1
|
Bolnykh V, Rossetti G, Rothlisberger U, Carloni P. Expanding the boundaries of ligand–target modeling by exascale calculations. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Viacheslav Bolnykh
- Laboratory of Computational Chemistry and Biochemistry École Polytechnique Fédérale de Lausanne Lausanne Switzerland
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM‐9)/Institute for Advanced Simulations (IAS‐5) Forschungszentrum Jülich Jülich Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM‐9)/Institute for Advanced Simulations (IAS‐5) Forschungszentrum Jülich Jülich Germany
- Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich Jülich Germany
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation University Hospital Aachen RWTH Aachen University Aachen Germany
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Paolo Carloni
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS‐5/INM‐9) “Computational Biomedicine” Forschungszentrum Jülich Jülich Germany
- JARA‐Institute INM‐11 “Molecular Neuroscience and Neuroimaging” Forschungszentrum Jülich Jülich Germany
| |
Collapse
|
2
|
Cheuka PM, Dziwornu G, Okombo J, Chibale K. Plasmepsin Inhibitors in Antimalarial Drug Discovery: Medicinal Chemistry and Target Validation (2000 to Present). J Med Chem 2020; 63:4445-4467. [PMID: 31913032 DOI: 10.1021/acs.jmedchem.9b01622] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plasmepsins represent novel antimalarial drug targets. However, plasmepsin-based antimalarial drug discovery efforts in the past 2 decades have generally suffered some drawbacks including lack of translatability of target inhibition to potent parasite inhibition in vitro and in vivo as well as poor selectivity over the related human aspartic proteases. Most studies reported in this period have over-relied on the use of hemoglobinase plasmepsins I-IV (particularly I and II) as targets for the new inhibitors even though these are known to be nonessential at the asexual stage of parasite development. Therefore, future antimalarial drug discovery efforts seeking to identify plasmepsin inhibitors should focus on incorporating non-hemoglobinase plasmepsins such as V, IX, and X in their screening in order to maximize chances of success. Additionally, there is need to go beyond just target enzymatic activity profiling to establishing cellular activity, physicochemical as well as drug metabolism and pharmacokinetics properties and finally in vivo proof-of-concept while ensuring selectivity over related human host proteases.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, University of Zambia, Great East Road Campus, P.O. Box 32379, Lusaka, Zambia
| | - Godwin Dziwornu
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University, 701 West 168th Street, New York, New York 10032, United States
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
3
|
Bobrovs R, Jaudzems K, Jirgensons A. Exploiting Structural Dynamics To Design Open-Flap Inhibitors of Malarial Aspartic Proteases. J Med Chem 2019; 62:8931-8950. [DOI: 10.1021/acs.jmedchem.9b00184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Raitis Bobrovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| |
Collapse
|
4
|
Rayan M, Abdallah Z, Abu-Lafi S, Masalha M, Rayan A. Indexing Natural Products for their Antifungal Activity by Filters-based Approach: Disclosure of Discriminative Properties. Curr Comput Aided Drug Des 2019; 15:235-242. [DOI: 10.2174/1573409914666181017100532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/30/2022]
Abstract
<P>Background: A considerable worldwide increase in the rate of invasive fungal infections
and resistance toward antifungal drugs was witnessed during the past few decades. Therefore, the need
for newer antifungal candidates is paramount. Nature has been the core source of therapeutics for thousands
of years, and an impressive number of modern drugs including antifungals were derived from
natural sources. In order to facilitate the recognition of potential candidates that can be derived from
natural sources, an iterative stochastic elimination optimization technique to index natural products for
their antifungal activity was utilized.
Methods:
A set of 240 FDA-approved antifungal drugs, which represent the active domain, and a set of
2,892 natural products, which represent the inactive domain, were used to construct predictive models
and to index natural products for their antifungal bioactivity. The area under the curve for the produced
predictive model was 0.89. When applying it to a database that is composed of active/inactive chemicals,
we succeeded to detect 42% of the actives (antifungal drugs) in the top one percent of the screened
chemicals, compared with one-percent when using a random model.
