone, which is the precondition for axon branching. These previously unknown mechanisms of change of laminin density-stimulated axon branching may explain how the extracellular matrices regulate axon branching in vivo and facilitate the establishment of neuronal networks in vitro.
Collapse
Affiliation(s)
- Wenwen Liu
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, 11 BeiYiTiao, ZhongGuanCun, Beijing 100190, P. R. China.
| | | | | | | | | |
Collapse
|
6
|
Ruff RL, McKerracher L, Selzer ME. Repair and Neurorehabilitation Strategies for Spinal Cord Injury. Ann N Y Acad Sci 2008; 1142:1-20. [DOI: 10.1196/annals.1444.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Jones SL, Selzer ME, Gallo G. Developmental regulation of sensory axon regeneration in the absence of growth cones. ACTA ACUST UNITED AC 2007; 66:1630-45. [PMID: 17058187 PMCID: PMC2664685 DOI: 10.1002/neu.20309] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The actin filament (F-actin) cytoskeleton is thought to be required for normal axon extension during embryonic development. Whether this is true of axon regeneration in the mature nervous system is not known, but a progressive simplification of growth cones during development has been described and where specifically investigated, mature spinal cord axons appear to regenerate without growth cones. We have studied the cytoskeletal mechanisms of axon regeneration in developmentally early and late chicken sensory neurons, at embryonic day (E) 7 and 14 respectively. Depletion of F-actin blocked the regeneration of E7 but not E14 sensory axons in vitro. The differential sensitivity of axon regeneration to the loss of F-actin and growth cones correlated with endogenous levels of F-actin and growth cone morphology. The growth cones of E7 axons contained more F-actin and were more elaborate than those of E14 axons. The ability of E14 axons to regenerate in the absence of F-actin and growth cones was dependent on microtubule tip polymerization. Importantly, while the regeneration of E7 axons was strictly dependent on F-actin, regeneration of E14 axons was more dependent on microtubule tip polymerization. Furthermore, E14 axons exhibited altered microtubule polymerization relative to E7, as determined by imaging of microtubule tip polymerization in living neurons. These data indicate that the mechanism of axon regeneration undergoes a developmental switch between E7 and E14 from strict dependence on F-actin to a greater dependence on microtubule polymerization. Collectively, these experiments indicate that microtubule polymerization may be a therapeutic target for promoting regeneration of mature neurons.
Collapse
Affiliation(s)
- Steven L Jones
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | |
Collapse
|
8
|
Robles E, Gomez TM. Focal adhesion kinase signaling at sites of integrin-mediated adhesion controls axon pathfinding. Nat Neurosci 2006; 9:1274-83. [PMID: 16964253 DOI: 10.1038/nn1762] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 08/11/2006] [Indexed: 12/11/2022]
Abstract
Extracellular matrix (ECM) components regulate neurite outgrowth in tissue culture and in vivo. Live imaging of phosphotyrosine (PY) signals revealed that Xenopus laevis growth cones extending on permissive ECM substrata assemble adhesive point contacts containing enriched levels of tyrosine-phosphorylated proteins. Whereas focal adhesion kinase (FAK) signaling is dispensable for the assembly of focal adhesions in non-neuronal cells, FAK activity is required for the formation of growth cone point contacts. FAK-dependent point contacts promote rapid neurite outgrowth by stabilizing lamellipodial protrusions on permissive ECM substrata. Moreover, local FAK activity is required for ECM-dependent growth cone turning in vitro, suggesting that FAK may control axon pathfinding in vivo. Consistent with this possibility, proper growth and guidance of Rohon-Beard sensory neurons and spinal commissural interneurons requires FAK activity. These findings identify FAK as a key regulator of axon growth and guidance downstream of growth cone-ECM interactions.
