1
|
Glyakina AV, Galzitskaya OV. Bioinformatics Analysis of Actin Molecules: Why Quantity Does Not Translate Into Quality? Front Genet 2020; 11:617763. [PMID: 33362870 PMCID: PMC7758494 DOI: 10.3389/fgene.2020.617763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
It is time to review all the available data and find the distinctive characteristics of actin that make it such an important cell molecule. The presented double-stranded organization of filamentous actin cannot explain the strong polymorphism of actin fibrils. In this work, we performed bioinformatics analysis of a set of 296 amino acid actin sequences from representatives of different classes of the Chordate type. Based on the results of the analysis, the degree of conservatism of the primary structure of this protein in representatives of the Chordate type was determined. In addition, 155 structures of rabbit actin obtained using X-ray diffraction analysis and electron microscopy have been analyzed over the past 30 years. From pairwise alignments and the calculation of root-mean-square deviations (RMSDs) for these structures, it follows that they are very similar to each other without correlation with the structure resolution and the reconstruction method: the RMSDs for 11,781 pairs did not exceed 3 Å. It turned out that in rabbit actin most of the charged amino acid residues are located inside the protein, which is not typical for the protein structure. We found that two of six exon regions correspond to structural subdomains. To test the double-stranded organization of the actin structure, it is necessary to use new approaches and new techniques, taking into account our new data obtained from the structural analysis of actin.
Collapse
Affiliation(s)
- Anna V Glyakina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Institute of Mathematical Problems of Biology RAS, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Russia
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
2
|
Affiliation(s)
- Robert W. Roberson
- Department of Botany, Arizona State Univeristy, Tempe, Arizona 85287-1601
| |
Collapse
|
3
|
Park MR, Wang YH, Hasenstein KH. Profiling Gene Expression in Germinating Brassica Roots. PLANT MOLECULAR BIOLOGY REPORTER 2014; 32:541-548. [PMID: 24563578 PMCID: PMC3926982 DOI: 10.1007/s11105-013-0668-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism.
Collapse
Affiliation(s)
- Myoung Ryoul Park
- Department of Biology, University of Louisiana, Lafayette, LA 70504 USA
| | - Yi-Hong Wang
- Department of Biology, University of Louisiana, Lafayette, LA 70504 USA
| | | |
Collapse
|
4
|
Jimenez-Lopez JC, Morales S, Castro AJ, Volkmann D, Rodríguez-García MI, Alché JDD. Characterization of profilin polymorphism in pollen with a focus on multifunctionality. PLoS One 2012; 7:e30878. [PMID: 22348028 PMCID: PMC3279341 DOI: 10.1371/journal.pone.0030878] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/28/2011] [Indexed: 12/20/2022] Open
Abstract
Profilin, a multigene family involved in actin dynamics, is a multiple partners-interacting protein, as regard of the presence of at least of three binding domains encompassing actin, phosphoinositide lipids, and poly-L-proline interacting patches. In addition, pollen profilins are important allergens in several species like Olea europaea L. (Ole e 2), Betula pendula (Bet v 2), Phleum pratense (Phl p 12), Zea mays (Zea m 12) and Corylus avellana (Cor a 2). In spite of the biological and clinical importance of these molecules, variability in pollen profilin sequences has been poorly pointed out up until now. In this work, a relatively high number of pollen profilin sequences have been cloned, with the aim of carrying out an extensive characterization of their polymorphism among 24 olive cultivars and the above mentioned plant species. Our results indicate a high level of variability in the sequences analyzed. Quantitative intra-specific/varietal polymorphism was higher in comparison to inter-specific/cultivars comparisons. Multi-optional posttranslational modifications, e.g. phosphorylation sites, physicochemical properties, and partners-interacting functional residues have been shown to be affected by profilin polymorphism. As a result of this variability, profilins yielded a clear taxonomic separation between the five plant species. Profilin family multifunctionality might be inferred by natural variation through profilin isovariants generated among olive germplasm, as a result of polymorphism. The high variability might result in both differential profilin properties and differences in the regulation of the interaction with natural partners, affecting the mechanisms underlying the transmission of signals throughout signaling pathways in response to different stress environments. Moreover, elucidating the effect of profilin polymorphism in adaptive responses like actin dynamics, and cellular behavior, represents an exciting research goal for the future.
