1
|
McCarlie S, Bragg RR. Impact of the Stress Response on Quaternary Ammonium Compound Disinfectant Susceptibility in Serratia Species. Microorganisms 2024; 12:2240. [PMID: 39597629 PMCID: PMC11596051 DOI: 10.3390/microorganisms12112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
The well-known problem of antibiotic resistance foreshadows a similar threat posed by microbial resistance to biocides such as disinfectants and antiseptics. These products are vital for infection control, yet their overuse during the COVID-19 pandemic has accelerated the development of resistant microorganisms. This study investigates the molecular mechanisms underlying disinfectant resistance in Serratia sp. HRI. The transcriptomic responses of Serratia sp. HRI were used to identify significant gene expression changes during exposure to QACs and revealed increased methionine transport and polyamine synthesis. Polyamines, crucial in cellular stress responses, were notably upregulated, suggesting a pivotal role of the stress response in disinfectant resistance. Further, our susceptibility tests revealed a marked decrease in susceptibility to QACs under various stress conditions, supporting the hypothesis that stress responses, mediated by polyamines, decrease susceptibility to QACs. This research highlights polyamines as key players in disinfectant resistance, offering novel insights into resistance mechanisms and antimicrobial susceptibility. Our findings emphasise the need for continued investigation into disinfectant resistance and the role of stress responses, particularly polyamine-mediated mechanisms, to direct strategies for preserving disinfectant efficacy and developing future antimicrobial agents.
Collapse
Affiliation(s)
| | - Robert R. Bragg
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9301, South Africa;
| |
Collapse
|
2
|
Kumar G, Kiran Tudu A. Tackling multidrug-resistant Staphylococcus aureus by natural products and their analogues acting as NorA efflux pump inhibitors. Bioorg Med Chem 2023; 80:117187. [PMID: 36731248 DOI: 10.1016/j.bmc.2023.117187] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Staphylococcus aureus (S. aureus) is a pathogen responsible for various community and hospital-acquired infections with life-threatening complications like bacteraemia, endocarditis, meningitis, liver abscess, and spinal cord epidural abscess. Antibiotics have been used to treat microbial infections since the introduction of penicillin in 1940. In recent decades, the abuse and misuse of antibiotics in humans, animals, plants, and fungi, including the treatment of non-microbial diseases, have led to the rapid emergence of multidrug-resistant pathogens with increased virulence. Bacteria have developed several complementary mechanisms to avoid the effects of antibiotics. These mechanisms include chemical transformations and enzymatic inactivation of antibiotics, modification of antibiotics' target site, and reduction of intracellular antibiotics concentration by changes in membrane permeability or by the overexpression of efflux pumps (EPs). The strategy to check antibiotic resistance includes synthesis of the antibiotic analogues, or antibiotics are given in combination with the adjuvant. The inhibitors of multidrug EPs are considered promising alternative therapeutic options with the potential to revive the effects of antibiotics and reduce bacterial virulence. Natural products played a vital role in drug discovery and significantly contributed to the area of infectious diseases. Also, natural products provide lead compounds that sometimes need modification based on structural and biological properties to meet the drug criteria. This review discusses natural products and their derived compounds as NorA efflux pump inhibitors (EPIs).
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, Telangana 500037, India.
| | - Asha Kiran Tudu
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, Telangana 500037, India
| |
Collapse
|
3
|
Jadimurthy R, Mayegowda SB, Nayak S, Mohan CD, Rangappa KS. Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 34:e00728. [PMID: 35686013 PMCID: PMC9171455 DOI: 10.1016/j.btre.2022.e00728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
The microorganisms that have developed resistance to available therapeutic agents are threatening the globe and multidrug resistance among the bacterial pathogens is becoming a major concern of public health worldwide. Bacteria develop protective mechanisms to counteract the deleterious effects of antibiotics, which may eventually result in loss of growth-inhibitory potential of antibiotics. ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens display multidrug resistance and virulence through various mechanisms and it is the need of the hour to discover or design new antibiotics against ESKAPE pathogens. In this article, we have discussed the mechanisms acquired by ESKAPE pathogens to counteract the effect of antibiotics and elaborated on recently discovered secondary metabolites derived from bacteria and plant sources that are endowed with good antibacterial activity towards pathogenic bacteria in general, ESKAPE organisms in particular. Abyssomicin C, allicin, anthracimycin, berberine, biochanin A, caffeic acid, daptomycin, kibdelomycin, piperine, platensimycin, plazomicin, taxifolin, teixobactin, and thymol are the major metabolites whose antibacterial potential have been discussed in this article.
Collapse
Affiliation(s)
- Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Shilpa Borehalli Mayegowda
- Dayananda Sagar University, School of Basic and Applied Sciences, Shavige Malleswara Hills, Kumaraswamy layout, Bengaluru 560111, India
| | - S.Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India
| | | | | |
Collapse
|
4
|
Reetu R, Gujjarappa R, Malakar CC. Recent Advances in Synthesis and Medicinal Evaluation of 1,2‐Benzothiazine Analogues. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Reetu Reetu
- National Institute of Technology Manipur Chemistry INDIA
| | | | - Chandi C Malakar
- National Institute of Technology Manipur Department of Chemistry Langol, Imphal 795004 Imphal INDIA
| |
Collapse
|
5
|
Chalcone Derivatives as Potential Inhibitors of P-Glycoprotein and NorA: An In Silico and In Vitro Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9982453. [PMID: 35378788 PMCID: PMC8976639 DOI: 10.1155/2022/9982453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/09/2022] [Indexed: 11/18/2022]
Abstract
The human P-glycoprotein (P-gp) and the NorA transporter are the major culprits of multidrug resistance observed in various bacterial strains and cancer cell lines, by extruding drug molecules out of the targeted cells, leading to treatment failures in clinical settings. Inhibiting the activity of these efflux pumps has been a well-known strategy of drug design studies in this regard. In this manuscript, our earlier published machine learning models and homology structures of P-gp and NorA were utilized to screen a chemolibrary of 95 in-house chalcone derivatives, identifying two hit compounds, namely, F88 and F90, as potential modulators of both transporters, whose activity on Staphylococcus aureus strains overexpressing NorA and resistant to ciprofloxacin was subsequently confirmed. The findings of this study are expected to guide future research towards developing novel potent chalconic inhibitors of P-gp and/or NorA.
