1
|
Liu W, Hopkins AM, Hou J. The development of modulators for lysophosphatidic acid receptors: A comprehensive review. Bioorg Chem 2021; 117:105386. [PMID: 34695732 DOI: 10.1016/j.bioorg.2021.105386] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/03/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
Lysophosphatidic acids (LPAs) are bioactive phospholipids implicated in a wide range of cellular activities that regulate a diverse array of biological functions. They recognize two types of G protein-coupled receptors (LPARs): LPA1-3 receptors and LPA4-6 receptors that belong to the endothelial gene (EDG) family and non-endothelial gene family, respectively. In recent years, the LPA signaling pathway has captured an increasing amount of attention because of its involvement in various diseases, such as idiopathic pulmonary fibrosis, cancers, cardiovascular diseases and neuropathic pain, making it a promising target for drug development. While no drugs targeting LPARs have been approved by the FDA thus far, at least three antagonists have entered phase Ⅱ clinical trials for idiopathic pulmonary fibrosis (BMS-986020 and BMS-986278) and systemic sclerosis (SAR100842), and one radioligand (BMT-136088/18F-BMS-986327) has entered phase Ⅰ clinical trials for positron emission tomography (PET) imaging of idiopathic pulmonary fibrosis. This article provides an extensive review on the current status of ligand development targeting LPA receptors to modulate LPA signaling and their therapeutic potential in various diseases.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Chemistry, Lakehead University and Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON P7B 6V4, Canada
| | - Austin M Hopkins
- Department of Chemistry, Lakehead University and Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON P7B 6V4, Canada
| | - Jinqiang Hou
- Department of Chemistry, Lakehead University and Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON P7B 6V4, Canada.
| |
Collapse
|
2
|
Ghoneum A, Afify H, Salih Z, Kelly M, Said N. Role of tumor microenvironment in ovarian cancer pathobiology. Oncotarget 2018; 9:22832-22849. [PMID: 29854318 PMCID: PMC5978268 DOI: 10.18632/oncotarget.25126] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/21/2018] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the fifth most common cancer affecting the female population and at present, stands as the most lethal gynecologic malignancy. Poor prognosis and low five-year survival rate are attributed to nonspecific symptoms and below par diagnostic criteria at early phases along with a lack of effective treatment at advanced stages. It is thus of utmost importance to understand ovarian carcinoma through several lenses including its molecular pathogenesis, epidemiology, histological subtypes, hereditary factors, diagnostic approaches and methods of treatment. Above all, it is crucial to dissect the role that the unique peritoneal tumor microenvironment plays in ovarian cancer progression and metastasis. This review seeks to highlight several important aspects of ovarian cancer pathobiology as a means to provide the necessary background to approach ovarian malignancies in the future.
Collapse
Affiliation(s)
- Alia Ghoneum
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Hesham Afify
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Ziyan Salih
- Department of Cancer Pathology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Michael Kelly
- Department of Cancer Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Neveen Said
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Department of Cancer Pathology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
- Department of Cancer Urology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| |
Collapse
|
3
|
Reprint of: “Synthetic lipids and their role in defining macromolecular assemblies”. Chem Phys Lipids 2016; 194:149-57. [DOI: 10.1016/j.chemphyslip.2015.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 11/23/2022]
|
4
|
Parrill AL. Synthetic lipids and their role in defining macromolecular assemblies. Chem Phys Lipids 2015; 191:38-47. [DOI: 10.1016/j.chemphyslip.2015.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
|
5
|
Integrating the puzzle pieces: the current atomistic picture of phospholipid-G protein coupled receptor interactions. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:2-12. [PMID: 22982815 DOI: 10.1016/j.bbalip.2012.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/31/2012] [Accepted: 09/03/2012] [Indexed: 01/09/2023]
Abstract
A compelling question of how phospholipids interact with their target receptors has been of interest since the first receptor-mediated effects were reported. The recent report of a crystal structure for the S1P(1) receptor in complex with an antagonist phospholipid provides interesting perspective on the insights that had previously been gained through structure-activity studies of the phospholipids, as well as modeling and mutagenesis studies of the receptors. This review integrates these varied lines of investigation in the context of their various contributions to our current understanding of phospholipid-receptor interactions. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
6
|
