1
|
Ow MC, Nishiguchi MA, Dar AR, Butcher RA, Hall SE. RNAi-dependent expression of sperm genes in ADL chemosensory neurons is required for olfactory responses in Caenorhabditis elegans. Front Mol Biosci 2024; 11:1396587. [PMID: 39055986 PMCID: PMC11269235 DOI: 10.3389/fmolb.2024.1396587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024] Open
Abstract
Environmental conditions experienced early in the life of an animal can result in gene expression changes later in its life history. We have previously shown that C. elegans animals that experienced the developmentally arrested and stress resistant dauer stage (postdauers) retain a cellular memory of early-life stress that manifests during adulthood as genome-wide changes in gene expression, chromatin states, and altered life history traits. One consequence of developmental reprogramming in C. elegans postdauer adults is the downregulation of osm-9 TRPV channel gene expression in the ADL chemosensory neurons resulting in reduced avoidance to a pheromone component, ascr#3. This altered response to ascr#3 requires the principal effector of the somatic nuclear RNAi pathway, the Argonaute (AGO) NRDE-3. To investigate the role of the somatic nuclear RNAi pathway in regulating the developmental reprogramming of ADL due to early-life stress, we profiled the mRNA transcriptome of control and postdauer ADL in wild-type and nrde-3 mutant adults. We found 711 differentially expressed (DE) genes between control and postdauer ADL neurons, 90% of which are dependent upon NRDE-3. Additionally, we identified a conserved sequence that is enriched in the upstream regulatory sequences of the NRDE-3-dependent differentially expressed genes. Surprisingly, 214 of the ADL DE genes are considered "germline-expressed", including 21 genes encoding the Major Sperm Proteins and two genes encoding the sperm-specific PP1 phosphatases, GSP-3 and GSP-4. Loss of function mutations in gsp-3 resulted in both aberrant avoidance and attraction behaviors. We also show that an AGO pseudogene, Y49F6A.1 (wago-11), is expressed in ADL and is required for ascr#3 avoidance. Overall, our results suggest that small RNAs and reproductive genes program the ADL mRNA transcriptome during their developmental history and highlight a nexus between neuronal and reproductive networks in calibrating animal neuroplasticity.
Collapse
Affiliation(s)
- Maria C. Ow
- Biology Department, Syracuse University, Syracuse, NY, United States
| | | | - Abdul Rouf Dar
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Rebecca A. Butcher
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Sarah E. Hall
- Biology Department, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
2
|
Mogilner A, Barnhart EL, Keren K. Experiment, theory, and the keratocyte: An ode to a simple model for cell motility. Semin Cell Dev Biol 2020; 100:143-151. [DOI: 10.1016/j.semcdb.2019.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/27/2019] [Accepted: 10/31/2019] [Indexed: 01/20/2023]
|
3
|
Ma X, Zhao Y, Sun W, Shimabukuro K, Miao L. Transformation: how do nematode sperm become activated and crawl? Protein Cell 2012; 3:755-61. [PMID: 22903434 PMCID: PMC4875351 DOI: 10.1007/s13238-012-2936-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/09/2012] [Indexed: 01/16/2023] Open
Abstract
Nematode sperm undergo a drastic physiological change during spermiogenesis (sperm activation). Unlike mammalian flagellated sperm, nematode sperm are amoeboid cells and their motility is driven by the dynamics of a cytoskeleton composed of major sperm protein (MSP) rather than actin found in other crawling cells. This review focuses on sperm from Caenorhabditis elegans and Ascaris suum to address the roles of external and internal factors that trigger sperm activation and power sperm motility. Nematode sperm can be activated in vitro by several factors, including Pronase and ionophores, and in vivo through the TRY-5 and SPE-8 pathways. Moreover, protease and protease inhibitors are crucial regulators of sperm maturation. MSP-based sperm motility involves a coupled process of protrusion and retraction, both of which have been reconstituted in vitro. Sperm motility is mediated by phosphorylation signals, as illustrated by identification of several key components (MPOP, MFPs and MPAK) in Ascaris and the characterization of GSP-3/4 in C. elegans.
Collapse
Affiliation(s)
- Xuan Ma
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yanmei Zhao
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wei Sun
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Katsuya Shimabukuro
- Department of Chemical and Biological Engineering, Ube National College of Technology, Ube, Yamaguchi, 755-8555 Japan
| | - Long Miao
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
4
|
Fraire-Zamora JJ, Cardullo RA. The physiological acquisition of amoeboid motility in nematode sperm: is the tail the only thing the sperm lost? Mol Reprod Dev 2010; 77:739-50. [PMID: 20803732 DOI: 10.1002/mrd.21193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nematode spermatozoa are highly specialized amoeboid cells that must acquire motility through the extension of a single pseudopod. Despite morphological and molecular differences with flagellated spermatozoa (including a non-actin-based cytoskeleton), nematode sperm must also respond to cues present in the female reproductive tract that render them motile, thereby allowing them to locate and fertilize the egg. The factors that trigger pseudopod extension in vivo are unknown, although current models suggest the activation through proteases acting on the sperm surface resulting in a myriad of biochemical, physiological, and morphological changes. Compelling evidence shows that pseudopod extension is under the regulation of physiological events also observed in other eukaryotic cells (including flagellated sperm) that involve membrane rearrangements in response to extracellular cues that initiate various signal transduction pathways. An integrative approach to the study of nonflagellated spermatozoa will shed light on the identification of unique and conserved processes during fertilization among different taxa.