Collapse
|
6
|
Ibrahim UH, Devnarain N, Omolo CA, Mocktar C, Govender T. Biomimetic pH/lipase dual responsive vitamin-based solid lipid nanoparticles for on-demand delivery of vancomycin. Int J Pharm 2021; 607:120960. [PMID: 34333022 DOI: 10.1016/j.ijpharm.2021.120960] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 01/12/2023]
Abstract
In this study, ascorbyl tocopherol succinate (ATS) was designed, synthesized and characterized via FT-IR, HR-MS, H1 NMR and C13 NMR, to simultaneously confer biomimetic and dual responsive properties of an antibiotic nanosystem to enhance their antibacterial efficacy and reduce antimicrobial resistance. Therefore, an in silico-aided design (to mimic the natural substrate of bacterial lipase) was employed to demonstrate the binding potential of ATS to lipase (-32.93 kcal/mol binding free energy (ΔGbind) and bacterial efflux pumps blocking potential (NorA ΔGbind: -37.10 kcal/mol, NorB ΔGbind: -34.46 kcal/mol). ATS bound stronger to lipase than the natural substrate (35 times lower Kd value). The vancomycin loaded solid lipid nanoparticles (VM-ATS-SLN) had a hydrodynamic diameter, zeta potential, polydispersity index and entrapment efficiency of 106.9 ± 1.4 nm, -16.5 ± 0.93 mV, 0.11 ± 0.012 and 61.9 ± 1.31%, respectively. In vitro biocompatibility studies revealed VM-ATS-SLN biosafety and non-haemolytic activity. Significant enhancement in VM release was achieved in response to acidified pH and lipase enzyme, compared to controls. VM-ATS-SLN showed enhanced sustained in vitro antibacterial activity for 5 days, 2-fold greater MRSA biofilm growth inhibition and 3.44-fold reduction in bacterial burden in skin infected mice model compared to bare VM. Therefore, ATS shows potential as a novel multifunctional adjuvant for effective and targeted delivery of antibiotics.
Collapse
Affiliation(s)
- Usri H Ibrahim
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P.O. Box 14634-00800, Nairobi, Kenya.
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
7
|
1,3,4-oxadiazole conjugates of capsaicin as potent NorA efflux pump inhibitors of Staphylococcus aureus. Bioorg Chem 2021; 113:105031. [PMID: 34089943 DOI: 10.1016/j.bioorg.2021.105031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 11/23/2022]
Abstract
NorA efflux pump pertaining to the major facilitator superfamily (MFS) is known to play a key role in antibiotic and biocide resistance in Staphylococcus aureus (S. aureus). It accounts for the extrusion of antibiotics like fluoroquinolones (e.g. ciprofloxacin). Several compounds including synthetic and natural products have been identified as potential NorA efflux pump inhibitors (EPIs) and found to restore the antibacterial activity of antibiotics. However, none of the reported EPIs have reached to clinical approval probably due to their high toxicity profiles. Considering the NorA efflux pump inhibitory potential of capsaicin, a series of capsaicin-based 1,3,4 oxadiazole conjugates were prepared and evaluated for ciprofloxacin activity potentiating effect. Among the new capsaicinoids tested, 17i displayed a minimum effective concentration (MEC) of 12.5 µg/mL against NorA overexpressing S. aureus strain (SA1199B), whereas capsaicin showed MEC of 50 µg/mL. The kill kinetics curve for the combination showed that ciprofloxacin at a sub-inhibitory concentration (0.25 × MIC) was equipotent in effect, to its MIC. 17i has significantly decreased the ethidium bromide efflux confirming NorA inhibition as the mode of action. Mutation prevention concentration of the ciprofloxacin was reduced in combination with 17i.In silico studies revealed the binding efficiency and binding affinity of 17i with NorA. This compound may serve as a template for the further drug discovery.
Collapse
|
8
|
Monteiro KLC, de Aquino TM, Mendonça Junior FJB. An Update on Staphylococcus aureus NorA Efflux Pump Inhibitors. Curr Top Med Chem 2021; 20:2168-2185. [PMID: 32621719 DOI: 10.2174/1568026620666200704135837] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/15/2020] [Accepted: 04/05/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Methicillin-resistant and vancomycin-resistant Staphylococcus aureus are pathogens causing severe infectious diseases that pose real public health threats problems worldwide. In S. aureus, the most efficient multidrug-resistant system is the NorA efflux pump. For this reason, it is critical to identify efflux pump inhibitors. OBJECTIVE In this paper, we present an update of the new natural and synthetic compounds that act as modulators of antibiotic resistance through the inhibition of the S. aureus NorA efflux pump. RESULTS Several classes of compounds capable of restoring the antibiotic activity have been identified against resistant-S. aureus strains, acting as NorA efflux pump inhibitors. The most promising classes of compounds were quinolines, indoles, pyridines, phenols, and sulfur-containing heterocycles. However, the substantial degree structural diversity of these compounds makes it difficult to establish good structure- activity correlations that allow the design of compounds with more promising activities and properties. CONCLUSION Despite substantial efforts put forth in the search for new antibiotic adjuvants that act as efflux pump inhibitors, and despite several promising results, there are currently no efflux pump inhibitors authorized for human or veterinary use, or in clinical trials. Unfortunately, it appears that infection control strategies have remained the same since the discovery of penicillin, and that most efforts remain focused on discovering new classes of antibiotics, rather than trying to prolong the life of available antibiotics, and simultaneously fighting mechanisms of bacterial resistance.
Collapse
|
9
|
Synthesis, biological evaluation and computational studies of acrylohydrazide derivatives as potential Staphylococcus aureus NorA efflux pump inhibitors. Bioorg Chem 2020; 104:104225. [DOI: 10.1016/j.bioorg.2020.104225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 01/20/2023]
|
10
|
Thiazolidinedione and thiazole derivatives potentiate norfloxacin activity against NorA efflux pump over expression in Staphylococcus aureus 1199B strains. Bioorg Med Chem 2019; 27:3797-3804. [DOI: 10.1016/j.bmc.2019.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 01/03/2023]
|
11
|
Sachs J, Döhl K, Weber A, Bonus M, Ehlers F, Fleischer E, Klinger A, Gohlke H, Pietruszka J, Schmitt L, Teusch N. Novel 3,4-Dihydroisocoumarins Inhibit Human P-gp and BCRP in Multidrug Resistant Tumors and Demonstrate Substrate Inhibition of Yeast Pdr5. Front Pharmacol 2019; 10:400. [PMID: 31040786 PMCID: PMC6476959 DOI: 10.3389/fphar.2019.00400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/01/2019] [Indexed: 12/15/2022] Open
Abstract
Multidrug resistance (MDR) in tumors and pathogens remains a major problem in the efficacious treatment of patients by reduction of therapy options and subsequent treatment failure. Various mechanisms are described to be involved in the development of MDR with overexpression of ATP-binding cassette (ABC) transporters reflecting the most extensively studied. These membrane transporters translocate a wide variety of substrates utilizing energy from ATP hydrolysis leading to decreased intracellular drug accumulation and impaired drug efficacy. One treatment strategy might be inhibition of transporter-mediated efflux by small molecules. Isocoumarins and 3,4-dihydroisocoumarins are a large group of natural products derived from various sources with great structural and functional variety, but have so far not been in the focus as potential MDR reversing agents. Thus, three natural products and nine novel 3,4-dihydroisocoumarins were designed and analyzed regarding cytotoxicity induction and inhibition of human ABC transporters P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) in a variety of human cancer cell lines as well as the yeast ABC transporter Pdr5 in Saccharomyces cerevisiae. Dual inhibitors of P-gp and BCRP and inhibitors of Pdr5 were identified, and distinct structure-activity relationships for transporter inhibition were revealed. The strongest inhibitor of P-gp and BCRP, which inhibited the transporters up to 80 to 90% compared to the respective positive controls, demonstrated the ability to reverse chemotherapy resistance in resistant cancer cell lines up to 5.6-fold. In the case of Pdr5, inhibitors were identified that prevented substrate transport and/or ATPase activity with IC50 values in the low micromolar range. However, cell toxicity was not observed. Molecular docking of the test compounds to P-gp revealed that differences in inhibition capacity were based on different binding affinities to the transporter. Thus, these small molecules provide novel lead structures for further optimization.