Collapse
Affiliation(s)
- Estuardo Robles
- Department of Anatomy and Neuroscience Training Program, University of Wisconsin, 257 Bardeen Labs-SMI, 1300 University Avenue, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
9
|
Zhang G, Jin LQ, Sul JY, Haydon PG, Selzer ME. Live imaging of regenerating lamprey spinal axons. Neurorehabil Neural Repair 2005; 19:46-57. [PMID: 15673843 DOI: 10.1177/1545968305274577] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND The sea lamprey has been used as a model for the study of axonal regeneration after spinal cord injury. Although the growing tips of developing axons in lamprey have not been described, in all species studied, growth cones are complex in shape, consisting of a lamellipodium and filopodia, rich in F-actin and lacking neurofilaments (NF). By contrast, static immunohistochemical and electron microscopic observations of fixed tissue suggested that the tips of regenerating lamprey spinal axons are simple in shape, densely packed with NF, but contain very little F-actin. Thus, it has been proposed that regeneration of axons in the CNS of mature animals is not based on the canonical pulling mechanism of growth cones but involves an internal protrusive force, perhaps generated by the transport and assembly of NF. To eliminate the possibility that these histological features are due to fixation artifact, fluorescently labeled regenerating axon tips were imaged live. METHODS Spinal cords were transected, and after 0 to 10 weeks, the CNS was isolated in lamprey Ringer at 5 degrees C to 12 degrees C and the large reticulospinal axons were microinjected with fluorescent tracers. The proximal axon tips were imaged with a fluorescence dissecting microscope repeatedly over 2 to 5 days and photographed with confocal microscopy. Experiments were also performed through a dorsal incision in the living animal. Axon tips were microinjected as above or retrogradely labeled with tracer applied to the transection site and photographed through the fluorescence dissecting scope or with two-photon microscopy. The spinal cords were then fixed and processed for wholemount NF immunohistochemistry. RESULTS The living axon tips were simple in shape, not significantly different from those in fixed spinal cords, and filled with NF. In isolated CNS preparations, very little axon retraction and no regeneration was observed. In the living animal, rapid retraction, up to 3 mm/day, was seen during the 1st few days posttransection. At more than 2 weeks posttransection, some fibers showed regeneration of up to 35 microm/day. CONCLUSIONS 1) The tips of regenerating lamprey axons are simple in shape and filled with NF. 2) Both axon retraction and axon extension are active processes, requiring factors present in the living animal that are missing in the isolated CNS.
Collapse
Affiliation(s)
- Guixin Zhang
- Department of Neurology and the David Mahoney Institute of Neurological Sciences, University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
10
|
Uchida A, Brown A. Arrival, reversal, and departure of neurofilaments at the tips of growing axons. Mol Biol Cell 2004; 15:4215-25. [PMID: 15215317 PMCID: PMC515353 DOI: 10.1091/mbc.e04-05-0371] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have investigated the movement of green fluorescent protein-tagged neurofilaments at the distal ends of growing axons by using time-lapse fluorescence imaging. The filaments moved in a rapid, infrequent, and asynchronous manner in either an anterograde or retrograde direction (60% anterograde, 40% retrograde). Most of the anterograde filaments entered the growth cone and most of the retrograde filaments originated in the growth cone. In a small number of cases we were able to observe neurofilaments reverse direction, and all of these reversals occurred in or close to the growth cone. We conclude that neurofilament polymers are delivered rapidly and infrequently to the tips of growing axons and that some of these polymers reverse direction in the growth cone and move back into the axon. We propose that 1) growth cones are a preferential site of neurofilament reversal in distal axons, 2) most retrograde neurofilaments in distal axons originate by reversal of anterograde filaments in the growth cone, 3) those anterograde filaments that do not reverse direction are recruited to form the neurofilament cytoskeleton of the newly forming axon, and 4) the net delivery of neurofilament polymers to growth cones may be controlled by regulating the reversal frequency.