Results and Conclusion:
Eight natural products, which were highly scored as likely antifungal drugs,
are disclosed. Searching PubMed showed only one molecule (Flindersine) out of the eight that have
been tested was reported as an antifungal. The other seven phytochemicals await evaluation for their
antifungal bioactivity in a wet laboratory.</P>
Collapse
Affiliation(s)
- Mahmoud Rayan
- Institute of Applied Research, Galilee Society, Shefa-Amr 20200, Israel
| | - Ziyad Abdallah
- Institute of Applied Research, Galilee Society, Shefa-Amr 20200, Israel
| | - Saleh Abu-Lafi
- Faculty of Pharmacy, Al-Quds University, Abu-Dies, Palestinian Territory, Occupied
| | - Mahmud Masalha
- Drug Discovery Informatics Lab, QRC - Qasemi Research Center, Al-Qasemi Academic College, Baka EL-Garbiah 30100, Israel
| | - Anwar Rayan
- Institute of Applied Research, Galilee Society, Shefa-Amr 20200, Israel
| |
Collapse
|
5
|
Zhou MB, Pi R, Teng F, Li Y, Li JH. Ring-opening formal hetero-[5+2] cycloaddition of 1-tosyl-2,3-dihydro-1H-pyrroles with terminal alkynes: entry to 1-tosyl-2,3-dihydro 2,3-dihydro-1H-azepines. Chem Commun (Camb) 2019; 55:11295-11298. [DOI: 10.1039/c9cc05082e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lewis acid-catalyzed formal hetero-[5+2] cycloaddition of 2,3-dihydro-1H-pyrroles with alkynes through C(sp2)–N bond cleavage toward 2,3-dihydro-1H-azepines is described.
Collapse
Affiliation(s)
- Ming-Bo Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education)
| | - Rui Pi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Fan Teng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education)
| |
Collapse
|
6
|
Nature is the best source of anti-inflammatory drugs: indexing natural products for their anti-inflammatory bioactivity. Inflamm Res 2017; 67:67-75. [DOI: 10.1007/s00011-017-1096-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/12/2017] [Accepted: 09/23/2017] [Indexed: 02/05/2023] Open
|
7
|
Valdés-Tresanco ME, Valdés-Tresanco MS, Valiente PA, Cocho G, Mansilla R, Nieto-Villar JM. Protein surface roughness accounts for binding free energy of Plasmepsin II-ligand complexes. J Mol Recognit 2017; 31. [PMID: 28895236 DOI: 10.1002/jmr.2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 11/10/2022]
Abstract
The calculation of absolute binding affinities for protein-inhibitor complexes remains as one of the main challenges in computational structure-based ligand design. The present work explored the calculations of surface fractal dimension (as a measure of surface roughness) and the relationship with experimental binding free energies of Plasmepsin II complexes. Plasmepsin II is an attractive target for novel therapeutic compounds to treat malaria. However, the structural flexibility of this enzyme is a drawback when searching for specific inhibitors. Concerning that, we performed separate explicitly solvated molecular dynamics simulations using the available high-resolution crystal structures of different Plasmepsin II complexes. Molecular dynamics simulations allowed a better approximation to systems dynamics and, therefore, a more reliable estimation of surface roughness. This constitutes a novel approximation in order to obtain more realistic values of fractal dimension, because previous works considered only x-ray structures. Binding site fractal dimension was calculated considering the ensemble of structures generated at different simulation times. A linear relationship between binding site fractal dimension and experimental binding free energies of the complexes was observed within 20 ns. Previous studies of the subject did not uncover this relationship. Regression model, coined FD model, was built to estimate binding free energies from binding site fractal dimension values. Leave-one-out cross-validation showed that our model reproduced accurately the absolute binding free energies for our training set (R2 = 0.76; <|error|> =0.55 kcal/mol; SDerror = 0.19 kcal/mol). The fact that such a simple model may be applied raises some questions that are addressed in the article.
Collapse
Affiliation(s)
- Mario E Valdés-Tresanco
- Computational Biology and Biomolecular Dynamics Laboratory, Center for Proteins Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | | | - Pedro A Valiente
- Computational Biology and Biomolecular Dynamics Laboratory, Center for Proteins Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | - Germinal Cocho
- C3 Complex Systems Institute and UNAM Physics Institute, Mexico
| | - Ricardo Mansilla
- Center for Interdisciplinary Investigations of Humanities and Sciences, UNAM, Mexico
| | - J M Nieto-Villar
- Department of Chemical-Physics, Faculty of Chemistry and H. Poincare Group of Complex Systems, Faculty of Physics, University of Havana, Havana, Cuba
| |
Collapse
|
8
|
Coburger I, Schaub Y, Roeser D, Hardes K, Maeder P, Klee N, Steinmetzer T, Imhof D, Diederich WE, Than ME. Identification of inhibitors of the transmembrane protease FlaK of Methanococcus maripaludis. Microbiologyopen 2016; 5:637-46. [PMID: 27038342 PMCID: PMC4985597 DOI: 10.1002/mbo3.358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 01/17/2023] Open
Abstract
GxGD‐type intramembrane cleaving proteases (I‐CLiPs) form a family of proteolytic enzymes that feature an aspartate‐based catalytic mechanism. Yet, they structurally and functionally largely differ from the classical pepsin‐like aspartic proteases. Among them are the archaeal enzyme FlaK, processing its substrate FlaB2 during the formation of flagella and γ‐secretase, which is centrally involved in the etiology of the neurodegenerative Alzheimer's disease. We developed an optimized activity assay for FlaK and based on screening of a small in‐house library and chemical synthesis, we identified compound 9 as the first inhibitor of this enzyme. Our results show that this intramembrane protease differs from classical pepsin‐like aspartic proteases and give insights into the substrate recognition of this enzyme. By providing the needed tools to further study the enzymatic cycle of FlaK, our results also enable further studies towards a functional understanding of other GxGD‐type I‐CLiPs.