Collapse
Affiliation(s)
- Julia Sachs
- Bio-Pharmaceutical Chemistry and Molecular Pharmacology, Faculty of Applied Natural Sciences, Technische Hochschule Köln, Leverkusen, Germany
| | - Katja Döhl
- Institute of Biochemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Anja Weber
- Institute of Bioorganic Chemistry, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, Jülich, Germany
| | - Michele Bonus
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ferdinand Ehlers
- Bio-Pharmaceutical Chemistry and Molecular Pharmacology, Faculty of Applied Natural Sciences, Technische Hochschule Köln, Leverkusen, Germany
| | | | | | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.,John von Neumann Institute for Computing, Jülich Supercomputing Centre and Institute for Complex Systems - Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, Jülich, Germany.,IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nicole Teusch
- Bio-Pharmaceutical Chemistry and Molecular Pharmacology, Faculty of Applied Natural Sciences, Technische Hochschule Köln, Leverkusen, Germany
| |
Collapse
|
12
|
Rath SK, Singh S, Kumar S, Wani NA, Rai R, Koul S, Khan IA, Sangwan PL. Synthesis of amides from (E)-3-(1-chloro-3,4-dihydronaphthalen-2-yl)acrylic acid and substituted amino acid esters as NorA efflux pump inhibitors of Staphylococcus aureus. Bioorg Med Chem 2018; 27:343-353. [PMID: 30552006 DOI: 10.1016/j.bmc.2018.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/01/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022]
Abstract
Inhibitors for NorA efflux pump of Staphylococcus aureus have attracted the attention of many researchers towards the discovery and development of novel efflux pump inhibitors (EPIs). In an attempt to find specific potent inhibitors of NorA efflux pump of S. aureus, a total of 15 amino acid conjugates of 3-(1-chloro-3,4-dihydronaphthalen-2-yl)acrylic acid (4-18) were synthesized using a simple convenient synthetic approach and bioevaluated against NorA efflux pump. Two compounds 7 and 8 (each having MEC of 1.56 µg/mL) were found to restore the activity of ciprofloxacin through reduction of the MIC elucidated by comparing the ethidium bromide efflux in dose dependent manner in addition to ethidium bromide efflux inhibition and accumulation study using NorA overexpressing strain SA-1199B. Most potent compounds among these were able to restore the antibacterial activity of ciprofloxacin completely against SA-1199B. Structure activity relationship (SAR) studies and docking study of potent compounds 7 and 8 could elucidate the structural requirements necessary for interaction with the NorA efflux pumps. On the whole, compounds 7 and 8 have ability to reverse the NorA efflux mediated resistance and could be further optimized for development of potent efflux pump inhibitors.
Collapse
Affiliation(s)
- Santosh K Rath
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu 180001, India
| | - Samsher Singh
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu 180001, India; Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, India
| | - Sunil Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu 180001, India; Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, India
| | - Naiem A Wani
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, India
| | - Rajkishor Rai
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu 180001, India; Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, India
| | - Surrinder Koul
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, India
| | - Inshad A Khan
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu 180001, India; Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, India
| | - Payare L Sangwan
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu 180001, India.
| |
Collapse
|
13
|
Radix S, Jordheim AD, Rocheblave L, N'Digo S, Prignon AL, Commun C, Michalet S, Dijoux-Franca MG, Mularoni A, Walchshofer N. N,N′-disubstituted cinnamamide derivatives potentiate ciprofloxacin activity against overexpressing NorA efflux pump Staphylococcus aureus 1199B strains. Eur J Med Chem 2018; 150:900-907. [DOI: 10.1016/j.ejmech.2018.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 11/25/2022]
|
14
|
Interplay between P-Glycoprotein Expression and Resistance to Endoplasmic Reticulum Stressors. Molecules 2018; 23:molecules23020337. [PMID: 29415493 PMCID: PMC6017601 DOI: 10.3390/molecules23020337] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance (MDR) is a phenotype of cancer cells with reduced sensitivity to a wide range of unrelated drugs. P-glycoprotein (P-gp)—a drug efflux pump (ABCB1 member of the ABC transporter gene family)—is frequently observed to be a molecular cause of MDR. The drug-efflux activity of P-gp is considered as the underlying mechanism of drug resistance against P-gp substrates and results in failure of cancer chemotherapy. Several pathological impulses such as shortages of oxygen and glucose supply, alterations of calcium storage mechanisms and/or processes of protein N-glycosylation in the endoplasmic reticulum (ER) leads to ER stress (ERS), characterized by elevation of unfolded protein cell content and activation of the unfolded protein response (UPR). UPR is responsible for modification of protein folding pathways, removal of misfolded proteins by ER associated protein degradation (ERAD) and inhibition of proteosynthesis. However, sustained ERS may result in UPR-mediated cell death. Neoplastic cells could escape from the death pathway induced by ERS by switching UPR into pro survival mechanisms instead of apoptosis. Here, we aimed to present state of the art information about consequences of P-gp expression on mechanisms associated with ERS development and regulation of the ERAD system, particularly focused on advances in ERS-associated therapy of drug resistant malignancies.
Collapse
|
15
|
Lekshmi M, Ammini P, Adjei J, Sanford LM, Shrestha U, Kumar S, Varela MF. Modulation of antimicrobial efflux pumps of the major facilitator superfamily in Staphylococcus aureus. AIMS Microbiol 2018; 4:1-18. [PMID: 31294201 PMCID: PMC6605029 DOI: 10.3934/microbiol.2018.1.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Variants of the microorganism Staphylococcus aureus which are resistant to antimicrobial agents exist as causative agents of serious infectious disease and constitute a considerable public health concern. One of the main antimicrobial resistance mechanisms harbored by S. aureus pathogens is exemplified by integral membrane transport systems that actively remove antimicrobial agents from bacteria where the cytoplasmic drug targets reside, thus allowing the bacteria to survive and grow. An important class of solute transporter proteins, called the major facilitator superfamily, includes related and homologous passive and secondary active transport systems, many of which are antimicrobial efflux pumps. Transporters of the major facilitator superfamily, which confer antimicrobial efflux and bacterial resistance in S. aureus, are good targets for development of resistance-modifying agents, such as efflux pump inhibition. Such modulatory action upon these antimicrobial efflux systems of the major facilitator superfamily in S. aureus may circumvent resistance and restore the clinical efficacy of therapy towards S. aureus infection.