Gupte R, Patil R, Liu J, Wang Y, Lee SC, Fujiwara Y, Fells J, Bolen AL, Emmons-Thompson K, Yates CR, Siddam A, Panupinthu N, Pham TCT, Baker DL, Parrill AL, Mills GB, Tigyi G, Miller DD. Benzyl and naphthalene methylphosphonic acid inhibitors of autotaxin with anti-invasive and anti-metastatic activity. ChemMedChem 2011; 6:922-35. [PMID: 21465666 PMCID: PMC3517046 DOI: 10.1002/cmdc.201000425] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 02/21/2011] [Indexed: 02/03/2023]
Abstract
Autotaxin (ATX, NPP2) is a member of the nucleotide pyrophosphate phosphodiesterase enzyme family. ATX catalyzes the hydrolytic cleavage of lysophosphatidylcholine (LPC) by lysophospholipase D activity, which leads to generation of the growth-factor-like lipid mediator lysophosphatidic acid (LPA). ATX is highly upregulated in metastatic and chemotherapy-resistant carcinomas and represents a potential target to mediate cancer invasion and metastasis. Herein we report the synthesis and pharmacological characterization of ATX inhibitors based on the 4-tetradecanoylaminobenzylphosphonic acid scaffold, which was previously found to lack sufficient stability in cellular systems. The new 4-substituted benzylphosphonic acid and 6-substituted naphthalen-2-ylmethylphosphonic acid analogues block ATX activity with K(i) values in the low micromolar to nanomolar range against FS3, LPC, and nucleotide substrates through a mixed-mode inhibition mechanism. None of the compounds tested inhibit the activity of related enzymes (NPP6 and NPP7). In addition, the compounds were evaluated as agonists or antagonists of seven LPA receptor (LPAR) subtypes. Analogues 22 and 30 b, the two most potent ATX inhibitors, inhibit the invasion of MM1 hepatoma cells across murine mesothelial and human vascular endothelial monolayers in vitro in a dose-dependent manner. The average terminal half-life for compound 22 is 10±5.4 h and it causes a long-lasting decrease in plasma LPA levels. Compounds 22 and 30 b significantly decrease lung metastasis of B16-F10 syngeneic mouse melanoma in a post-inoculation treatment paradigm. The 4-substituted benzylphosphonic acids and 6-substituted naphthalen-2-ylmethylphosphonic acids described herein represent new lead compounds that effectively inhibit the ATX-LPA-LPAR axis both in vitro and in vivo.
Collapse
Affiliation(s)
- Renuka Gupte
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163 (USA) Fax: (+1) 901 448 3446
| | - Renukadevi Patil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163 (USA) Fax: (+1) 901 448 3446
| | - Jianxiong Liu
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163 (USA)
| | - Yaohong Wang
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163 (USA)
| | - Sue C. Lee
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163 (USA)
| | - Yuko Fujiwara
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163 (USA)
| | - James Fells
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163 (USA)
| | - Alyssa L. Bolen
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163 (USA)
| | - Karin Emmons-Thompson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163 (USA) Fax: (+1) 901 448 3446
| | - C. Ryan Yates
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163 (USA) Fax: (+1) 901 448 3446
| | - Anjaih Siddam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163 (USA) Fax: (+1) 901 448 3446
| | - Nattapon Panupinthu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054 (USA)
| | | | - Daniel L. Baker
- Department of Chemistry, University of Memphis, TN 38152 (USA)
| | - Abby L. Parrill
- Department of Chemistry, University of Memphis, TN 38152 (USA),Computational Research on Materials Institute, University of Memphis, TN 38152 (USA)
| | - Gordon B. Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054 (USA)
| | - Gabor Tigyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163 (USA)
| | - Duane D. Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163 (USA) Fax: (+1) 901 448 3446
| |
Collapse
|
7
|
Im DS. Pharmacological tools for lysophospholipid GPCRs: development of agonists and antagonists for LPA and S1P receptors. Acta Pharmacol Sin 2010; 31:1213-22. [PMID: 20729877 DOI: 10.1038/aps.2010.135] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previous studies on lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) using various approaches have shown that both the molecules can act as intercellular signaling molecules. The discovery of the Edg subfamily of G-protein-coupled receptors (GPCRs) (later renamed LPA(1-3) and S1P(1-5)) for these molecules has opened up a new avenue for pathophysiological research on lysophospholipids. Genetic and molecular studies on lysophospholipid GPCRs have elucidated pathophysiological impacts and roles in cellular signaling pathways. Recently, lysophospholipid GPCR genes have been used to develop receptor subtype-selective agonists and antagonists. The discovery of FTY720, a novel immune modulator, along with other chemical tools, has provided a means of elucidating the functions of each lysophospholipid GPCR on an organ and the whole body level. This communication attempts to retrospectively review the development of agonists and antagonists for lysophospholipid GPCRs, provide integrated information on pharmacological tools for lysophospholipid GPCR signaling, and speculate on future drug development.