Collapse
Affiliation(s)
- Jose C. Jimenez-Lopez
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, High Council for Scientific Research, Granada, Spain
| | - Sonia Morales
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, High Council for Scientific Research, Granada, Spain
| | - Antonio J. Castro
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, High Council for Scientific Research, Granada, Spain
| | - Dieter Volkmann
- Institute of Cellular and Molecular Botany, Department of Plant Cell Biology, University of Bonn, Bonn, Germany
| | - María I. Rodríguez-García
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, High Council for Scientific Research, Granada, Spain
| | - Juan de D. Alché
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, High Council for Scientific Research, Granada, Spain
- * E-mail:
| |
Collapse
|
5
|
Konopka-Postupolska D. Annexins: putative linkers in dynamic membrane-cytoskeleton interactions in plant cells. PROTOPLASMA 2007; 230:203-15. [PMID: 17458635 DOI: 10.1007/s00709-006-0234-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 03/14/2006] [Indexed: 05/08/2023]
Abstract
The plasma membrane, the most external cellular structure, is at the forefront between the plant cell and its environment. Hence, it is naturally adapted to function in detection of external signals, their transduction throughout the cell, and finally, in cell reactions. Membrane lipids and the cytoskeleton, once regarded as simple and static structures, have recently been recognized as significant players in signal transduction. Proteins involved in signal detection and transduction are organised in specific domains at the plasma membrane. Their aggregation allows to bring together and orient the downstream and upstream members of signalling pathways. The cortical cytoskeleton provides a structural framework for rapid signal transduction from the cell periphery into the nucleus. It leads to intracellular reorganisation and wide-scale modulation of cellular metabolism which results in accumulation of newly synthesised proteins and/or secondary metabolites which, in turn, have to be distributed to the appropriate cell compartments. And again, in plant cells, the secretory vesicles that govern polar cellular transport are delivered to their target membranes by interaction with actin microfilaments. In search for factors that could govern subsequent steps of the cell response delineated above we focused on an evolutionary conserved protein family, the annexins, that bind in a calcium-dependent manner to membrane phospholipids. Annexins were proposed to regulate dynamic changes in membrane architecture and to organise the interface between secretory vesicles and the membrane. Certain proteins from this family were also identified as actin binding, making them ideal mediators in cell membrane and cytoskeleton interactions.
Collapse
Affiliation(s)
- D Konopka-Postupolska
- Laboratory of Plant Pathogenesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Gilliland LU, Kandasamy MK, Pawloski LC, Meagher RB. Both vegetative and reproductive actin isovariants complement the stunted root hair phenotype of the Arabidopsis act2-1 mutation. PLANT PHYSIOLOGY 2002; 130:2199-209. [PMID: 12481103 PMCID: PMC166731 DOI: 10.1104/pp.014068] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2001] [Revised: 09/18/2002] [Accepted: 09/18/2002] [Indexed: 05/17/2023]
Abstract
The ACT2 gene, encoding one of eight actin isovariants in Arabidopsis, is the most strongly expressed actin gene in vegetative tissues. A search was conducted for physical defects in act2-1 mutant plants to account for their reduced fitness compared with wild type in population studies. The act2-1 insertion fully disrupted expression of ACT2 RNA and significantly lowered the level of total actin protein in vegetative organs. The root hairs of the act2-1 mutants were 10% to 70% the length of wild-type root hairs, and they bulged severely at the base. The length of the mutant root hairs and degree of bulging at the base were affected by adjusting the osmolarity and gelling agent of the growth medium. The act2-1 mutant phenotypes were fully rescued by an ACT2 genomic transgene. When the act2-1 mutation was combined with another vegetative actin mutation, act7-1, the resulting double mutant exhibited extensive synergistic phenotypes ranging from developmental lethality to severe dwarfism. Transgenic overexpression of the ACT7 vegetative isovariant and ectopic expression of the ACT1 reproductive actin isovariant also rescued the root hair elongation defects of the act2-1 mutant. These results suggest normal ACT2 gene regulation is essential to proper root hair elongation and that even minor differences may cause root defects. However, differences in the actin protein isovariant are not significant to root hair elongation, in sharp contrast to recent reports on the functional nonequivalency of plant actin isovariants. Impairment of root hair functions such as nutrient mining, water uptake, and physical anchoring are the likely cause of the reduced fitness seen for act2-1 mutants in multigenerational studies.