Collapse
Affiliation(s)
- Juan J Fraire-Zamora
- Department of Biology and the Graduate Program in Evolution, Ecology, and Organismal Biology, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
5
|
Demekhin E, Haugen N, Ibanez B, Lederman J, Murphy K, Verzi D, Witczak D. The geometry and motion of nematode sperm cells. CELL MOTILITY AND THE CYTOSKELETON 2009; 66:317-27. [PMID: 19396868 DOI: 10.1002/cm.20362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The nematode sperm cell crawls by recycling major sperm protein (MSP) from dimers into subfilaments, filaments, and filament complexes, as a result of thermal writhing in the presence of hydrophobic patches. Polymerization near leading edges of the cell intercolates MSP dimers onto the tips of growing filament complexes, forcing them against the cell boundary, and extending the cytoskeleton in the direction of motion. Strong adhesive forces attach the cell to the substrate in the forward part of the lamellipod, while depolymerization in the rearward part of the cell breaks down the cytoskeleton, contracting the lamellipod and pulling the cell body forward. The movement of these cells, then, is caused by coordinated protrusive, adhesive and contractile forces, spatially separated across the lamellipod. This paper considers a phenomenological model that tracks discrete elements of the cytoskeleton in curvilinear coordinates. The pseudo-two dimensional model primarily considers protrusion and rotation of the cell, along with the evolution of the cell boundary. General assumptions are that pH levels within the lamellipod regulate protrusion, contraction and adhesion, and that growth of the cytoskeleton, over time, is perpendicular to the evolving cell boundary. The model follows the growth and contraction of a discrete number of MSP fiber complexes, since they appear to be the principle contributors for force generation in cell boundary protrusion and contraction, and the backbone for the dynamic geometry and motion.
Collapse
Affiliation(s)
- Evgeny Demekhin
- Department of Mechanics and Mathematics-Chair of Higher Algebra, Moscow State University, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
6
|
A persistent mitochondrial deletion reduces fitness and sperm performance in heteroplasmic populations of C. elegans. BMC Genet 2007; 8:8. [PMID: 17394659 PMCID: PMC1852114 DOI: 10.1186/1471-2156-8-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 03/29/2007] [Indexed: 11/21/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) mutations are of increasing interest due to their involvement in aging, disease, fertility, and their role in the evolution of the mitochondrial genome. The presence of reactive oxygen species and the near lack of repair mechanisms cause mtDNA to mutate at a faster rate than nuclear DNA, and mtDNA deletions are not uncommon in the tissues of individuals, although germ-line mtDNA is largely lesion-free. Large-scale deletions in mtDNA may disrupt multiple genes, and curiously, some large-scale deletions persist over many generations in a heteroplasmic state. Here we examine the phenotypic effects of one such deletion, uaDf5, in Caenorhabditis elegans (C. elegans). Our study investigates the phenotypic effects of this 3 kbp deletion. Results The proportion of uaDf5 chromosomes in worms was highly heritable, although uaDf5 content varied from worm to worm and within tissues of individual worms. We also found an impact of the uaDf5 deletion on metabolism. The deletion significantly reduced egg laying rate, defecation rate, and lifespan. Examination of sperm bearing the uaDf5 deletion revealed that sperm crawled more slowly, both in vitro and in vivo. Conclusion Worms harboring uaDf5 are at a selective disadvantage compared to worms with wild-type mtDNA. These effects should lead to the rapid extinction of the deleted chromosome, but it persists indefinitely. We discuss both the implications of this phenomenon and the possible causes of a shortened lifespan for uaDf5 mutant worms.
Collapse
|
7
|
LeClaire LL, Stewart M, Roberts TM. A 48 kDa integral membrane phosphoprotein orchestrates the cytoskeletal dynamics that generate amoeboid cell motility in Ascaris sperm. J Cell Sci 2003. [DOI: 10.1242/jcs.00469 jcs.00469[pii]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protrusion of the lamellipod in the crawling sperm of Ascaris is tightly coupled to the localized vectorial assembly and bundling of the major sperm protein cytoskeleton. In cell-free extracts of sperm, vesicles derived from the leading edge membrane reconstitute protrusion by directing the assembly of columnar meshworks of major sperm protein filaments that push the vesicle forward as they elongate. Treatment with proteases or a tyrosine phosphatase abolished vesicle activity, suggesting the involvement of a membrane phosphoprotein. Fractionation of vesicle proteins by sequential detergent lysis, size exclusion chromatography and immunoprecipitation with antiphosphotyrosine antibody identified a 48 kDa integral membrane phosphoprotein as the only sperm membrane component required to nucleate major sperm protein polymerization under physiological conditions. Immunolabeling assays showed that this protein is distributed uniformly in the sperm plasma membrane, but that its active phosphorylated form is located only at sites of major sperm protein polymerization at the leading edge. Because this protein specifies sites of cytoskeletal assembly, we have named it major sperm protein polymerization organizing protein (MPOP). The phosphorylation of MPOP is pH sensitive and appears to require a soluble tyrosine kinase. Comparison of the activity of MPOP to that of analogous membrane proteins in actin-based systems emphasizes the importance of precise transmission of information from the membrane to the cytoskeleton in amoeboid cell motility.