Collapse
Affiliation(s)
- Atsuko Uchida
- Center for Molecular Neurobiology and Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
11
|
Brors D, Aletsee C, Schwager K, Mlynski R, Hansen S, Schäfers M, Ryan AF, Dazert S. Interaction of spiral ganglion neuron processes with alloplastic materials in vitro(1). Hear Res 2002; 167:110-21. [PMID: 12117535 DOI: 10.1016/s0378-5955(02)00355-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cochlear implant (CI) involves the introduction of alloplastic materials into the cochlea. While current implants interact with cochlear neurons at a distance, direct interactions between spiral ganglion (SG) neurites and implants could be fostered by appropriate treatment with neurotrophic factors. The interactions of fibroblasts and osteoblasts with alloplastic materials have been well studied in vitro and in vivo. However, interactions of inner ear neurons with such alloplastic materials have yet to be described. To investigate survival and growth behavior of SG neurons on different materials, SG explants from post-natal day 5 rat SG were cultured for 72 h in the presence of neurotrophin-3 (10 ng/ml) on titanium, gold, stainless steel, platinum, silicone and plastic surfaces that had been coated with laminin and poly-L-lysine. Neurite outgrowth was investigated after immunohistological staining for neurofilament, by image analysis to determine neurite extension and directional changes. Neurite morphology and adhesion to the alloplastic material were also evaluated by scanning electron microscopy (SEM). On titanium, SG neurites reached the highest extent of outgrowth, with an average length of 662 microm and a mean of 31 neurites per explant, compared to 568 microm and 21 neurites on gold, 574 microm and 24 neurites on stainless steel, 509 microm and 16 neurites on platinum, 281 microm and 12 neurites on silicone and 483 microm and 31 neurites on plastic. SEM revealed details of adhesion of neurites and interaction with non-neuronal cells. The results of this study indicate that the growth of SG neurons in vitro is strongly influenced by alloplastic materials, with titanium exhibiting the highest degree of biocompatibility with respect to neurite extension. The knowledge of neurite interaction with different alloplastic materials is of clinical interest, as development in CI technology leads to closer contact of implanted electrodes with surviving inner ear neurons.
Collapse
Affiliation(s)
- Dominik Brors
- Department of Otorhinolaryngology, Head and Neck Surgery, Bayerische Julius Maximilians Universität, 97080 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Paglini G, Kunda P, Quiroga S, Kosik K, Cáceres A. Suppression of radixin and moesin alters growth cone morphology, motility, and process formation in primary cultured neurons. J Cell Biol 1998; 143:443-55. [PMID: 9786954 PMCID: PMC2132841 DOI: 10.1083/jcb.143.2.443] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1998] [Revised: 09/10/1998] [Indexed: 01/25/2023] Open
Abstract
In this study we have examined the cellular functions of ERM proteins in developing neurons. The results obtained indicate that there is a high degree of spatial and temporal correlation between the expression and subcellular localization of radixin and moesin with the morphological development of neuritic growth cones. More importantly, we show that double suppression of radixin and moesin, but not of ezrin-radixin or ezrin-moesin, results in reduction of growth cone size, disappearance of radial striations, retraction of the growth cone lamellipodial veil, and disorganization of actin filaments that invade the central region of growth cones where they colocalize with microtubules. Neuritic tips from radixin-moesin suppressed neurons displayed high filopodial protrusive activity; however, its rate of advance is 8-10 times slower than the one of growth cones from control neurons. Radixin-moesin suppressed neurons have short neurites and failed to develop an axon-like neurite, a phenomenon that appears to be directly linked with the alterations in growth cone structure and motility. Taken collectively, our data suggest that by regulating key aspects of growth cone development and maintenance, radixin and moesin modulate neurite formation and the development of neuronal polarity.
Collapse
Affiliation(s)
- G Paglini
- Instituto Mercedes y Martin Ferreyra-CONICET, 5000 Cordoba, Argentina
| | | | | | | | | |
Collapse
|
13
|
Small JV, Rottner K, Kaverina I, Anderson KI. Assembling an actin cytoskeleton for cell attachment and movement. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1404:271-81. [PMID: 9739149 DOI: 10.1016/s0167-4889(98)00080-9] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- J V Small
- Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, A-5020 Salzburg, Austria
| | | | | | | |
Collapse
|
14
|
Gallo G, Pollack ED. Temporal regulation of growth cone lamellar protrusion and the influence of target tissue. JOURNAL OF NEUROBIOLOGY 1997; 33:929-44. [PMID: 9407014 DOI: 10.1002/(sici)1097-4695(199712)33:7<929::aid-neu5>3.0.co;2-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Guided nerve fiber growth depends upon the activities of the neuronal growth cone lamellae and filopodia. Defining the dynamics of growth cone remodeling and the influences that act on it may lead to greater understanding of guided axonal growth. While there were differences in the remodeling of growth cones of nerve fibers extended from spinal cord explants and from dorsal root ganglia of Rana pipiens larvae, both types exhibited fluctuations in lamellar expanse over time to produce "lamellar cycles." We now show that these cycles are characterized by the temporal regulation of lamellar protrusion rate, the percentage of the lamellar perimeter undergoing protrusion, and invariant lamellar retraction with respect to time. Since axotomies did not abolish the lamellar cycles, the mechanism underlying cycling appears to reside at the level of the nerve fiber terminus. The previously demonstrated effects of the target tissue on growth cone remodeling appear to be due to target tissue-released factors that bind to the culture substratum, as evidenced by experiments using target tissue-conditioned medium. Further, the target tissue attenuated the fluctuations in lamellar protrusion rate during cycling, which resulted in changes in growth cone remodeling and morphology. These alterations may be related to the chemokinetic and chemotropic effects of the target on the nerve fiber extension. Thus, the process of remodeling of growth cone lamellar structures is the result of intrinsically controlled modifications in lamellar protrusion and target-based influences.