Collapse
Affiliation(s)
- Manjusha Lekshmi
- QC Laboratory, Harvest and Post Harvest Technology Division, ICAR-Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai, 400061, India
| | - Parvathi Ammini
- CSIR-National Institute of Oceanography (NIO), Regional Centre, Dr. Salim Ali Road, Kochi, 682018, India
| | - Jones Adjei
- Eastern New Mexico, Department of Biology, Station 33, 1500 South Avenue K, Portales, NM, 88130, USA
| | - Leslie M Sanford
- Eastern New Mexico, Department of Biology, Station 33, 1500 South Avenue K, Portales, NM, 88130, USA
| | - Ugina Shrestha
- Eastern New Mexico, Department of Biology, Station 33, 1500 South Avenue K, Portales, NM, 88130, USA
| | - Sanath Kumar
- QC Laboratory, Harvest and Post Harvest Technology Division, ICAR-Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai, 400061, India
| | - Manuel F Varela
- Eastern New Mexico, Department of Biology, Station 33, 1500 South Avenue K, Portales, NM, 88130, USA
| |
Collapse
|
16
|
Felicetti T, Cannalire R, Burali MS, Massari S, Manfroni G, Barreca ML, Tabarrini O, Schindler BD, Sabatini S, Kaatz GW, Cecchetti V. Searching for Novel Inhibitors of the S. aureus NorA Efflux Pump: Synthesis and Biological Evaluation of the 3-Phenyl-1,4-benzothiazine Analogues. ChemMedChem 2017; 12:1293-1302. [PMID: 28598572 DOI: 10.1002/cmdc.201700286] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/06/2017] [Indexed: 12/26/2022]
Abstract
Bacterial resistance to antimicrobial agents has become an increasingly serious health problem in recent years. Among the strategies by which resistance can be achieved, overexpression of efflux pumps such as NorA of Staphylococcus aureus leads to a sub-lethal concentration of the antibacterial agent at the active site that in turn may predispose the organism to the development of high-level target-based resistance. With an aim to improve both the chemical stability and potency of our previously reported 3-phenyl-1,4-benzothiazine NorA inhibitors, we replaced the benzothiazine core with different nuclei. None of the new synthesized compounds showed any appreciable intrinsic antibacterial activity, and, in particular, 2-(3,4-dimethoxyphenyl)quinoline (6 c) was able to decrease, in a concentration-dependent manner, the ciprofloxacin MIC against the norA-overexpressing strains S. aureus SA-K2378 (norA++) and SA-1199B (norA+/A116E GrlA).
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Rolando Cannalire
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Maria Sole Burali
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | | | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Bryan D Schindler
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, Wayne State University and the, John D. Dingell Department of Veteran Affairs Medical Center, Detroit, MI, 48201, USA
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| | - Glenn W Kaatz
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, Wayne State University and the, John D. Dingell Department of Veteran Affairs Medical Center, Detroit, MI, 48201, USA
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123, Perugia, Italy
| |
Collapse
|
17
|
Mu LM, Ju RJ, Liu R, Bu YZ, Zhang JY, Li XQ, Zeng F, Lu WL. Dual-functional drug liposomes in treatment of resistant cancers. Adv Drug Deliv Rev 2017; 115:46-56. [PMID: 28433739 DOI: 10.1016/j.addr.2017.04.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 12/26/2022]
Abstract
Efficacy of regular chemotherapy is significantly hampered by multidrug resistance (MDR) and severe systemic toxicity. The reduced toxicity has been evidenced after administration of drug liposomes, consisting of the first generation of regular drug liposomes, the second generation of long-circulation drug liposomes, and the third generation of targeting drug liposomes. However, MDR of cancers remains as an unsolved issue. The objective of this article is to review the dual-functional drug liposomes, which demonstrate the potential in overcoming MDR. Herein, dual-functional drug liposomes are referring to the drug-containing phospholipid bilayer vesicles that possess a dual-function of providing the basic efficacy of drug and the extended effect of the drug carrier. They exhibit unique roles in treatment of resistant cancer via circumventing drug efflux caused by adenosine triphosphate binding cassette (ABC) transporters, eliminating cancer stem cells, destroying mitochondria, initiating apoptosis, regulating autophagy, destroying supply channels, utilizing microenvironment, and silencing genes of the resistant cancer. As the prospect of an estimation, dual-functional drug liposomes would exhibit more strength in their extended function, hence deserving further investigation for clinical validation.
Collapse
|
18
|
Bruns MM, Kakarla P, Floyd JT, Mukherjee MM, Ponce RC, Garcia JA, Ranaweera I, Sanford LM, Hernandez AJ, Willmon TM, Tolson GL, Varela MF. Modulation of the multidrug efflux pump EmrD-3 from Vibrio cholerae by Allium sativum extract and the bioactive agent allyl sulfide plus synergistic enhancement of antimicrobial susceptibility by A. sativum extract. Arch Microbiol 2017; 199:1103-1112. [PMID: 28432381 DOI: 10.1007/s00203-017-1378-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/25/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
The causative agent of cholera, Vibrio cholerae, is a public health concern. Multidrug-resistant V. cholerae variants may reduce chemotherapeutic efficacies of severe cholera. We previously reported that the multidrug efflux pump EmrD-3 from V. cholerae confers resistance to multiple structurally distinct antimicrobials. Medicinal plant compounds are potential candidates for EmrD-3 efflux pump modulation. The antibacterial activities of garlic Allium sativum, although poorly understood, predicts that a main bioactive component, allyl sulfide, modulates EmrD-3 efflux. Thus, we tested whether A. sativum extract acts in synergy with antimicrobials and that a main bioactive component allyl sulfide inhibits EmrD-3 efflux. We found that A. sativum extract and allyl sulfide inhibited ethidium bromide efflux in cells harboring EmrD-3 and that A. sativum lowered the MICs of multiple antibacterials. We conclude that A. sativum and allyl sulfide inhibit EmrD-3 and that A. sativum extract synergistically enhances antibacterial agents.