Collapse
Affiliation(s)
- Lawrence L. LeClaire
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Murray Stewart
- MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
| | - Thomas M. Roberts
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
8
|
LeClaire LL, Stewart M, Roberts TM. A 48 kDa integral membrane phosphoprotein orchestrates the cytoskeletal dynamics that generate amoeboid cell motility in Ascaris sperm. J Cell Sci 2003; 116:2655-63. [PMID: 12746486 DOI: 10.1242/jcs.00469] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protrusion of the lamellipod in the crawling sperm of Ascaris is tightly coupled to the localized vectorial assembly and bundling of the major sperm protein cytoskeleton. In cell-free extracts of sperm, vesicles derived from the leading edge membrane reconstitute protrusion by directing the assembly of columnar meshworks of major sperm protein filaments that push the vesicle forward as they elongate. Treatment with proteases or a tyrosine phosphatase abolished vesicle activity, suggesting the involvement of a membrane phosphoprotein. Fractionation of vesicle proteins by sequential detergent lysis, size exclusion chromatography and immunoprecipitation with antiphosphotyrosine antibody identified a 48 kDa integral membrane phosphoprotein as the only sperm membrane component required to nucleate major sperm protein polymerization under physiological conditions. Immunolabeling assays showed that this protein is distributed uniformly in the sperm plasma membrane, but that its active phosphorylated form is located only at sites of major sperm protein polymerization at the leading edge. Because this protein specifies sites of cytoskeletal assembly, we have named it major sperm protein polymerization organizing protein (MPOP). The phosphorylation of MPOP is pH sensitive and appears to require a soluble tyrosine kinase. Comparison of the activity of MPOP to that of analogous membrane proteins in actin-based systems emphasizes the importance of precise transmission of information from the membrane to the cytoskeleton in amoeboid cell motility.
Collapse
Affiliation(s)
- Lawrence L LeClaire
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | | |
Collapse
|
9
|
Baker AME, Roberts TM, Stewart M. 2.6 A resolution crystal structure of helices of the motile major sperm protein (MSP) of Caenorhabditis elegans. J Mol Biol 2002; 319:491-9. [PMID: 12051923 DOI: 10.1016/s0022-2836(02)00294-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The amoeboid locomotion of nematode sperm is mediated by the assembly dynamics of the major sperm protein (MSP). MSP forms fibrous networks based on a hierarchy of macromolecular assemblies: helical subfilaments are built from MSP dimers; filaments are formed from two subfilaments coiling round one another; and filaments themselves supercoil to produce bundles. To provide a structural context for understanding the role of these macromolecular assemblies in cell locomotion, we have determined the 2.6 A resolution structure of crystals of Caenorhabditis elegans MSP that are constructed from helices of MSP chains that are analogous to the subfilaments from which filaments are constructed. Comparison with the crystal structures of dimers and helical assemblies of Ascaris suum MSP has identified five conserved interaction interfaces that suggest how subfilaments interact in filaments and how filaments can form bundles. The interfaces frequently involve the loop containing residues 78-85, which is divergent between MSP homologues, and the loop containing residues 98-103, which is highly conserved.
Collapse
Affiliation(s)
- Anne M E Baker
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | |
Collapse
|
10
|
Muhlrad PJ, Ward S. Spermiogenesis initiation in Caenorhabditis elegans involves a casein kinase 1 encoded by the spe-6 gene. Genetics 2002; 161:143-55. [PMID: 12019230 PMCID: PMC1462088 DOI: 10.1093/genetics/161.1.143] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Immature spermatids from Caenorhabditis elegans are stimulated by an external activation signal to reorganize their membranes and cytoskeleton to form crawling spermatozoa. This rapid maturation, termed spermiogenesis, occurs without any new gene expression. To better understand this signal transduction pathway, we isolated suppressors of a mutation in the spe-27 gene, which is part of the pathway. The suppressors bypass the requirement for spe-27, as well as three other genes that act in this pathway, spe-8, spe-12, and spe-29. Eighteen of the suppressor mutations are new alleles of spe-6, a previously identified gene required for an early stage of spermatogenesis. The original spe-6 mutations are loss-of-function alleles that prevent major sperm protein (MSP) assembly in the fibrous bodies of spermatocytes and arrest development in meiosis. We have isolated the spe-6 gene and find that it encodes a predicted protein-serine/threonine kinase in the casein kinase 1 family. The suppressor mutations appear to be reduction-of-function alleles. We propose a model whereby SPE-6, in addition to its early role in spermatocyte development, inhibits spermiogenesis until the activation signal is received. The activation signal is transduced through SPE-8, SPE-12, SPE-27, and SPE-29 to relieve SPE-6 repression, thus triggering the formation of crawling spermatozoa.