Collapse
Affiliation(s)
- G Gallo
- Department of Biological Sciences, University of Illinois at Chicago 60607, USA
| | | |
Collapse
|
15
|
Leventhal PS, Shelden EA, Kim B, Feldman EL. Tyrosine phosphorylation of paxillin and focal adhesion kinase during insulin-like growth factor-I-stimulated lamellipodial advance. J Biol Chem 1997; 272:5214-8. [PMID: 9030591 DOI: 10.1074/jbc.272.8.5214] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the current studies, we examined whether focal adhesion kinase (FAK) and paxillin play a role in insulin-like growth factor-I (IGF-I)-stimulated morphological changes in neuronal cells. In SH-SY5Y human neuroblastoma cells, 10 nM IGF-I enhanced the extension of lamellipodia within 30 min. Scanning electron microscopy and staining with rhodamine-phalloidin showed that these lamellipodia displayed ruffles, filopodia, and a distinct meshwork of actin filaments. Immunofluorescent staining identified focal concentrations of FAK, paxillin, and phosphotyrosine within the lamellipodia. Immunoprecipitation experiments revealed that FAK and paxillin are tyrosine-phosphorylated during IGF-I-stimulated lamellipodial extension. Maximal phosphorylation of FAK and paxillin was observed 15-30 min after the addition of 10 nM IGF-I, whereas maximal IGF-I receptor phosphorylation occurred within 5 min. FAK, paxillin, and IGF-I receptor tyrosine phosphorylation had similar concentration-response curves and were inhibited by the receptor blocking antibody alphaIR-3. These results indicate that FAK and paxillin are tyrosine-phosphorylated during IGF-I-stimulated lamellipodial advance and suggest that the tyrosine phosphorylation of these two proteins helps mediate IGF-I-stimulated cell and growth cone motility. These responses contrast directly with recent reports showing insulin-stimulated dephosphorylation of FAK and paxillin.
Collapse
Affiliation(s)
- P S Leventhal
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
16
|
Schevzov G, Gunning P, Jeffrey PL, Temm-Grove C, Helfman DM, Lin JJ, Weinberger RP. Tropomyosin localization reveals distinct populations of microfilaments in neurites and growth cones. Mol Cell Neurosci 1997; 8:439-54. [PMID: 9143561 DOI: 10.1006/mcne.1997.0599] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The functional and structural differences between neurites and growth cones suggests the possibility that distinct microfilament populations may exist in each domain. Tropomyosins are integral components of the actin-based microfilament system. Using antibodies which detect three different sets of tropomyosin isoforms, we found that the vast majority of tropomyosin was found in a microfilament-enriched fraction of cultured cortical neurons, therefore enabling us to use the antisera to evaluate compositional differences in neuritic and growth cone microfilaments. An antibody which reacts with all known nonmuscle isoforms of the alpha Tms gene (Tm5NM1-4) stains both neurites and growth cones, whereas a second antibody against the isoform subset, Tm5NM1-2, reacts only with the neurite. A third antibody which reacts with the Tm5a/5b isoforms encoded by a separate gene from alpha Tms was strongly reactive with both neurites and growth cones in 16-h cultures but only with the neurite shaft in 40-h cultures. Treatment of neurons with cytochalasin B allowed neuritic Tm5NM1-2 to spread into growth cones. Removal of the drug resulted in the disappearance of Tm5NM1-2 from the growth cone, indicating that isoform segregation is an active process dependent on intact microfilaments. Treatment of 40-h cultures with nocodazole resulted in the removal of Tm5NM1-2 from the neurite whereas Tm5a/5b now spread back into the growth cone. We conclude that the organization of Tm5NM1-2 and Tm5a/5b in the neurite is at least partially dependent on microtubule integrity. These results indicate that tropomyosin isoforms Tm5NM1-2, Tm5NM3-4, and Tm5a/5b mark three distinct populations of actin filaments in neurites and growth cones. Further, the composition of microfilaments differs between neurites and growth cones and is subject to temporal regulation.