Collapse
Affiliation(s)
- Ina Coburger
- Leibniz Institute on Aging (FLI), Protein Crystallography Group, Beutenbergstr. 11, Jena, 07745, Germany
| | - Yvonne Schaub
- Leibniz Institute on Aging (FLI), Protein Crystallography Group, Beutenbergstr. 11, Jena, 07745, Germany
| | - Dirk Roeser
- Leibniz Institute on Aging (FLI), Protein Crystallography Group, Beutenbergstr. 11, Jena, 07745, Germany
| | - Kornelia Hardes
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Patrick Maeder
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Nina Klee
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Torsten Steinmetzer
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Diana Imhof
- Institute of Pharmacy, Pharmaceutical Chemistry I, University of Bonn, Brühler Str. 7, Bonn, 53119, Germany
| | - Wibke E Diederich
- Department of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, Marburg, 35032, Germany
| | - Manuel E Than
- Leibniz Institute on Aging (FLI), Protein Crystallography Group, Beutenbergstr. 11, Jena, 07745, Germany
| |
Collapse
|
9
|
Rasina D, Otikovs M, Leitans J, Recacha R, Borysov OV, Kanepe-Lapsa I, Domraceva I, Pantelejevs T, Tars K, Blackman MJ, Jaudzems K, Jirgensons A. Fragment-Based Discovery of 2-Aminoquinazolin-4(3H)-ones As Novel Class Nonpeptidomimetic Inhibitors of the Plasmepsins I, II, and IV. J Med Chem 2015; 59:374-87. [PMID: 26670264 DOI: 10.1021/acs.jmedchem.5b01558] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2-Aminoquinazolin-4(3H)-ones were identified as a novel class of malaria digestive vacuole plasmepsin inhibitors by using NMR-based fragment screening against Plm II. Initial fragment hit optimization led to a submicromolar inhibitor, which was cocrystallized with Plm II to produce an X-ray structure of the complex. The structure showed that 2-aminoquinazolin-4(3H)-ones bind to the open flap conformation of the enzyme and provided clues to target the flap pocket. Further improvement in potency was achieved via introduction of hydrophobic substituents occupying the flap pocket. Most of the 2-aminoquinazolin-4(3H)-one based inhibitors show a similar activity against digestive Plms I, II, and IV and >10-fold selectivity versus CatD, although varying the flap pocket substituent led to one Plm IV selective inhibitor. In cell-based assays, the compounds show growth inhibition of Plasmodium falciparum 3D7 with IC50 ∼ 1 μM. Together, these results suggest 2-aminoquinazolin-4(3H)-ones as perspective leads for future development of an antimalarial agent.
Collapse
Affiliation(s)
- Dace Rasina
- Latvian Institute of Organic Synthesis , Aizkraukles 21, Riga LV-1006, Latvia
| | - Martins Otikovs
- Latvian Institute of Organic Synthesis , Aizkraukles 21, Riga LV-1006, Latvia
| | - Janis Leitans
- Biomedical Research and Study Centre , Ratsupites 1, Riga LV-1067, Latvia
| | - Rosario Recacha
- Latvian Institute of Organic Synthesis , Aizkraukles 21, Riga LV-1006, Latvia
| | - Oleksandr V Borysov
- Latvian Institute of Organic Synthesis , Aizkraukles 21, Riga LV-1006, Latvia
| | - Iveta Kanepe-Lapsa
- Latvian Institute of Organic Synthesis , Aizkraukles 21, Riga LV-1006, Latvia
| | - Ilona Domraceva
- Latvian Institute of Organic Synthesis , Aizkraukles 21, Riga LV-1006, Latvia
| | - Teodors Pantelejevs
- Latvian Institute of Organic Synthesis , Aizkraukles 21, Riga LV-1006, Latvia
| | - Kaspars Tars
- Biomedical Research and Study Centre , Ratsupites 1, Riga LV-1067, Latvia
| | - Michael J Blackman
- The Francis Crick Institute, Mill Hill Laboratory , The Ridgeway, Mill Hill, London NW7 1AA, U.K
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis , Aizkraukles 21, Riga LV-1006, Latvia
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis , Aizkraukles 21, Riga LV-1006, Latvia
| |
Collapse
|
10
|
Kuhnert M, Blum A, Steuber H, Diederich WE. Privileged Structures Meet Human T-Cell Leukemia Virus-1 (HTLV-1): C2-Symmetric 3,4-Disubstituted Pyrrolidines as Nonpeptidic HTLV-1 Protease Inhibitors. J Med Chem 2015; 58:4845-50. [PMID: 26000468 DOI: 10.1021/acs.jmedchem.5b00346] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3,4-disubstituted pyrrolidines originally designed to inhibit the closely related HIV-1 protease were evaluated as privileged structures against HTLV-1 protease (HTLV-1 PR). The most potent inhibitor of this series exhibits two-digit nanomolar affinity and represents, to the best of our knowledge, the most potent nonpeptidic inhibitor of HTLV-1 PR described so far. The X-ray structures of two representatives bound to HTLV-1 PR were determined, and the structural basis of their affinity is discussed.