Collapse
Affiliation(s)
- Paul J Muhlrad
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
11
|
Italiano JE, Stewart M, Roberts TM. How the assembly dynamics of the nematode major sperm protein generate amoeboid cell motility. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 202:1-34. [PMID: 11061562 DOI: 10.1016/s0074-7696(01)02002-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nematode sperm are amoeboid cells that use a major sperm protein (MSP) cytoskeleton in place of a conventional actin cytoskeleton to power their amoeboid motility. In these simple, specialized cells cytoskeletal dynamics is tightly coupled to locomotion. Studies have capitalized on this feature to explore the key structural properties of MSP and to reconstitute motility both in vivo and in vitro. This review discusses how the mechanistic properties shared by the MSP machinery and actin-based motility systems lead to a "push-pull" mechanism for amoeboid cell motility in which cytoskeletal assembly and disassembly at opposite ends of the lamellipodium are associated with independent forces for protrusion of the leading edge and retraction of the cell body.
Collapse
Affiliation(s)
- J E Italiano
- Department of Biological Science, Florida State University, Tallahassee 32306, USA
| | | | | |
Collapse
|
12
|
Royal DC, Royal MA, Wessels D, L'Hernault S, Soll DR. Quantitative analysis of Caenorhabditis elegans sperm motility and how it is affected by mutants spe11 and unc54. CELL MOTILITY AND THE CYTOSKELETON 2000; 37:98-110. [PMID: 9186007 DOI: 10.1002/(sici)1097-0169(1997)37:2<98::aid-cm2>3.0.co;2-d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The sperm of Caenorhabditis elegans translocate in a fashion similar to sperm of Ascaris suum even though their pseudopods are longer, more plastic in shape, and form multiple expansions zones around their perimeter. Mutants in spe-11 form primary spermatocytes with a defective perinuclear region, but the resulting spermatozoa can still crawl and fertilize eggs. However, the resultant zygotes die due to the absence of sperm-supplied spe-11. Computer-assisted analysis of translocating spe-11 sperm reveals a novel defect in the dynamic morphology of their pseudopods. A similar analysis of the C. elegans mutant unc-54, which lacks the most abundant isoform of myosin II, reveals no defect in sperm motility, as expected, since C. elegans sperm have substituted the protein MSP for actin in the process of pseudopod expansion. These results reveal an unexpected defect in the dynamic morphology of pseudopods of spe-11 sperm. This defect, however, does not significantly affect crawling velocity, and it demonstrates how computer-assisted motion analysis systems can reveal subtle behavioral phenotypes in C. elegans mutant spermatozoa.
Collapse
Affiliation(s)
- D C Royal
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
13
|
Italiano JE, Stewart M, Roberts TM. Localized depolymerization of the major sperm protein cytoskeleton correlates with the forward movement of the cell body in the amoeboid movement of nematode sperm. J Cell Biol 1999; 146:1087-96. [PMID: 10477761 PMCID: PMC2169480 DOI: 10.1083/jcb.146.5.1087] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/1999] [Accepted: 08/03/1999] [Indexed: 01/06/2023] Open
Abstract
The major sperm protein (MSP)-based amoeboid motility of Ascaris suum sperm requires coordinated lamellipodial protrusion and cell body retraction. In these cells, protrusion and retraction are tightly coupled to the assembly and disassembly of the cytoskeleton at opposite ends of the lamellipodium. Although polymerization along the leading edge appears to drive protrusion, the behavior of sperm tethered to the substrate showed that an additional force is required to pull the cell body forward. To examine the mechanism of cell body movement, we used pH to uncouple cytoskeletal polymerization and depolymerization. In sperm treated with pH 6.75 buffer, protrusion of the leading edge slowed dramatically while both cytoskeletal disassembly at the base of the lamellipodium and cell body retraction continued. At pH 6.35, the cytoskeleton pulled away from the leading edge and receded through the lamellipodium as its disassembly at the cell body continued. The cytoskeleton disassembled rapidly and completely in cells treated at pH 5.5, but reformed when the cells were washed with physiological buffer. Cytoskeletal reassembly occurred at the lamellipodial margin and caused membrane protrusion, but the cell body did not move until the cytoskeleton was rebuilt and depolymerization resumed. These results indicate that cell body retraction is mediated by tension in the cytoskeleton, correlated with MSP depolymerization at the base of the lamellipodium.
Collapse
Affiliation(s)
- Joseph E. Italiano
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Murray Stewart
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | - Thomas M. Roberts
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
14
|
Haaf A, LeClaire L, Roberts G, Kent HM, Roberts TM, Stewart M, Neuhaus D. Solution structure of the motile major sperm protein (MSP) of Ascaris suum - evidence for two manganese binding sites and the possible role of divalent cations in filament formation. J Mol Biol 1998; 284:1611-24. [PMID: 9878374 DOI: 10.1006/jmbi.1998.2291] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The major sperm protein (MSP) of Ascaris suum mediates amoeboid motility by forming an extensive intermeshed system of cytoskeletal filaments analogous to that formed by actin in many other amoeboid cells. MSP is a dimeric molecule that polymerizes to form non-polar filaments constructed from two helical subfilaments that wind round one another. Moreover, MSP filaments can interact with one another to form higher-order assemblies without requiring the range of accessory proteins usually employed in actin-based systems. A knowledge of how MSP polymerizes and forms the hierarchical series of helical MSP macromolecular assemblies is fundamental to understanding locomotion in these cells. Here we describe the solution structure of MSP dimers determined by NMR spectroscopy under conditions where MSP does not polymerize to form filaments. The solution structure is indistinguishable from that observed in putative MSP subfilament helices by X-ray crystallography, indicating that MSP polymerization is not accompanied by a major conformational change. We also show that the rate of MSP polymerization associated with movement of vesicles in an in vitro motility assay is enhanced by the presence of magnesium and manganese ions and use NMR to show that the primary residues that bind these ions are 24-25 and 83-86. These residues are distant from the interface formed between MSP dimers in subfilament helices, and so are probably not involved in this level of polymerization. Instead the manganese and magnesium ion binding appears to be associated with the assembly of subfilaments into filaments and their subsequent aggregation into bundles.