Collapse
Affiliation(s)
- G Schevzov
- Cell Biology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
17
|
Heidemann SR. Cytoplasmic mechanisms of axonal and dendritic growth in neurons. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 165:235-96. [PMID: 8900961 DOI: 10.1016/s0074-7696(08)62224-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The structural mechanisms responsible for the gradual elaboration of the cytoplasmic elongation of neurons are reviewed. In addition to discussing recent work, important older work is included to inform newcomers to the field how the current perspective arose. The highly specialized axon and the less exaggerated dendrite both result from the advance of the motile growth cone. In the area of physiology, studies in the last decade have directly confirmed the classic model of the growth cone pulling forward and the axon elongating from this tension. Particularly in the case of the axon, cytoplasmic elongation is closely linked to the formation of an axial microtubule bundle from behind the advancing growth cone. Substantial progress has been made in understanding the expression of microtubule-associated proteins during neuronal differentiation to stiffen and stabilize axonal microtubules, providing specialized structural support. Studies of membrane organelle transport along the axonal microtubules produced an explosion of knowledge about ATPase molecules serving as motors driving material along microtubule rails. However, most aspects of the cytoplasmic mechanisms responsible for neurogenesis remain poorly understood. There is little agreement on mechanisms for the addition of new plasma membrane or the addition of new cytoskeletal filaments in the growing axon. Also poorly understood are the mechanisms that couple the promiscuous motility of the growth cone to the addition of cytoplasmic elements.
Collapse
Affiliation(s)
- S R Heidemann
- Department of Physiology, Michigan State University, East Lansing 48824-1101, USA
| |
Collapse
|
18
|
Gallo G, Pollack ED. Cyclic remodelling of growth cone lamellae and the effect of target tissue. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 85:140-5. [PMID: 7781162 DOI: 10.1016/0165-3806(94)00201-a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report the existence of cyclical fluctuations in the total size of growth cone lamellae, represented by membrane protrusions and retractions, and show that aspects of this behavior can be regulated by the target tissue for the nerve fibers. The transition of the growth cone from a high to a less motile state, which occurs in the presence of the target tissue, has implications for the mechanisms that underlie nerve fiber elongation during development.
Collapse
Affiliation(s)
- G Gallo
- Department of Biological Sciences, University of Illinois at Chicago 60608, USA
| | | |
Collapse
|
19
|
Zheng J, Buxbaum RE, Heidemann SR. Measurements of growth cone adhesion to culture surfaces by micromanipulation. J Biophys Biochem Cytol 1994; 127:2049-60. [PMID: 7806581 PMCID: PMC2120280 DOI: 10.1083/jcb.127.6.2049] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Neurons were grown on plastic surfaces that were untreated, or treated with polylysine, laminin, or L1 and their growth cones were detached from their culture surface by applying known forces with calibrated glass needles. This detachment force was taken as a measure of the force of adhesion of the growth cone. We find that on all surfaces, lamellipodial growth cones require significantly greater detachment force than filopodial growth cones, but this differences is, in general, due to the greater area of lamellipodial growth cones compared to filopodial growth cones. That is, the stress (force/unit area) required for detachment was similar for growth cones of lamellipodial and filopodial morphology on all surfaces, with the exception of lamellipodial growth cones on L1-treated surfaces, which had a significantly lower stress of detachment than on other surfaces. Surprisingly, the forces required for detachment (760-3,340 mudynes) were three to 15 times greater than the typical resting axonal tension, the force exerted by advancing growth cones, or the forces of retraction previously measured by essentially the same method. Nor did we observe significant differences in detachment force among growth cones of similar morphology on different culture surfaces, with the exception of lamellipodial growth cones on L1-treated surfaces. These data argue against the differential adhesion mechanism for growth cone guidance preferences in culture. Our micromanipulations revealed that the most mechanically resistant regions of growth cone attachment were confined to quite small regions typically located at the ends of filopodia and lamellipodia. Detached growth cones remained connected to the substratum at these regions by highly elastic retraction fibers. The closeness of contact of growth cones to the substratum as revealed by interference reflection microscopy (IRM) did not correlate with our mechanical measurements of adhesion, suggesting that IRM cannot be used as a reliable estimator of growth cone adhesion.