Collapse
Affiliation(s)
- Maren Kuhnert
- †Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Andreas Blum
- †Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Holger Steuber
- ‡LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Wibke E Diederich
- †Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| |
Collapse
|
11
|
Huizing AP, Mondal M, Hirsch AKH. Fighting malaria: structure-guided discovery of nonpeptidomimetic plasmepsin inhibitors. J Med Chem 2015; 58:5151-63. [PMID: 25719272 DOI: 10.1021/jm5014133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmepsins (Plms) are aspartic proteases involved in the degradation of human hemoglobin by Plasmodium falciparum. Given that the parasite needs the resulting amino acid building blocks for its growth and development, plasmepsins are an important antimalarial drug target. Over the past decade, tremendous progress has been achieved in the development of inhibitors of plasmepsin using two strategies: structure-based drug design (SBDD) and structure-based virtual screening (SBVS). Herein, we review the inhibitors of Plms I-IV developed by SBDD or SBVS with a particular focus on obtaining selectivity versus the human Asp proteases cathepsins and renin and activity in cell-based assays. By use of SBDD, the flap pocket of Plm II has been discovered and constitutes a convenient handle to obtain selectivity. In SBVS, activity against Plms I-IV and selectivity versus cathepsins are not always taken into account. A combination of SBVS, SBDD, and molecular dynamics simulations opens up opportunities for future design cycles.
Collapse
Affiliation(s)
- Anja P Huizing
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, The Netherlands
| | - Milon Mondal
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, The Netherlands
| | - Anna K H Hirsch
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, The Netherlands
| |
Collapse
|
12
|
Pappalardo M, Shachaf N, Basile L, Milardi D, Zeidan M, Raiyn J, Guccione S, Rayan A. Sequential application of ligand and structure based modeling approaches to index chemicals for their hH4R antagonism. PLoS One 2014; 9:e109340. [PMID: 25330207 PMCID: PMC4199621 DOI: 10.1371/journal.pone.0109340] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/10/2014] [Indexed: 02/03/2023] Open
Abstract
The human histamine H4 receptor (hH4R), a member of the G-protein coupled receptors (GPCR) family, is an increasingly attractive drug target. It plays a key role in many cell pathways and many hH4R ligands are studied for the treatment of several inflammatory, allergic and autoimmune disorders, as well as for analgesic activity. Due to the challenging difficulties in the experimental elucidation of hH4R structure, virtual screening campaigns are normally run on homology based models. However, a wealth of information about the chemical properties of GPCR ligands has also accumulated over the last few years and an appropriate combination of these ligand-based knowledge with structure-based molecular modeling studies emerges as a promising strategy for computer-assisted drug design. Here, two chemoinformatics techniques, the Intelligent Learning Engine (ILE) and Iterative Stochastic Elimination (ISE) approach, were used to index chemicals for their hH4R bioactivity. An application of the prediction model on external test set composed of more than 160 hH4R antagonists picked from the chEMBL database gave enrichment factor of 16.4. A virtual high throughput screening on ZINC database was carried out, picking ∼ 4000 chemicals highly indexed as H4R antagonists' candidates. Next, a series of 3D models of hH4R were generated by molecular modeling and molecular dynamics simulations performed in fully atomistic lipid membranes. The efficacy of the hH4R 3D models in discrimination between actives and non-actives were checked and the 3D model with the best performance was chosen for further docking studies performed on the focused library. The output of these docking studies was a consensus library of 11 highly active scored drug candidates. Our findings suggest that a sequential combination of ligand-based chemoinformatics approaches with structure-based ones has the potential to improve the success rate in discovering new biologically active GPCR drugs and increase the enrichment factors in a synergistic manner.