Collapse
|
8
|
Tokumura A, Carbone LD, Yoshioka Y, Morishige J, Kikuchi M, Postlethwaite A, Watsky MA. Elevated serum levels of arachidonoyl-lysophosphatidic acid and sphingosine 1-phosphate in systemic sclerosis. Int J Med Sci 2009; 6:168-76. [PMID: 19521548 PMCID: PMC2695151 DOI: 10.7150/ijms.6.168] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/02/2009] [Indexed: 12/12/2022] Open
Abstract
Systemic sclerosis (SSc) is an often fatal disease characterized by autoimmunity and inflammation, leading to widespread vasculopathy and fibrosis. Lysophosphatidic acid (LPA), a bioactive phospholipid in serum, is generated from lysophospholipids secreted from activated platelets in part by the action of lysophospholipase D (lysoPLD). Sphingosine 1-phosphate (S1P), a member of the bioactive lysophospholipid family, is also released from activated platelets. Because activated platelets are a hallmark of SSc, we wanted to determine whether subjects with SSc have altered serum lysophospholipid levels or lysoPLD activity. Lysophospholipid levels were measured using mass spectrometric analysis. LysoPLD activity was determined by quantifying choline released from exogenous lysophosphatidylcholine (LPC). The major results were that serum levels of arachidonoyl (20:4)-LPA and S1P were significantly higher in SSc subjects versus controls. Furthermore, serum LPA:LPC ratios of two different polyunsaturated phospholipid molecular species, and also the ratio of all species combined, were significantly higher in SSc subjects versus controls. No significant differences were found between other lysophospholipid levels or lysoPLD activities. Elevated 20:4 LPA, S1P levels and polyunsaturated LPA:LPC ratios may be markers for and/or play a significant role in the etiology of SSc and may be future pharmacological targets for SSc treatment.
Collapse
Affiliation(s)
- Akira Tokumura
- Department of Health Chemistry, Institute of Health Bioscience, The University of Tokushima Graduate School, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Prestwich GD, Gajewiak J, Zhang H, Xu X, Yang G, Serban M. Phosphatase-resistant analogues of lysophosphatidic acid: agonists promote healing, antagonists and autotaxin inhibitors treat cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:588-94. [PMID: 18454946 DOI: 10.1016/j.bbalip.2008.03.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/24/2008] [Accepted: 03/25/2008] [Indexed: 11/25/2022]
Abstract
Isoform-selective agonists and antagonists of the lysophosphatidic acid (LPA) G protein-coupled receptors (GPCRs) have important potential applications in cell biology and therapy. LPA GPCRs regulate cancer cell proliferation, invasion, angiogenesis, and also biochemical resistance to chemotherapy- and radiotherapy-induced apoptosis. LPA and its analogues also are feedback inhibitors of the enzyme lysophospholipase D (lysoPLD, a.k.a., autotaxin, ATX), a central regulator of invasion and metastasis. For cancer therapy, the optimal therapeutic profile would be a metabolically-stabilized, pan-LPA receptor antagonist that also inhibited lysoPLD. For protection of gastrointestinal mucosa and lymphocytes, LPA agonists would be desirable to minimize or reverse radiation or chemical-induced injury. Analogues of lysophosphatidic acid (LPA) that are chemically modified to be less susceptible to phospholipases and phosphatases show activity as long-lived receptor-specific agonists and antagonists for LPA receptors, as well as inhibitors for the lysoPLD activity of ATX.
Collapse
Affiliation(s)
- Glenn D Prestwich
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, Utah 84108, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Gajewiak J, Tsukahara R, Fujiwara Y, Tigyi G, Prestwich GD. Synthesis, pharmacology, and cell biology of sn-2-aminooxy analogues of lysophosphatidic acid. Org Lett 2008; 10:1111-4. [PMID: 18284246 DOI: 10.1021/ol7030747] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient enantioselective synthesis of sn-2-aminooxy (AO) analogues of lysophosphatidic acid (LPA) that possess palmitoyl and oleoyl acyl chains is presented. Both sn-2-AO LPA analogues are agonists for the LPA1, LPA2, and LPA4 G-protein-coupled receptors, but antagonists for the LPA3 receptor and inhibitors of autotaxin (ATX). Moreover, both analogues stimulate migration of intestinal epithelial cells in a scratch wound assay.
Collapse
Affiliation(s)
- Joanna Gajewiak
- Department of Medicinal Chemistry, The University of Utah, 419 Wakara Way, Salt Lake City, UT 84108-1257, USA
| | | | | | | | | |
Collapse
|