Collapse
Affiliation(s)
- Laura U Gilliland
- Department of Genetics, University of Georgia, Athens, Georgia 30602-7223, USA
| | | | | | | |
Collapse
|
7
|
Guerrero-Barrera AL, García-Cuéllar CM, Villalba JD, Segura-Nieto M, Gómez-Lojero C, Reyes ME, Hernández JM, Garcia RM, de la Garza M. Actin-related proteins in Anabaena spp. and Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 5):1133-1140. [PMID: 8704955 DOI: 10.1099/13500872-142-5-1133] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Actin has been described in all eukaryotic cells as the major microfilament cytoskeletal protein. Although prokaryotic cells do not have a cytoskeleton, proteins related to the latter have been found in different prokaryotic species. We have found prokaryotic actin-related proteins in the enterobacterium Escherichia coli and in the cyanobacteria Anabaena cylindrica and Anabaena variabilis. They were identified by the following criteria: (1) by cross-reaction with a fluorescent conjugated anti-actin (rat-brain) mAb by Western blot analysis (in total cellular extracts); (2) specific binding of acetone powder and soluble cellular extracts to DNase I; and (3) specific binding of cells and total cellular extracts to phalloidin. In E coli, specific binding of phalloidin labelled with rhodamine to cells was detected by spectrofluorometry. In total cellular extracts, three bands of 60, 43 and 35 kDa were weakly recognized by the mAb by Western blot analysis; this recognition increased when phalloidin was added to the extracts. Furthermore, three polypeptides of kDa were isolated by binding to DNase I, showing pI values of 6.7, 6.65 and 6.6, less acidic than all reported actin pI values. In A. cylindrica and A. variabilis, specific binding of phalloidin labelled with rhodamine to cells was also detected by spectrofluorometry. In total and soluble cellular extracts, the mAb recognized two bands of 45 and 40 kDa by Western blot analysis, but only the first was purified by binding to DNase I, and it showed three isoforms of pI values 6.8, 6.5 and 6.4. These results suggest the presence, in prokaryotes, of proteins with similar biochemical characteristics to eukaryotic actin.
Collapse
Affiliation(s)
- Alma L Guerrero-Barrera
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México, DF 07000, Mexico
| | - Claudia M García-Cuéllar
- División de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan DF 14000, Mexico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México, DF 07000, Mexico
| | - José D Villalba
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México, DF 07000, Mexico
| | - Magdalena Segura-Nieto
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Km 9.6, Libramiento Norte, Carretera Irapuato-León, Irapuato, Gto, Mexico
| | - Carlos Gómez-Lojero
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México, DF 07000, Mexico
| | - Magda E Reyes
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México, DF 07000, Mexico
| | - José M Hernández
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México, DF 07000, Mexico
| | - Rosa M Garcia
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México, DF 07000, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, México, DF 07000, Mexico
| |
Collapse
|
8
|
The plant cytoskeleton. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1874-6020(96)80016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|
9
|
Takahashi H, Takano H, Yokoyama A, Hara Y, Kawano S, Toh-e A, Kuroiwa T. Isolation, characterization and chromosomal mapping of an actin gene from the primitive red alga Cyanidioschyzon merolae. Curr Genet 1995; 28:484-90. [PMID: 8575024 DOI: 10.1007/bf00310820] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Based on the results of cytological studies, it has been assumed that Cyanidioschyzon merolae does not contain actin genes. However, Southern hybridization of C. merolae cell-nuclear DNA with a yeast actin-gene probe has been suggested the presence of an actin gene in the C. merolae genome. In the present study, an actin gene was isolated from a C. merolae genomic library using a yeast actin-gene probe. The C. merolae actin gene has no intron. The predicted actin is composed of 377 amino acids and has an estimated molecular mass of 42 003 Da. Southern hybridization indicated that the C. merolae genome contains only one actin gene. This gene is transcribed at a size of 2.4 kb. When Southern hybridization was performed with C. merolae chromosomes separated by pulsed-field gel electrophoresis, a band appeared on unseparated chromosomes XI and XII. A phylogenetic tree based on known eucaryote actin-gene sequences revealed that C. merolae diverged after the division of Protozoa, but before the division of Fungi, Animalia and Chlorophyta.
Collapse
Affiliation(s)
- H Takahashi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Fahrni JF, Pawlowski J. Identification of actins in foraminifera: Phylogenetic perspectives. Eur J Protistol 1995. [DOI: 10.1016/s0932-4739(11)80439-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
|
12
|
|
13
|
Lees-Miller JP, Helfman DM, Schroer TA. A vertebrate actin-related protein is a component of a multisubunit complex involved in microtubule-based vesicle motility. Nature 1992; 359:244-6. [PMID: 1528266 DOI: 10.1038/359244a0] [Citation(s) in RCA: 156] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Actin is a cytoskeletal protein which is highly conserved across eukaryotic phyla. Actin filaments, in association with a family of myosin motor proteins, are required for cellular motile processes as diverse as vesicle transport, cell locomotion and cytokinesis. Many organisms have several closely related actin isoforms. In addition to conventional actins, yeasts contain actin-related proteins that are essential for viability. We show here that vertebrates also contain an actin-related protein (actin-RPV). Actin-RPV is a major component of the dynactin complex, an activator of dynein-driven vesicle movement, indicating that unlike conventional actins which work in conjunction with myosin motors, actin-RPV may be involved in cytoplasmic movements via a microtubule-based system.
Collapse
|