Collapse
Affiliation(s)
- Merissa M Bruns
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Prathusha Kakarla
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Jared T Floyd
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Mun Mun Mukherjee
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Robert C Ponce
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - John A Garcia
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Indrika Ranaweera
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Leslie M Sanford
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Alberto J Hernandez
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - T Mark Willmon
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Grace L Tolson
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA.
| |
Collapse
|
19
|
Assis LM, Nedeljković M, Dessen A. New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resist Updat 2017; 31:1-14. [PMID: 28867240 DOI: 10.1016/j.drup.2017.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/07/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus is a major cause of bacterial infection in humans, and has been notoriously able to acquire resistance to a variety of antibiotics. An example is methicillin-resistant S. aureus (MRSA), which despite having been initially associated with clinical settings, now is one of the key causative agents of community-acquired infections. Antibiotic resistance in S. aureus involves mechanisms ranging from drug efflux to increased expression or mutation of target proteins, and this has required innovative approaches to develop novel treatment methodologies. This review provides an overview of the major mechanisms of antibiotic resistance developed by S. aureus, and describes the emerging alternatives being sought to circumvent infection and proliferation, including new generations of classic antibiotics, synergistic approaches, antibodies, and targeting of virulence factors.
Collapse
Affiliation(s)
- L Mayrink Assis
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo, Brazil
| | - M Nedeljković
- Institut de Biologie Structurale (IBS), Univ Grenoble Alpes, CEA, CNRS, Bacterial Pathogenesis Group, 38044 Grenoble, France
| | - A Dessen
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo, Brazil; Institut de Biologie Structurale (IBS), Univ Grenoble Alpes, CEA, CNRS, Bacterial Pathogenesis Group, 38044 Grenoble, France.
| |
Collapse
|
20
|
Qiu Q, Liu B, Cui J, Li Z, Deng X, Qiang H, Li J, Liao C, Zhang B, Shi W, Pan M, Huang W, Qian H. Design, Synthesis, and Pharmacological Characterization of N-(4-(2 (6,7-Dimethoxy-3,4-dihydroisoquinolin-2(1H)yl)ethyl)phenyl)quinazolin-4-amine Derivatives: Novel Inhibitors Reversing P-Glycoprotein-Mediated Multidrug Resistance. J Med Chem 2017; 60:3289-3302. [DOI: 10.1021/acs.jmedchem.6b01787] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qianqian Qiu
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Baomin Liu
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jian Cui
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zheng Li
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Deng
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hao Qiang
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jieming Li
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chen Liao
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Bo Zhang
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei Shi
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Miaobo Pan
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenlong Huang
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic
Disease, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hai Qian
- Center of Drug Discovery,
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic
Disease, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
21
|
Efferth T, Volm M. Multiple resistance to carcinogens and xenobiotics: P-glycoproteins as universal detoxifiers. Arch Toxicol 2017; 91:2515-2538. [DOI: 10.1007/s00204-017-1938-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/12/2017] [Indexed: 01/08/2023]
|
22
|
Thai KM, Do TN, Nguyen TVP, Nguyen DKT, Tran TD. QSAR Studies on Bacterial Efflux Pump Inhibitors. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial drug resistance occurs when bacteria undergo certain modifications to eliminate the effectiveness of drugs, chemicals, or other agents designed to cure infections. To date, the burden of resistance has remained one of the major clinical concerns as it renders prolonged and complicated treatments, thereby increasing the medical costs with lengthier hospital stays. Of complex causes for bacterial resistance, there has been increasing evidence that proved the significant role of efflux pumps in antibiotic resistance. Coadministration of Efflux Pump Inhibitors (EPIs) with antibiotics has been considered one of the promising ways not only to improve the efficacy but also to extend the clinical utility of existing antibiotics. This chapter begins with outlining current knowledge about bacterial efflux pumps and drug designs applied in identification of their modulating compounds. Following, the chapter addresses and provides a discussion on Quantitative Structure-Activity Relationship (QSAR) analyses in search of novel and potent efflux pump inhibitors.
Collapse
Affiliation(s)
| | - Trong-Nhat Do
- University of Medicine and Pharmacy at HCMC, Vietnam
| | | | | | | |
Collapse
|
23
|
Ngo TD, Tran TD, Le MT, Thai KM. Machine learning-, rule- and pharmacophore-based classification on the inhibition of P-glycoprotein and NorA. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2016; 27:747-780. [PMID: 27667641 DOI: 10.1080/1062936x.2016.1233137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
The efflux pumps P-glycoprotein (P-gp) in humans and NorA in Staphylococcus aureus are of great interest for medicinal chemists because of their important roles in multidrug resistance (MDR). The high polyspecificity as well as the unavailability of high-resolution X-ray crystal structures of these transmembrane proteins lead us to combining ligand-based approaches, which in the case of this study were machine learning, perceptual mapping and pharmacophore modelling. For P-gp inhibitory activity, individual models were developed using different machine learning algorithms and subsequently combined into an ensemble model which showed a good discrimination between inhibitors and noninhibitors (acctrain-diverse = 84%; accinternal-test = 92% and accexternal-test = 100%). For ligand promiscuity between P-gp and NorA, perceptual maps and pharmacophore models were generated for the detection of rules and features. Based on these in silico tools, hit compounds for reversing MDR were discovered from the in-house and DrugBank databases through virtual screening in an attempt to restore drug sensitivity in cancer cells and bacteria.
Collapse
Affiliation(s)
- T-D Ngo
- a Department of Medicinal Chemistry, Faculty of Pharmacy , University of Medicine and Pharmacy at Ho Chi Minh City , Viet Nam
| | - T-D Tran
- a Department of Medicinal Chemistry, Faculty of Pharmacy , University of Medicine and Pharmacy at Ho Chi Minh City , Viet Nam
| | - M-T Le
- a Department of Medicinal Chemistry, Faculty of Pharmacy , University of Medicine and Pharmacy at Ho Chi Minh City , Viet Nam
| | - K-M Thai
- a Department of Medicinal Chemistry, Faculty of Pharmacy , University of Medicine and Pharmacy at Ho Chi Minh City , Viet Nam
| |
Collapse
|
24
|
Bharate JB, Singh S, Wani A, Sharma S, Joshi P, Khan IA, Kumar A, Vishwakarma RA, Bharate SB. Discovery of 4-acetyl-3-(4-fluorophenyl)-1-(p-tolyl)-5-methylpyrrole as a dual inhibitor of human P-glycoprotein and Staphylococcus aureus Nor A efflux pump. Org Biomol Chem 2016; 13:5424-31. [PMID: 25865846 DOI: 10.1039/c5ob00246j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polysubstituted pyrrole natural products, lamellarins, are known to overcome multi-drug resistance in cancer via the inhibition of p-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) efflux pumps. Herein, a series of simplified polysubstituted pyrroles, prepared via a one-pot domino protocol, were screened for P-gp inhibition in P-gp overexpressing human adenocarcinoma LS-180 cells using a rhodamine 123 efflux assay. Several compounds showed the significant inhibition of P-gp at 50 μM, as indicated by increase in the intracellular accumulation of Rh123 in LS-180 cells. Furthermore, pyrrole 5i decreased the efflux of digoxin, a FDA approved P-gp substrate in MDCK-MDR1 cells with an IC50 of 11.2 μM. In in vivo studies, following the oral administration of a P-gp substrate drug, rifampicin, along with compound , the Cmax and AUC0-∞ of rifampicin was enhanced by 31% and 46%, respectively. All the compounds were then screened for their ability to potentiate ciprofloxacin activity via the inhibition of Staphylococcus aureus Nor A efflux pump. Pyrrole showed the significant inhibition of S. aureus Nor A efflux pump with 8- and 4-fold reductions in the MIC of ciprofloxacin at 50 and 6.25 μM, respectively. The molecular docking studies of compound with the human P-gp and S. aureus Nor A efflux pump identified its plausible binding site and key interactions. Thus, the results presented herein strongly indicate the potential of this scaffold for its use as multi-drug resistance reversal agent or bioavailability enhancer.