Collapse
Affiliation(s)
- A Haaf
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
LaMunyon CW, Ward S. Larger sperm outcompete smaller sperm in the nematode Caenorhabditis elegans. Proc Biol Sci 1998; 265:1997-2002. [PMID: 9821364 PMCID: PMC1689481 DOI: 10.1098/rspb.1998.0531] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sperm competition is generally thought to drive the evolution of sperm miniaturization. Males gain advantage by transferring more sperm, which they produce by dividing limited resources into ever smaller cells. Here, we describe the opposite effect of size on the competitiveness of amoeboid sperm in the hermaphroditic nematode Caenorhabditis elegans. Larger sperm crawled faster and displaced smaller sperm, taking precedence at fertilization. Larger sperm took longer to produce, however, and so were more costly than smaller sperm. Our results provide evidence of a mechanism to support recent theoretical and comparative studies that suggest sperm competition can favour not small, but large sperm.
Collapse
Affiliation(s)
- C W LaMunyon
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85741, USA.
| | | |
Collapse
|
16
|
Smith HE, Ward S. Identification of protein-protein interactions of the major sperm protein (MSP) of Caenorhabditis elegans. J Mol Biol 1998; 279:605-19. [PMID: 9641981 DOI: 10.1006/jmbi.1998.1793] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In nematodes, sperm are amoeboid cells that crawl via an extended pseudopod. Unlike those in other crawling cells, this pseudopod contains little or no actin; instead, it utilizes the major sperm protein (MSP). In vivo and in vitro studies of Ascaris suum MSP have demonstrated that motility occurs via the regulated assembly and disassembly of MSP filaments. Filaments composed of MSP dimers are thought to provide the motive force. We have employed the yeast two-hybrid system to investigate MSP-MSP interactions and provide insights into the process of MSP filament formation. Fusions of the Caenorhabditis elegans msp-142 gene to both the lexA DNA binding domain (LEXA-MSP) and a transcriptional activation domain (AD-MSP) interact to drive expression of a lacZ reporter construct. A library of AD-MSP mutants was generated via mutagenic PCR and screened for clones that fail to interact with LEXA-MSP. Single missense mutations were identified and mapped to the crystal structure of A. suum MSP. Two classes of mutations predicted from the structure were recovered: changes in residues critical for the overall fold of the protein, and changes in residues in the dimerization interface. Multiple additional mutations were obtained in the two carboxy-terminal beta strands, a region not predicted to be involved in protein folding or dimer formation. Size fractionation of bacterially expressed MSPs indicates that mutations in this region do not abolish dimer formation. A number of compensating mutations that restore the interaction also map to this region. The data suggest that the carboxy-terminal beta strands are directly involved in interactions required for MSP filament assembly.
Collapse
Affiliation(s)
- H E Smith
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
17
|
Bullock TL, McCoy AJ, Kent HM, Roberts TM, Stewart M. Structural basis for amoeboid motility in nematode sperm. NATURE STRUCTURAL BIOLOGY 1998; 5:184-9. [PMID: 9501910 DOI: 10.1038/nsb0398-184] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell locomotion in amoeboid nematode sperm is generated by the vectorial assembly and bundling of filaments of the major sperm protein (MSP). MSP filaments are constructed from two helical subfilaments and here we describe the structure of putative MSP subfilament helices determined by X-ray crystallography at 3.3 A resolution. In addition to establishing the interfaces involved in polymerization, this structural model shows that the MSP helices are constructed from dimers and have no overall polarity, suggesting that it is unlikely that molecular motors play a direct role in the generation of protrusive force in these amoeboid cells.