Collapse
Affiliation(s)
- Matteo Pappalardo
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Nir Shachaf
- Drug Discovery Informatics Lab, QRC-Qasemi Research Center, Al-Qasemi Academic College, Baka El-Garbiah, Israel
| | - Livia Basile
- Etnalead s.r.l., Scuola Superiore di Catania, University of Catania, Catania, Italy
| | - Danilo Milardi
- National Research Council, Institute of Biostructures and Bioimaging, Catania, Italy
| | - Mouhammed Zeidan
- Drug Discovery Informatics Lab, QRC-Qasemi Research Center, Al-Qasemi Academic College, Baka El-Garbiah, Israel
| | - Jamal Raiyn
- Drug Discovery Informatics Lab, QRC-Qasemi Research Center, Al-Qasemi Academic College, Baka El-Garbiah, Israel
| | - Salvatore Guccione
- Etnalead s.r.l., Scuola Superiore di Catania, University of Catania, Catania, Italy
- Department of Pharmaceutical Sciences, University of Catania, Catania, Italy
| | - Anwar Rayan
- Drug Discovery Informatics Lab, QRC-Qasemi Research Center, Al-Qasemi Academic College, Baka El-Garbiah, Israel
| |
Collapse
|
13
|
Abstract
Computer-aided drug discovery/design methods have played a major role in the development of therapeutically important small molecules for over three decades. These methods are broadly classified as either structure-based or ligand-based methods. Structure-based methods are in principle analogous to high-throughput screening in that both target and ligand structure information is imperative. Structure-based approaches include ligand docking, pharmacophore, and ligand design methods. The article discusses theory behind the most important methods and recent successful applications. Ligand-based methods use only ligand information for predicting activity depending on its similarity/dissimilarity to previously known active ligands. We review widely used ligand-based methods such as ligand-based pharmacophores, molecular descriptors, and quantitative structure-activity relationships. In addition, important tools such as target/ligand data bases, homology modeling, ligand fingerprint methods, etc., necessary for successful implementation of various computer-aided drug discovery/design methods in a drug discovery campaign are discussed. Finally, computational methods for toxicity prediction and optimization for favorable physiologic properties are discussed with successful examples from literature.
Collapse
Affiliation(s)
- Gregory Sliwoski
- Jr., Center for Structural Biology, 465 21st Ave South, BIOSCI/MRBIII, Room 5144A, Nashville, TN 37232-8725.
| | | | | | | |
Collapse
|
14
|
The aminopeptidase inhibitor CHR-2863 is an orally bioavailable inhibitor of murine malaria. Antimicrob Agents Chemother 2012; 56:3244-9. [PMID: 22450967 DOI: 10.1128/aac.06245-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria remains a significant risk in many areas of the world, with resistance to the current antimalarial pharmacopeia an ever-increasing problem. The M1 alanine aminopeptidase (PfM1AAP) and M17 leucine aminopeptidase (PfM17LAP) are believed to play a role in the terminal stages of digestion of host hemoglobin and thereby generate a pool of free amino acids that are essential for parasite growth and development. Here, we show that an orally bioavailable aminopeptidase inhibitor, CHR-2863, is efficacious against murine malaria.
Collapse
|
15
|
New benzimidazole derivatives as antiplasmodial agents and plasmepsin inhibitors: synthesis and analysis of structure-activity relationships. Bioorg Med Chem Lett 2011; 22:1282-6. [PMID: 22204908 DOI: 10.1016/j.bmcl.2011.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/07/2011] [Accepted: 10/07/2011] [Indexed: 12/12/2022]
Abstract
The newly synthesized benzimidazole compounds were suggested to be inhibitors of Plasmodium falciparum plasmepsin II and human cathepsin D by virtual screening of an internal library of synthetic compounds. This was confirmed by enzyme inhibition studies that gave IC(50) values in the low micromolar range (2-48μM). Ligand docking studies with plasmepsin II predicted binding of benzimidazole compounds at the center of the extended substrate-binding cleft. According to the plausible mode of binding, the pyridine ring of benzimidazole compounds interacted with S1' subsite residues whereas the acetophenone moiety was in contact with S1-S3 subsites of plasmepsin II active center. The benzimidazole derivatives were evaluated for capacity to inhibit the growth of intraerythrocytic P. falciparum in culture. Four benzimidazole compounds inhibited parasite growth at ⩽3μM. The most active compound 10, 1-(4-phenylphenyl)-2[2-(pyridinyl-2-yl)-1,3-benzdiazol-1-yl]ethanone showed an IC(50) of 160nM. The substitution of a phenyl group and a chlorine atom at the para position of the acetophenone moiety were shown to be crucial for antiplasmodial activity.