Collapse
Affiliation(s)
- Jaideep B Bharate
- Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liger F, Bouhours P, Ganem-Elbaz C, Jolivalt C, Pellet-Rostaing S, Popowycz F, Paris JM, Lemaire M. C2 Arylated Benzo[b]thiophene Derivatives asStaphylococcus aureusNorA Efflux Pump Inhibitors. ChemMedChem 2016; 11:320-30. [DOI: 10.1002/cmdc.201500463] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 11/11/2022]
Affiliation(s)
- François Liger
- Equipe Catalyse Synthèse Environnement; CNRS-UMR 5246; L'Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS); 43 Bd. du 11 novembre 1918 69622 Villeurbanne France
| | - Pascale Bouhours
- Laboratoire Charles Friedel; CNRS-UMR 7223; Chimie ParisTech; 11 rue Pierre et Marie Curie 75005 Paris France
| | - Carine Ganem-Elbaz
- Laboratoire Charles Friedel; CNRS-UMR 7223; Chimie ParisTech; 11 rue Pierre et Marie Curie 75005 Paris France
| | - Claude Jolivalt
- Laboratoire Charles Friedel; CNRS-UMR 7223; Chimie ParisTech; 11 rue Pierre et Marie Curie 75005 Paris France
| | - Stéphane Pellet-Rostaing
- Equipe Catalyse Synthèse Environnement; CNRS-UMR 5246; L'Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS); 43 Bd. du 11 novembre 1918 69622 Villeurbanne France
| | - Florence Popowycz
- Institut National des Sciences Appliquées de Lyon; ICBMS, CNRS-UMR 5246, Equipe Chimie Organique et Bioorganique; 20 Avenue Albert Einstein 69621 Villeurbanne France
| | - Jean-Marc Paris
- Laboratoire Charles Friedel; CNRS-UMR 7223; Chimie ParisTech; 11 rue Pierre et Marie Curie 75005 Paris France
| | - Marc Lemaire
- Equipe Catalyse Synthèse Environnement; CNRS-UMR 5246; L'Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS); 43 Bd. du 11 novembre 1918 69622 Villeurbanne France
| |
Collapse
|
26
|
Zhang B, Zhao T, Zhou J, Qiu Q, Dai Y, Pan M, Huang W, Qian H. Design, synthesis and biological evaluation of novel triazole-core reversal agents against P-glycoprotein-mediated multidrug resistance. RSC Adv 2016. [DOI: 10.1039/c6ra02405j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We designed and synthesized a novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors bearing a triazolphenethyl–tetrahydroisoquinoline scaffold through click chemistry.
Collapse
Affiliation(s)
- Bo Zhang
- Center of Drug Discovery
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Tianxiao Zhao
- Center of Drug Discovery
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Jie Zhou
- Center of Drug Discovery
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Qianqian Qiu
- Center of Drug Discovery
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Yuxuan Dai
- Center of Drug Discovery
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Miaobo Pan
- Center of Drug Discovery
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Wenlong Huang
- Center of Drug Discovery
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Hai Qian
- Center of Drug Discovery
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| |
Collapse
|
27
|
Mudududdla R, Guru SK, Wani A, Sharma S, Joshi P, Vishwakarma RA, Kumar A, Bhushan S, Bharate SB. 3-(Benzo[d][1,3]dioxol-5-ylamino)-N-(4-fluorophenyl)thiophene-2-carboxamide overcomes cancer chemoresistance via inhibition of angiogenesis and P-glycoprotein efflux pump activity. Org Biomol Chem 2015; 13:4296-309. [PMID: 25758415 DOI: 10.1039/c5ob00233h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
3-((Quinolin-4-yl)methylamino)-N-(4-(trifluoromethoxy)phenyl)thiophene-2-carboxamide (OSI-930, 1) is a potent inhibitor of c-kit and VEGFR2, currently under phase I clinical trials in patients with advanced solid tumors. In order to understand the structure-activity relationship, a series of 3-arylamino N-aryl thiophene 2-carboxamides were synthesized by modifications at both quinoline and amide domains of the OSI-930 scaffold. All the synthesized compounds were screened for in vitro cytotoxicity in a panel of cancer cell lines and for VEGFR1 and VEGFR2 inhibition. Thiophene 2-carboxamides substituted with benzo[d][1,3]dioxol-5-yl and 2,3-dihydrobenzo[b][1,4]dioxin-6-yl groups 1l and 1m displayed inhibition of VEGFR1 with IC50 values of 2.5 and 1.9 μM, respectively. Compounds 1l and 1m also inhibited the VEGF-induced HUVEC cell migration, indicating its anti-angiogenic activity. OSI-930 along with compounds 1l and 1m showed inhibition of P-gp efflux pumps (MDR1, ABCB1) with EC50 values in the range of 35-74 μM. The combination of these compounds with doxorubicin led to significant enhancement of the anticancer activity of doxorubicin in human colorectal carcinoma LS180 cells, which was evident from the improved IC50 of doxorubicin, the increased activity of caspase-3 and the significant reduction in colony formation ability of LS180 cells after treatment with doxorubicin. Compound 1l showed a 13.8-fold improvement in the IC50 of doxorubicin in LS180 cells. The ability of these compounds to display dual inhibition of VEGFR and P-gp efflux pumps demonstrates the promise of this scaffold for its development as multi-drug resistance-reversal agents.