Collapse
Affiliation(s)
- T L Bullock
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | |
Collapse
|
18
|
Roberts TM, Salmon ED, Stewart M. Hydrostatic pressure shows that lamellipodial motility in Ascaris sperm requires membrane-associated major sperm protein filament nucleation and elongation. J Cell Biol 1998; 140:367-75. [PMID: 9442112 PMCID: PMC2132582 DOI: 10.1083/jcb.140.2.367] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/1997] [Revised: 11/21/1997] [Indexed: 02/05/2023] Open
Abstract
Sperm from nematodes use a major sperm protein (MSP) cytoskeleton in place of an actin cytoskeleton to drive their ameboid locomotion. Motility is coupled to the assembly of MSP fibers near the leading edge of the pseudopod plasma membrane. This unique motility system has been reconstituted in vitro in cell-free extracts of sperm from Ascaris suum: inside-out vesicles derived from the plasma membrane trigger assembly of meshworks of MSP filaments, called fibers, that push the vesicle forward as they grow (Italiano, J.E., Jr., T.M. Roberts, M. Stewart, and C.A. Fontana. 1996. Cell. 84:105-114). We used changes in hydrostatic pressure within a microscope optical chamber to investigate the mechanism of assembly of the motile apparatus. The effects of pressure on the MSP cytoskeleton in vivo and in vitro were similar: pressures >50 atm slowed and >300 atm stopped fiber growth. We focused on the in vitro system to show that filament assembly occurs in the immediate vicinity of the vesicle. At 300 atm, fibers were stable, but vesicles often detached from the ends of fibers. When the pressure was dropped, normal fiber growth occurred from detached vesicles but the ends of fibers without vesicles did not grow. Below 300 atm, pressure modulates both the number of filaments assembled at the vesicle (proportional to fiber optical density and filament nucleation rate), and their rate of assembly (proportional to the rates of fiber growth and filament elongation). Thus, fiber growth is not simply because of the addition of subunits onto the ends of existing filaments, but rather is regulated by pressure-sensitive factors at or near the vesicle surface. Once a filament is incorporated into a fiber, its rates of addition and loss of subunits are very slow and disassembly occurs by pathways distinct from assembly. The effects of pressure on fiber assembly are sensitive to dilution of the extract but largely independent of MSP concentration, indicating that a cytosolic component other than MSP is required for vesicle-association filament nucleation and elongation. Based on these data we present a model for the mechanism of locomotion-associated MSP polymerization the principles of which may apply generally to the way cells assemble filaments locally to drive protrusion of the leading edge.
Collapse
Affiliation(s)
- T M Roberts
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-3050, USA.
| | | | | |
Collapse
|
19
|
Svitkina TM, Verkhovsky AB, McQuade KM, Borisy GG. Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation. J Cell Biol 1997; 139:397-415. [PMID: 9334344 PMCID: PMC2139803 DOI: 10.1083/jcb.139.2.397] [Citation(s) in RCA: 535] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/1997] [Revised: 07/25/1997] [Indexed: 02/05/2023] Open
Abstract
While the protrusive event of cell locomotion is thought to be driven by actin polymerization, the mechanism of forward translocation of the cell body is unclear. To elucidate the mechanism of cell body translocation, we analyzed the supramolecular organization of the actin-myosin II system and the dynamics of myosin II in fish epidermal keratocytes. In lamellipodia, long actin filaments formed dense networks with numerous free ends in a brushlike manner near the leading edge. Shorter actin filaments often formed T junctions with longer filaments in the brushlike area, suggesting that new filaments could be nucleated at sides of preexisting filaments or linked to them immediately after nucleation. The polarity of actin filaments was almost uniform, with barbed ends forward throughout most of the lamellipodia but mixed in arc-shaped filament bundles at the lamellipodial/cell body boundary. Myosin II formed discrete clusters of bipolar minifilaments in lamellipodia that increased in size and density towards the cell body boundary and colocalized with actin in boundary bundles. Time-lapse observation demonstrated that myosin clusters appeared in the lamellipodia and remained stationary with respect to the substratum in locomoting cells, but they exhibited retrograde flow in cells tethered in epithelioid colonies. Consequently, both in locomoting and stationary cells, myosin clusters approached the cell body boundary, where they became compressed and aligned, resulting in the formation of boundary bundles. In locomoting cells, the compression was associated with forward displacement of myosin features. These data are not consistent with either sarcomeric or polarized transport mechanisms of cell body translocation. We propose that the forward translocation of the cell body and retrograde flow in the lamellipodia are both driven by contraction of an actin-myosin network in the lamellipodial/cell body transition zone.
Collapse
Affiliation(s)
- T M Svitkina
- Laboratory of Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
20
|
Abstract
Parasitic nematode infections remain a major public health problem in many parts of the world. Because most of the current strategies aimed at controlling parasitic nematode infections have met with only limited success, it may be time to consider alternative approaches. An aspect of nematode biology that has drawn little attention as a target for control is the reproductive process. Although there are numerous facets of the overall reproductive biology of nematodes that hold potential as targets for intervention, Alan Scott here focuses on the male reproductive system, and outlines some of the known unique processes and characteristics of sperm formation and sperm function that could be exploited to block fertilization.