Collapse
|
16
|
Ojha PK, Roy K. Exploring molecular docking and QSAR studies of plasmepsin-II inhibitor di-tertiary amines as potential antimalarial compounds. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2010.548384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Probir Kumar Ojha
- a Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology , Jadavpur University , Kolkata, India
| | - Kunal Roy
- a Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology , Jadavpur University , Kolkata, India
| |
Collapse
|
17
|
Computational perspectives into plasmepsins structure-function relationship: implications to inhibitors design. J Trop Med 2011; 2011:657483. [PMID: 21760810 PMCID: PMC3134243 DOI: 10.1155/2011/657483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/01/2011] [Accepted: 05/03/2011] [Indexed: 11/20/2022] Open
Abstract
The development of efficient and selective antimalariais remains a challenge for the pharmaceutical industry. The aspartic proteases plasmepsins, whose inhibition leads to parasite death, are classified as targets for the design of potent drugs. Combinatorial synthesis is currently being used to generate inhibitor libraries for these enzymes, and together with computational methodologies have been demonstrated capable for the selection of lead compounds. The high structural flexibility of plasmepsins, revealed by their X-ray structures and molecular dynamics simulations, made even more complicated the prediction of putative binding modes, and therefore, the use of common computational tools, like docking and free-energy calculations. In this review, we revised the computational strategies utilized so far, for the structure-function relationship studies concerning the plasmepsin family, with special focus on the recent advances in the improvement of the linear interaction estimation (LIE) method, which is one of the most successful methodologies in the evaluation of plasmepsin-inhibitor binding affinity.
Collapse
|
18
|
McKay PB, Peters MB, Carta G, Flood CT, Dempsey E, Bell A, Berry C, Lloyd DG, Fayne D. Identification of plasmepsin inhibitors as selective anti-malarial agents using ligand based drug design. Bioorg Med Chem Lett 2011; 21:3335-41. [PMID: 21531557 DOI: 10.1016/j.bmcl.2011.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/01/2011] [Accepted: 04/03/2011] [Indexed: 12/25/2022]
Abstract
We describe the application of ligand based virtual screening technologies towards the discovery of novel plasmepsin (PM) inhibitors, a family of malarial parasitic aspartyl proteases. Pharmacophore queries were used to screen vendor libraries in search of active and selective compounds. The virtual hits were biologically assessed for activity and selectivity using whole cell Plasmodium falciparum parasites and on target in PM II, PM IV and the closely related human homologue, Cathepsin D assays. Here we report the virtual screening highlights, structures of the hits and their demonstrated biological activity.
Collapse
Affiliation(s)
- Paul B McKay
- Molecular Design Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Computational analysis of aspartic protease plasmepsin II complexed with EH58 inhibitor: a QM/MM MD study. J Mol Model 2011; 17:2631-8. [PMID: 21264482 DOI: 10.1007/s00894-011-0963-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
Plasmepsin (PM) II is one of four enzymes in the food vacuole of Plasmodium falciparum. It has become an attractive target for combating malaria through research regarding its importance in the P. falciparum metabolism and life cycle, making it the target of choice for structure-based drug design. This paper reports the results of hybrid quantum mechanics / molecular mechanics (QM/MM) molecular dynamics (MD) simulations employed to study the details of the interactions established between PM II and N-(3-{(2-benzo[1, 3]dioxol-5-yl-ethyl)[3-(1-methyl-3-oxo-1,3-dihydro-isoindol-2-yl) propionyl]-amino}-1-benzyl-2-(hydroxyl-propyl)-4-benzyloxy-3,5dimethoxy-benzamide (EH58), a well-known potent inhibitor for this enzyme. Electrostatic binding free energy and energy terms decomposition have been computed for PM II complexed with the EH58 inhibitor. The results reveal that there is a strong interaction between Asp34, Val78, Ser79, Tyr192 and Asp214 residues and the EH58 inhibitor. In addition, we have computed the potential of the mean force (PMF) profile in order to assign the protonation state of the two catalytic aspartates in PM II-EH58 complex. The results indicate that the protonation of Asp214 favors a stable active site structure, which is consistent with our electrostatic binding free energy calculation and with previous published works.