Collapse
Affiliation(s)
- Ramesh Mudududdla
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu-180001, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Thai KM, Do TN, Nguyen TVP, Nguyen DKT, Tran TD. QSAR Studies on Bacterial Efflux Pump Inhibitors. ACTA ACUST UNITED AC 2015. [DOI: 10.4018/978-1-4666-8136-1.ch007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Antimicrobial drug resistance occurs when bacteria undergo certain modifications to eliminate the effectiveness of drugs, chemicals, or other agents designed to cure infections. To date, the burden of resistance has remained one of the major clinical concerns as it renders prolonged and complicated treatments, thereby increasing the medical costs with lengthier hospital stays. Of complex causes for bacterial resistance, there has been increasing evidence that proved the significant role of efflux pumps in antibiotic resistance. Coadministration of Efflux Pump Inhibitors (EPIs) with antibiotics has been considered one of the promising ways not only to improve the efficacy but also to extend the clinical utility of existing antibiotics. This chapter begins with outlining current knowledge about bacterial efflux pumps and drug designs applied in identification of their modulating compounds. Following, the chapter addresses and provides a discussion on Quantitative Structure-Activity Relationship (QSAR) analyses in search of novel and potent efflux pump inhibitors.
Collapse
Affiliation(s)
| | - Trong-Nhat Do
- University of Medicine and Pharmacy at HCMC, Vietnam
| | | | | | | |
Collapse
|
29
|
Liu B, Qiu Q, Zhao T, Jiao L, Li Y, Huang W, Qian H. 6,7-Dimethoxy-2-{2-[4-(1H-1,2,3-triazol-1-yl)phenyl]ethyl}-1,2,3,4-tetrahydroisoquinolines as Superior Reversal Agents for P-Glycoprotein-Mediated Multidrug Resistance. ChemMedChem 2014; 10:336-44. [DOI: 10.1002/cmdc.201402463] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Indexed: 11/11/2022]
|
30
|
Sprachman MM, Laughney AM, Kohler RH, Weissleder R. In vivo imaging of multidrug resistance using a third generation MDR1 inhibitor. Bioconjug Chem 2014; 25:1137-42. [PMID: 24806886 PMCID: PMC4098115 DOI: 10.1021/bc500154c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cellular up-regulation of multidrug resistance protein 1 (MDR1) is a common cause for resistance to chemotherapy; development of third generation MDR1 inhibitors-several of which contain a common 6,7-dimethoxy-2-phenethyl-1,2,3,4-tetrahydroisoquinoline substructure-is underway. Efficacy of these agents has been difficult to ascertain, partly due to a lack of pharmacokinetic reporters for quantifying inhibitor localization and transport dynamics. Some of the recent third generation inhibitors have a pendant heterocycle, for example, a chromone moiety, which we hypothesized could be converted to a fluorophore. Following synthesis and teasing of a small set of analogues, we identified one lead compound that can be used as a cellular imaging agent that exhibits structural similarity and behavior akin to the latest generation of MDR1 inhibitors.
Collapse
Affiliation(s)
- Melissa M Sprachman
- Center for Systems Biology, Massachusetts General Hospital , 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
| | | | | | | |
Collapse
|
31
|
Joshi P, Singh S, Wani A, Sharma S, Jain SK, Singh B, Gupta BD, Satti NK, Koul S, Khan IA, Kumar A, Bharate SB, Vishwakarma RA. Osthol and curcumin as inhibitors of human Pgp and multidrug efflux pumps of Staphylococcus aureus: reversing the resistance against frontline antibacterial drugs. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00196f] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curcumin and osthol are identified as NorA pump inhibitors.
Collapse
Affiliation(s)
- Prashant Joshi
- Medicinal Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
- , India
- Academy of Scientific & Innovative Research (AcSIR)
- Indian Institute of Integrative Medicine (CSIR)
| | - Samsher Singh
- Academy of Scientific & Innovative Research (AcSIR)
- Indian Institute of Integrative Medicine (CSIR)
- , India
- Clinical Microbiology Division
- Indian Institute of Integrative Medicine (CSIR)
| | - Abubakar Wani
- Cancer Pharmacology Division
- Indian Institute of Integrative Medicine (CSIR)
- , India
| | - Sadhana Sharma
- Academy of Scientific & Innovative Research (AcSIR)
- Indian Institute of Integrative Medicine (CSIR)
- , India
- Cancer Pharmacology Division
- Indian Institute of Integrative Medicine (CSIR)
| | - Shreyans K. Jain
- Academy of Scientific & Innovative Research (AcSIR)
- Indian Institute of Integrative Medicine (CSIR)
- , India
- Natural Products Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
| | - Baljinder Singh
- Academy of Scientific & Innovative Research (AcSIR)
- Indian Institute of Integrative Medicine (CSIR)
- , India
- Natural Products Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
| | - Bishan D. Gupta
- Natural Products Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
- , India
| | - Naresh K. Satti
- Natural Products Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
- , India
| | - Surrinder Koul
- Bioorganic Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
- , India
| | - Inshad A. Khan
- Academy of Scientific & Innovative Research (AcSIR)
- Indian Institute of Integrative Medicine (CSIR)
- , India
- Clinical Microbiology Division
- Indian Institute of Integrative Medicine (CSIR)
| | - Ajay Kumar
- Cancer Pharmacology Division
- Indian Institute of Integrative Medicine (CSIR)
- , India
| | - Sandip B. Bharate
- Medicinal Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
- , India
- Academy of Scientific & Innovative Research (AcSIR)
- Indian Institute of Integrative Medicine (CSIR)
| | - Ram A. Vishwakarma
- Medicinal Chemistry Division
- Indian Institute of Integrative Medicine (CSIR)
- , India
- Academy of Scientific & Innovative Research (AcSIR)
- Indian Institute of Integrative Medicine (CSIR)
| |
Collapse
|
32
|
Wang L, Li X, Jiang G, Liang J, Sun Y, Liu W. Reversal effect of BM-cyclin 1 on multidrug resistance by down-regulating MRP2 in BALB/C nude mice bearing C-A120 cells. ACTA ACUST UNITED AC 2013; 33:840-844. [DOI: 10.1007/s11596-013-1208-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/18/2013] [Indexed: 01/28/2023]
|
33
|
Wang SY, Sun ZL, Liu T, Gibbons S, Zhang WJ, Qing M. Flavonoids from Sophora moorcroftiana and their synergistic antibacterial effects on MRSA. Phytother Res 2013; 28:1071-6. [PMID: 24338874 DOI: 10.1002/ptr.5098] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 02/04/2023]
Abstract
Synergy is now a widely recognized approach that has direct applicability for new pharmaceuticals. The ethanolic extract of the aerial parts of the herb Sophora moorcroftiana showed significant antibacterial activity against drug-resistant Staphylococcus aureus, and its minimum inhibitory concentration (MIC) was 8 µg/mL. In a phytochemical study of the extract, five flavonoids were obtained. However, the isolates exhibited antibacterial activity in the range of 32-128 µg/mL, which was weaker than the extract. In combination with antibiotics, the antibacterially inactive compound genistein (1) and diosmetin (4) showed significant synergistic activity against drug-resistant S. aureus. In combination with norfloxacin, genistein (1) reduced the MIC to 16 µg/mL and showed synergy against strain SA1199B with a fractional inhibitory concentration index (FICI) of 0.38. With the antibiotics norfloxacin, streptomycin and ciprofloxacin, diosmetin (4) showed synergy against SA1199B, RN4220 and EMRSA-15, with FICI values of 0.38, 0.38 and 0.09, respectively. In an efflux experiment to elucidate a plausible mechanism for the observed synergy, genistein showed marginal inhibition of the NorA efflux protein.