Collapse
Affiliation(s)
- J Zheng
- Department of Physiology, Michigan State University, E. Lansing 48824
| | | | | |
Collapse
|
20
|
Miller JD, Hadley RD, Hammond CE. Growth cone collapse and neurite retraction from cultured Helisoma neurons in response to antibody Fab fragments against an extracellular matrix protein. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 79:203-18. [PMID: 7955319 DOI: 10.1016/0165-3806(94)90125-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Helisoma neurons require a factor(s) present in conditioned medium (CM), for successful neurite outgrowth in vitro. A approximately 300 kDa Helisoma extracellular matrix (ECM) protein has been identified in CM and is necessary for neurite initiation. Here we show that purified approximately 300 kDa ECM protein supports outgrowth. Furthermore, anti- approximately 300 kDa Fab fragments cause a rapid, dose-dependent decrease in outgrowth when added to neurons already growing in CM, culminating in growth cone collapse and neurite retraction at 200 micrograms/ml. Collapsing growth cones rapidly lost lamellipodia and filopodia transformed into long filamentous strands. Contortion of microtubules in retracting neurites into serpentine shapes, apparently by compressive forces, suggests that large-scale microtubule depolymerization is not a prerequisite for growth cone retraction. These results imply that substrate-bound approximately 300 kDa CM protein is necessary and sufficient for CM-stimulated growth cone initiation and neurite elongation from Helisoma neurons.
Collapse
Affiliation(s)
- J D Miller
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston 29425
| | | | | |
Collapse
|
21
|
Maekawa S, Maekawa M, Hattori S, Nakamura S. Purification and molecular cloning of a novel acidic calmodulin binding protein from rat brain. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)86914-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Abosch A, Lagenaur C. Sensitivity of neurite outgrowth to microfilament disruption varies with adhesion molecule substrate. JOURNAL OF NEUROBIOLOGY 1993; 24:344-55. [PMID: 8492111 DOI: 10.1002/neu.480240307] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Interactions between the cytoskeleton and cell adhesion molecules are presumed responsible for neurite extension. We have examined the role of microfilaments in neurite outgrowth on the cell adhesion molecules L1, P84, N-CAM, and on laminin. Cerebellar neurons growing on each substrate exhibited differing growth cone morphologies and rates of neurite extension. Growth of neurites in the presence of cytochalasin B (CB) was not inhibited on substrates of L1 or P84 but was markedly inhibited on N-CAM. Neurons on laminin were initially unable to extend neurites in the presence of CB but recovered this ability within 9 h. These studies suggest that neurite outgrowth mediated by different cell adhesion molecules proceeds via involvement of distinct cytoskeletal interactions.
Collapse
Affiliation(s)
- A Abosch
- Department of Neurobiology, Anatomy and Cell Science, University of Pittsburgh School of Medicine, Pennsylvania 15261
| | | |
Collapse
|
23
|
Lamoureux P, Zheng J, Buxbaum RE, Heidemann SR. A cytomechanical investigation of neurite growth on different culture surfaces. J Cell Biol 1992; 118:655-61. [PMID: 1639849 PMCID: PMC2289549 DOI: 10.1083/jcb.118.3.655] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have examined the relationship between tension, an intrinsic stimulator of axonal elongation, and the culture substrate, an extrinsic regulator of axonal elongation. Chick sensory neurons were cultured on three substrata: (a) plain tissue culture plastic; (b) plastic treated with collagen type IV; and (c) plastic treated with laminin. Calibrated glass needles were used to increase the tension loads on growing neurites. We found that growth cones on all substrata failed to detach when subjected to two to threefold and in some cases 5-10-fold greater tensions than their self-imposed rest tension. We conclude that adhesion to the substrate does not limit the tension exerted by growth cones. These data argue against a "tug-of-war" model for substrate-mediated guidance of growth cones. Neurite elongation was experimentally induced by towing neurites with a force-calibrated glass needle. On all substrata, towed elongation rate was proportional to applied tension above a threshold tension. The proportionality between elongation rate and tension can be regarded as the growth sensitivity of the neurite to tension, i.e., its growth rate per unit tension. On this basis, towed growth on all substrata can be described by the simple linear equation: elongation rate = sensitivity x (applied tension - tension threshold) The numerical values of tension thresholds and neurite sensitivities varied widely among different neurites. On all substrata, thresholds varied from near zero to greater than 200 mudynes, with some tendency for thresholds to cluster between 100 and 150 mudynes. Similarly, the tension sensitivity of neurites varied between 0.5 and 5.0 microns/h/mudyne. The lack of significant differences among sensitivity or threshold values on the various substrata suggest to use that the substratum does not affect the internal "set points" of the neurite for its response to tension. The growth cone of chick sensory neurons is known to pull on its neurite. The simplest cytomechanical model would assume that both growth cone-mediated elongation and towed growth are identical as far as tension input and elongation rate are concerned. We used the equation above and mean values for thresholds and sensitivity from towing experiments to predict the mean growth cone-mediated elongation rate based on mean rest tensions. These predictions are consistent with the observed mean values.