Collapse
|
20
|
Schnur DM, Beno BR, Tebben AJ, Cavallaro C. Methods for combinatorial and parallel library design. Methods Mol Biol 2011; 672:387-434. [PMID: 20838978 DOI: 10.1007/978-1-60761-839-3_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Diversity has historically played a critical role in design of combinatorial libraries, screening sets and corporate collections for lead discovery. Large library design dominated the field in the 1990s with methods ranging anywhere from purely arbitrary through property based reagent selection to product based approaches. In recent years, however, there has been a downward trend in library size. This was due to increased information about the desirable targets gleaned from the genomics revolution and to the ever growing availability of target protein structures from crystallography and homology modeling. Creation of libraries directed toward families of receptors such as GPCRs, kinases, nuclear hormone receptors, proteases, etc., replaced the generation of libraries based primarily on diversity while single target focused library design has remained an important objective. Concurrently, computing grids and cpu clusters have facilitated the development of structure based tools that screen hundreds of thousands of molecules. Smaller "smarter" combinatorial and focused parallel libraries replaced those early un-focused large libraries in the twenty-first century drug design paradigm. While diversity still plays a role in lead discovery, the focus of current library design methods has shifted to receptor based methods, scaffold hopping/bio-isostere searching, and a much needed emphasis on synthetic feasibility. Methods such as "privileged substructures based design" and pharmacophore based design still are important methods for parallel and small combinatorial library design. This chapter discusses some of the possible design methods and presents examples where they are available.
Collapse
Affiliation(s)
- Dora M Schnur
- Computer Aided Drug Design, Pharmaceutical Research Institute, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | | | | | | |
Collapse
|
21
|
|
22
|
Valiente PA, Gil A, Batista PR, Caffarena ER, Pons T, Pascutti PG. New parameterization approaches of the LIE method to improve free energy calculations of PlmII-Inhibitors complexes. J Comput Chem 2010; 31:2723-34. [PMID: 20839299 DOI: 10.1002/jcc.21566] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pedro A Valiente
- Laboratorio de Biología Computacional y Diseño de Proteínas, Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Cuba.
| | | | | | | | | | | |
Collapse
|
23
|
Webb RL, Schiering N, Sedrani R, Maibaum J. Direct Renin Inhibitors as a New Therapy for Hypertension. J Med Chem 2010; 53:7490-520. [DOI: 10.1021/jm901885s] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Randy L. Webb
- Novartis Pharmaceuticals Corp., Institutes for BioMedical Research, East Hanover, New Jersey
| | - Nikolaus Schiering
- Novartis Pharma AG, Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Richard Sedrani
- Novartis Pharma AG, Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Jürgen Maibaum
- Novartis Pharma AG, Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| |
Collapse
|
24
|
Luksch T, Blum A, Klee N, Diederich W, Sotriffer C, Klebe G. Pyrrolidine Derivatives as Plasmepsin Inhibitors: Binding Mode Analysis Assisted by Molecular Dynamics Simulations of a Highly Flexible Protein. ChemMedChem 2010; 5:443-54. [DOI: 10.1002/cmdc.200900452] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Ahmed W, Rani M, Khan IA, Iqbal A, Khan KM, Haleem MA, Azim MK. Characterisation of hydrazides and hydrazine derivatives as novel aspartic protease inhibitors. J Enzyme Inhib Med Chem 2010; 25:673-8. [DOI: 10.3109/14756360903508430] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Waseem Ahmed
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
- Department of Biochemistry, Federal Urdu University, Karachi-75300, Pakistan
| | - Mubeen Rani
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Ishtiaq A. Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Asif Iqbal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Khalid M. Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - M. A. Haleem
- Department of Biochemistry, University of Karachi, Karachi-75270, Pakistan
| | - M. Kamran Azim
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| |
Collapse
|
26
|
Irwin JJ, Shoichet BK, Mysinger MM, Huang N, Colizzi F, Wassam P, Cao Y. Automated docking screens: a feasibility study. J Med Chem 2009; 52:5712-20. [PMID: 19719084 PMCID: PMC2745826 DOI: 10.1021/jm9006966] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Molecular docking is the most practical approach to leverage protein structure for ligand discovery, but the technique retains important liabilities that make it challenging to deploy on a large scale. We have therefore created an expert system, DOCK Blaster, to investigate the feasibility of full automation. The method requires a PDB code, sometimes with a ligand structure, and from that alone can launch a full screen of large libraries. A critical feature is self-assessment, which estimates the anticipated reliability of the automated screening results using pose fidelity and enrichment. Against common benchmarks, DOCK Blaster recapitulates the crystal ligand pose within 2 A rmsd 50-60% of the time; inferior to an expert, but respectrable. Half the time the ligand also ranked among the top 5% of 100 physically matched decoys chosen on the fly. Further tests were undertaken culminating in a study of 7755 eligible PDB structures. In 1398 cases, the redocked ligand ranked in the top 5% of 100 property-matched decoys while also posing within 2 A rmsd, suggesting that unsupervised prospective docking is viable. DOCK Blaster is available at http://blaster.docking.org .