Collapse
Affiliation(s)
- A L Scott
- Department of Molecular Microbiology and Immunology, School of Hygiene and Public Health, The Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205-2179, USA. ascott@
| |
Collapse
|
21
|
Mansir A, Justine JL. Actin and major sperm protein in spermatids and spermatozoa of the parasitic nematode Heligmosomoides polygyrus. Mol Reprod Dev 1996; 45:332-41. [PMID: 8916044 DOI: 10.1002/(sici)1098-2795(199611)45:3<332::aid-mrd10>3.0.co;2-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nematode spermatozoa are amoeboid cells. In Caenorhabditis elegans and Ascaris suum, previous studies have reported that sperm motility does not involve actin, but, instead, requires a specific cytoskeletal protein, namely major-sperm-protein (MSP). In Heligmosomoides polygyrus, a species with large and elongate spermatids and spermatozoa, cell organelles are easily identified even with light microscopy. Electrophoresis of Heligmosomoides sperm proteins indicates that the main protein band has a molecular weight of about 15 kDa, as MSP in other nematodes, and is specifically labelled by an anti-MSP antibody raised against C. elegans MSP. A minor band at 43 kDa was specifically labelled by an anti-actin antibody. Reaction of anti-actin and anti-MSP antibodies is specific to, and restricted to, their respective targets. Actin and MSP localisation, studied by indirect immunofluorescence in male germ cells of Heligmosomoides polygyrus, are similar: spermatids show rows of dots, corresponding to the fibrous bodies, around an unlabelled central longitudinal core; spermatozoa are labelled strictly in an anterior crescent-shaped cap, at the opposite pole to the nucleus, which contains fibres of the MSP cytoskeleton. Phalloidin labelling shows that F-actin is present in spermatids, but absent in spermatozoa. Tropomyosin shows a distinct pattern in spermatids, but is located in the MSP and actin-containing cap in spermatozoa. It is hypothesized that actin plays a role in the shaping of the cell and in the arrangement of its organelles during nematode spermiogenesis, when MSP is present, in an inactive state, in the fibrous bodies. The concentration of actin and tropomyosin in the anterior cap is not compatible with previous theories about the MSP cytoskeleton, which is supposed to act in the absence of actin.
Collapse
Affiliation(s)
- A Mansir
- Laboratoire de Biologie parasitaire-Protistologie-Helminthologie, Muséum national d'histoire naturelle, Paris, France
| | | |
Collapse
|
22
|
Italiano JE, Roberts TM, Stewart M, Fontana CA. Reconstitution in vitro of the motile apparatus from the amoeboid sperm of Ascaris shows that filament assembly and bundling move membranes. Cell 1996; 84:105-14. [PMID: 8548814 DOI: 10.1016/s0092-8674(00)80997-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have developed an in vitro motility system from Ascaris sperm, unique amoeboid cells that use filament arrays composed of major sperm protein (MSP) instead of an actin-based apparatus for locomotion. Addition of ATP to sperm extracts induces formation of fibers approximately 2 microns in diameter. These fibers display the key features of the MSP cytoskeleton in vivo. Each fiber consists of a meshwork of MSP filaments and has at one end a vesicle derived from the plasma membrane at the leading edge of the cell. Fiber growth is due to filament assembly at the vesicle; thus, fiber elongation results in vesicle translocation. This in vitro system demonstrates directly that localized polymerization and bundling of filaments can move membranes and provides a powerful assay for evaluating the molecular mechanism of amoeboid cell motility.
Collapse
Affiliation(s)
- J E Italiano
- Department of Biological Science, Florida State University, Tallahassee 32306, USA
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- J A Theriot
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
24
|
Abstract
The simplicity and specialization of the amoeboid motility of nematode sperm can give intriguing insights into the molecular mechanisms underlying movement in more conventional actin-based systems. Amoeboid motility in nematode sperm is based on their major sperm protein. Advances over the past year in understanding the assembly of this protein in vivo and in vitro have underlined the importance of vectorial assembly and filament bundling. In this system, it is possible that these two properties may be sufficient to generate motility that closely resembles that seen in conventional actin-based systems.
Collapse
Affiliation(s)
- T M Roberts
- Department of Biological Science, Florida State University 32306, USA
| | | |
Collapse
|
25
|
Affiliation(s)
- S W L'Hernault
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
26
|
Royal D, Royal M, Italiano J, Roberts T, Soll DR. In Ascaris sperm pseudopods, MSP fibers move proximally at a constant rate regardless of the forward rate of cellular translocation. CELL MOTILITY AND THE CYTOSKELETON 1995; 31:241-53. [PMID: 7585993 DOI: 10.1002/cm.970310307] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Computer-assisted methods have been employed to obtain a high resolution description of pseudopod expansion, cellular translocation, and the subcellular dynamics of MSP fiber complexes in the motile sperm of the nematode Ascaris suum. Although Ascaris sperm translocating in a straight line or along a curved path do not retract their pseudopod or significantly alter pseudopod shape, they move in a cyclic fashion, with an average period between velocity peaks of 0.35 +/- 0.05 min, which is independent of the forward velocity of sperm translocation. Expansion is confined to a central zone at the distal edge of the pseudopod for sperm translocating in a straight line and to a left-handed or right-handed lateral zone in the direction of turning, for sperm translocating along a curved path. For cells translocating in a straight line, the branch points and kinks of MSP fiber complexes move in a retrograde direction in relation to the substratum at an average velocity of 11 microns per min which is independent of the forward velocity of sperm translocation. The distal (anterior) end of a fiber complex, however, moves distally at the speed of sperm translocation when it emanates from the expansion zone, but when it is displaced to a nonexpanding surface of the pseudopod, it stops moving distally. When a cell is anchored to the substratum and is, therefore, nonmotile, the velocity of fiber complexes moving in a retrograde direction doubles. The unique aspects of pseudopod and MSP fiber complex dynamics in Ascaris are compared to the dynamics of pseudopod formation and actin filament dynamics in traditional actin-based amoeboid cells, and the treadmill model for MSP polymerization is reassessed in light of the discovery that fiber complex branch points move proximally (posteriorly) at a fixed rate.