Collapse
Affiliation(s)
- P Lamoureux
- Department of Physiology, Michigan State University, East Lansing 48824-1101
| | | | | | | |
Collapse
|
24
|
Abstract
The exact nature of growth cone motility is far from understood but progress has been made in several areas. It now appears that growth cones pull and not push; we will review the biophysical basis of growth cone movement. Current ideas on the regulation of growth cone motility and the relationship between motility and axon pathfinding are also discussed.
Collapse
Affiliation(s)
- S R Heidemann
- Department of Physiology, Michigan State University, East Lansing 48824-1101
| | | |
Collapse
|
25
|
Kim YT, Wu CF. Distinctions in growth cone morphology and motility between monopolar and multipolar neurons in Drosophila CNS cultures. JOURNAL OF NEUROBIOLOGY 1991; 22:263-75. [PMID: 1909746 DOI: 10.1002/neu.480220306] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Growth cones play a central role in determining neurite extension, pathfinding and branching, and in establishing synaptic connections. This paper describes an initial characterization of growth cone morphology and behavior in dissociated larval central nervous system (CNS) cultures of Drosophila. Contrast-enhanced video images of growth cones in monopolar and multipolar neurons were characterized by employing morphometric parameters such as the number and length of filopodia, and the area and roundness of the lamellipodia. Behavior of growth cones was analyzed by a motility index and boundary flow plots originally devised for measuring motility in other cellular systems. We found that separate CNS regions yielded cultures of different major cell types with distinct neuritic patterns that could be correlated with the morphology and motility of the associated growth cones. Monopolar neurons were the major cell type in brain cultures, whereas multipolar neurons were predominant in ventral ganglion cultures. Moreover, the growth cones of monopolar neurons, which are likely to be associated with the axonal processes, differed from those of multipolar neurons, which might be related to dendritic terminals. Growth cones in monopolar neurons had larger lamellipodia of less erratic shape accompanied by fewer and shorter filopodia, and, when active, displayed much higher motility and less directionality in motion. Alternatively, these morphological and behavioral distinctions between monopolar and multipolar neurons may result from intrinsic differences in membrane adhesion and intracellular transport properties.
Collapse
Affiliation(s)
- Y T Kim
- Department of Biology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
26
|
Abstract
Although many issues remain unresolved, the past year has witnessed a number of advances in our understanding of the inter-relationships between extracellular influences, cell phenotype, growth associated proteins, second messengers, and cytoskeletal components in the control of neurite outgrowth and growth cone behavior. Some of the early events associated with process initiation have been tentatively identified, and more is known about the assembly and stabilization of the microtubular framework of growing neurites. The mechanical forces involved in neurite extension have begun to be quantified, and interactions between the actin and microtubule systems are being further characterized. The current data more strongly support a functional role for GAP-43 in control of motility. The data also tend to support a central role for cytoplasmic calcium in mediating the actions of many growth-regulating influences, and strongly implicate changes in actin filament stability as mediating the behavioral effects of calcium.
Collapse
Affiliation(s)
- K Lankford
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis
| | | | | |
Collapse
|