Collapse
Affiliation(s)
- John J Irwin
- Department of Pharmaceutical Chemistry, Byers Hall, Box 2550, University of California San Francisco, San Francisco, California 94158-2330, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Degliesposti G, Kasam V, Da Costa A, Kang HK, Kim N, Kim DW, Breton V, Kim D, Rastelli G. Design and discovery of plasmepsin II inhibitors using an automated workflow on large-scale grids. ChemMedChem 2009; 4:1164-73. [PMID: 19437467 DOI: 10.1002/cmdc.200900111] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Novel and potent inhibitors of Plasmodium falciparum plasmepsin II were identified by post-processing the results of a docking screening with BEAR, a recently reported procedure for the refinement and rescoring of docked ligands in virtual screening. FRET substrate degradation assays performed on the 30 most promising compounds resulted in 26 inhibitors with IC(50) values ranging from 4.3 nM to 1.8 microM.Herein we report the discovery of novel and potent inhibitors of Plasmodium falciparum plasmepsin II using GRID computing infrastructures. These compounds were identified by post-processing the results of a large docking screen of commercially available compounds using an automated procedure based on molecular dynamics refinement and binding free-energy estimation using MM-PBSA and MM-GBSA. Among the best-scored compounds, four highly populated and promising chemical classes were identified: N-alkoxyamidines, guanidines, amides, and ureas and thioureas. Thirty hit compounds representative of each class were selected on the basis of their favourable binding free energies and molecular interactions with key active site residues. These were experimentally validated using an inhibition assay based on FRET substrate degradation. Remarkably, 26 of the 30 tested compounds proved to be active as plasmepsin II inhibitors, with IC(50) values ranging from 4.3 nM to 1.8 microM.
Collapse
Affiliation(s)
- Gianluca Degliesposti
- Dipartimento di Scienze Farmaceutiche, Università di Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Skinner-Adams TS, Stack CM, Trenholme KR, Brown CL, Grembecka J, Lowther J, Mucha A, Drag M, Kafarski P, McGowan S, Whisstock JC, Gardiner DL, Dalton JP. Plasmodium falciparum neutral aminopeptidases: new targets for anti-malarials. Trends Biochem Sci 2009; 35:53-61. [PMID: 19796954 DOI: 10.1016/j.tibs.2009.08.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 08/05/2009] [Accepted: 08/05/2009] [Indexed: 11/19/2022]
Abstract
The neutral aminopeptidases M1 alanyl aminopeptidase (PfM1AAP) and M17 leucine aminopeptidase (PfM17LAP) of the human malaria parasite Plasmodium falciparum are targets for the development of novel anti-malarial drugs. Although the functions of these enzymes remain unknown, they are believed to act in the terminal stages of haemoglobin degradation, generating amino acids essential for parasite growth and development. Inhibitors of both enzymes are lethal to P. falciparum in culture and kill the murine malaria P. chabaudi in vivo. Recent biochemical, structural and functional studies provide the substrate specificity and mechanistic binding data needed to guide the development of more potent anti-malarial drugs. Together with biological studies, these data form the rationale for choosing PfM1AAP and PfM17LAP as targets for anti-malarial development.
Collapse
Affiliation(s)
- Tina S Skinner-Adams
- Malaria Biology Laboratory, Queensland Institute of Medical Research, Herston, QLD 4006, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Orrling KM, Marzahn MR, Gutiérrez-de-Terán H, Åqvist J, Dunn BM, Larhed M. α-Substituted norstatines as the transition-state mimic in inhibitors of multiple digestive vacuole malaria aspartic proteases. Bioorg Med Chem 2009; 17:5933-49. [DOI: 10.1016/j.bmc.2009.06.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/24/2009] [Accepted: 06/28/2009] [Indexed: 11/16/2022]
|
30
|
Friedman R, Caflisch A. Discovery of Plasmepsin Inhibitors by Fragment-Based Docking and Consensus Scoring. ChemMedChem 2009; 4:1317-26. [DOI: 10.1002/cmdc.200900078] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Moro WB, Yang Z, Kane TA, Brouillette CG, Brouillette WJ. Virtual screening to identify lead inhibitors for bacterial NAD synthetase (NADs). Bioorg Med Chem Lett 2009; 19:2001-5. [PMID: 19249205 DOI: 10.1016/j.bmcl.2009.02.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/05/2009] [Accepted: 02/09/2009] [Indexed: 11/24/2022]
Abstract
Virtual screening was employed to identify new drug-like inhibitors of NAD synthetase (NADs) as antibacterial agents. Four databases of commercially available compounds were docked against three subsites of the NADs active site using FlexX in conjunction with CScore. Over 200 commercial compounds were purchased and evaluated in enzyme inhibition and antibacterial assays. 18 compounds inhibited NADs at or below 100 microM (7.6% hit rate), and two were selected for future SAR studies.
Collapse
Affiliation(s)
- Whitney Beysselance Moro
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35294, United States
| | | | | | | | | |
Collapse
|