Collapse
Affiliation(s)
- D Royal
- Department of Biological Sciences, University of Iowa, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
27
|
Harris AK. Locomotion of tissue culture cells considered in relation to ameboid locomotion. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 150:35-68. [PMID: 8169081 DOI: 10.1016/s0074-7696(08)61536-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- A K Harris
- Department of Biology, University of North Carolina, Chapel Hill 27599
| |
Collapse
|
28
|
King KL, Essig J, Roberts TM, Moerland TS. Regulation of the Ascaris major sperm protein (MSP) cytoskeleton by intracellular pH. CELL MOTILITY AND THE CYTOSKELETON 1994; 27:193-205. [PMID: 8020106 DOI: 10.1002/cm.970270302] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The development and locomotion of the amoeboid sperm of the nematode, Ascaris suum, depend on precise control of the assembly of their unique major sperm protein (MSP) filament system. We used fluorescence ratio imaging of cells loaded with BCECF to show that intracellular pH (pHi) is involved in controlling MSP polymerization in vivo. Spermatogenesis is marked by a cycle of MSP assembly-disassembly-reassembly that coincides with changes in pHi. In spermatocytes, which contain MSP in paracrystalline fibrous bodies, pHi was 6.8, 0.6 units higher than in spermatids, which disassemble the fibrous bodies and contain no assemblies of MSP filaments. Activation of spermatids to complete development resulted in rapid increase in pHi to 6.4 and reappearance of filaments. Treatment of spermatocytes with weak acids caused the fibrous bodies to disassemble whereas incubation of spermatids in weak bases induced MSP assembly. The MSP filaments in spermatozoa are organized into fiber complexes that flow continuously rearward from the leading edge of the pseudopod. These cells established a pseudopodial pH gradient with pHi 0.15 units higher at the leading edge, where fiber complexes assemble, than at the base of the pseudopod, where disassembly occurs. Acidification of these cells caused the MSP cytoskeleton to disassemble and abolished the pH gradient. Acid removal resulted in reassembly of the cytoskeleton, re-establishment of the pH gradient, and re-initiation of motility. MSP assembly in sperm undergoing normal development and motility and in cells responding to chemical manipulation of pHi occurs preferentially at membranes. Thus, we propose that filament assembly in sperm is controlled by pH-sensitive MSP-membrane interaction.
Collapse
Affiliation(s)
- K L King
- Department of Biological Science, Florida State University, Tallahassee 32306
| | | | | | | |
Collapse
|
29
|
Membrane and Cytoskeleton Flow in Motile Cells with Emphasis on the Contribution of Free-Living Amoebae. INTERNATIONAL REVIEW OF CYTOLOGY 1994. [DOI: 10.1016/s0074-7696(08)62405-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Abstract
Moving cells display a variety of shapes and modes of locomotion, but it is not clear how motility at the molecular level relates to the locomotion of a whole cell, a problem compounded in studies of cells with complex shapes. A striking feature of fish epidermal keratocyte locomotion is its apparent simplicity. Here we present a kinematic description of locomotion which is consistent with the semicircular shape and persistent 'gliding' motion of fish epidermal keratocytes. We propose that extension of the front and retraction of the rear of these cells occurs perpendicularly to the cell edge, and that a graded distribution of extension and retraction rates along the cell margin maintains cell shape and size during locomotion. Evidence for this description is provided by the predicted circumferential motion of lamellar features and the curvature of 'photo-marked' lines within specific molecular components of moving keratocytes. Our description relates the dynamics of molecular assemblies to the movement of a whole cell.
Collapse
Affiliation(s)
- J Lee
- Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599
| | | | | | | |
Collapse
|
31
|
Zigmond SH. Recent quantitative studies of actin filament turnover during cell locomotion. CELL MOTILITY AND THE CYTOSKELETON 1993; 25:309-16. [PMID: 8402952 DOI: 10.1002/cm.970250402] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cell locomotion depends on polymerization and depolymerization of filamentous actin. Net polymerization at the cell front occurs fast enough to fill the extending lamellipod, and since total F-actin is essentially constant over time, depolymerization must equal polymerization. Indeed, the fastest moving cell types have the highest rates of depolymerization. Accounting for the high rate of depolymerization raises several problems. One is that net depolymerization requires the concentration of G-actin to be low (below the critical concentration), but rapid polymerization (occurring < 1 micron away) requires the concentration of G-actin to be high (well above the critical concentration). This may be accomplished by spatial compartmentalization of factors that favor polymerization or depolymerization, and/or by proteins that bind G-actin and prevent spontaneous polymerization while allowing barbed-end elongation. A second problem is that depolymerization proceeds faster than would seem possible from studies of F-actin in vitro (as calculated from number and lengths of filaments present and in vitro rate constants). Rapid depolymerization may be accomplished by filament cutters or by cytoplasmic components (as yet undiscovered) that increase the rate of depolymerization.
Collapse
Affiliation(s)
- S H Zigmond
- Biology Department, University of Pennsylvania, Philadelphia 19104-6018
| |
Collapse
|
32
|
Affiliation(s)
- J P Heath
- Department of Pediatrics and Cell Biology, Baylor College of Medicine, CNRC, 1100 Bates, Houston, Texas 77030, USA
| |
Collapse
|