Collapse
|
34
|
Doléans-Jordheim A, Veron JB, Fendrich O, Bergeron E, Montagut-Romans A, Wong YS, Furdui B, Freney J, Dumontet C, Boumendjel A. 3-Aryl-4-methyl-2-quinolones Targeting MultiresistantStaphylococcus aureusBacteria. ChemMedChem 2013; 8:652-7. [DOI: 10.1002/cmdc.201200551] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Indexed: 11/12/2022]
|
35
|
Kuriakose J, Hrycyna CA, Chmielewski J. Click chemistry-derived bivalent quinine inhibitors of P-glycoprotein-mediated cellular efflux. Bioorg Med Chem Lett 2012; 22:4410-2. [PMID: 22632934 DOI: 10.1016/j.bmcl.2012.04.125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 12/30/2022]
Abstract
P-glycoprotein (P-gp) effluxes a diverse set of drug substrates out of cells in an ATP dependent manner, thereby limiting the effective accumulation of therapeutic agents. Herein we demonstrate the use of click chemistry to rapidly generate bivalent quinine dimers, containing an intervening triazole ring, as potential inhibitors of P-gp mediated efflux. Calcein-AM substrate accumulation assays were performed in an MCF7/DX1 cell line that overexpresses P-gp to monitor the inhibitory activity of the clicked quinine dimers. A small library of potent P-gp inhibitors with varying tether lengths is reported, with the best dimer demonstrating low micromolar efficacy.
Collapse
Affiliation(s)
- Jerrin Kuriakose
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA
| | | | | |
Collapse
|
36
|
Synthesis and biological evaluation of novel bifendate derivatives bearing 6,7-dihydro-dibenzo[c,e]azepine scaffold as potent P-glycoprotein inhibitors. Eur J Med Chem 2012; 51:137-44. [DOI: 10.1016/j.ejmech.2012.02.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/11/2012] [Accepted: 02/16/2012] [Indexed: 12/18/2022]
|
37
|
Sabatini S, Gosetto F, Serritella S, Manfroni G, Tabarrini O, Iraci N, Brincat JP, Carosati E, Villarini M, Kaatz GW, Cecchetti V. Pyrazolo[4,3-c][1,2]benzothiazines 5,5-Dioxide: A Promising New Class of Staphylococcus aureus NorA Efflux Pump Inhibitors. J Med Chem 2012; 55:3568-72. [DOI: 10.1021/jm201446h] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Glenn W. Kaatz
- Department of Internal Medicine, Division
of Infectious Diseases, School of Medicine, Wayne State University
and the John D. Dingell Department of Veteran Affairs Medical Center,
Detroit, Michigan 48201, United States
| | | |
Collapse
|
38
|
Brincat JP, Broccatelli F, Sabatini S, Frosini M, Neri A, Kaatz GW, Cruciani G, Carosati E. Ligand Promiscuity between the Efflux Pumps Human P-Glycoprotein and S. aureus NorA. ACS Med Chem Lett 2012; 3:248-51. [PMID: 24900460 DOI: 10.1021/ml200293c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/23/2012] [Indexed: 01/16/2023] Open
Abstract
Thirty-two diverse compounds were evaluated for their ability to inhibit both Pgp-mediated efflux in mouse T-lymphoma L5178 MDR1 and NorA-mediated efflux in S. aureus SA-1199B. Only four compounds were strong inhibitors of both efflux pumps. Three compounds were found to inhibit Pgp exclusively and strongly, while seven compounds inhibited only NorA. These results demonstrate that Pgp and NorA inhibitors do not necessarily overlap, opening the way to safer therapeutic use of effective NorA inhibitors.
Collapse
Affiliation(s)
| | | | | | - Maria Frosini
- Department of Neuroscience, Pharmacology
Unit, University of Siena, Siena, Italy
| | - Annalisa Neri
- Department of Neuroscience, Pharmacology
Unit, University of Siena, Siena, Italy
| | - Glenn W. Kaatz
- Department of Internal Medicine,
Division of Infectious Diseases, School of Medicine, Wayne State University and the John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan 48201, United
States
| | | | | |
Collapse
|
39
|
Gu X, Ren Z, Tang X, Peng H, Ma Y, Lai Y, Peng S, Zhang Y. Synthesis and biological evaluation of bifendate-chalcone hybrids as a new class of potential P-glycoprotein inhibitors. Bioorg Med Chem 2012; 20:2540-8. [PMID: 22429509 DOI: 10.1016/j.bmc.2012.02.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 12/31/2022]
Abstract
Overexpression of P-glycoprotein (P-gp) is one of the major problems to successful cancer chemotherapy. To find novel effective P-gp inhibitors, a series of bifendate-chalcone hybrids were synthesized and evaluated. Among them, the most active compound 8g had little intrinsic cytotoxicity (IC(50)>200 μM), and could increase accumulation of Rhodamine 123 in K562/A02 cells more potently than bifendate and verapamil (VRP) by inhibiting P-gp efflux function. And 8g displayed potent chemo-sensitizing effect and persisted for much longer time (>24h) compared with VRP (<6h). In addition, 8g, unlike VRP, showed no stimulation on the P-gp ATPase activity, suggesting it is not a P-gp substrate. Therefore, 8g may represent a promising lead to develop MDR reversal agents for cancer chemotherapy.
Collapse
Affiliation(s)
- Xiaoke Gu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother 2011; 55:4943-60. [PMID: 21859938 PMCID: PMC3195018 DOI: 10.1128/aac.00296-11] [Citation(s) in RCA: 910] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In this review, we summarize the current "state of the art" of carbapenem antibiotics and their role in our antimicrobial armamentarium. Among the β-lactams currently available, carbapenems are unique because they are relatively resistant to hydrolysis by most β-lactamases, in some cases act as "slow substrates" or inhibitors of β-lactamases, and still target penicillin binding proteins. This "value-added feature" of inhibiting β-lactamases serves as a major rationale for expansion of this class of β-lactams. We describe the initial discovery and development of the carbapenem family of β-lactams. Of the early carbapenems evaluated, thienamycin demonstrated the greatest antimicrobial activity and became the parent compound for all subsequent carbapenems. To date, more than 80 compounds with mostly improved antimicrobial properties, compared to those of thienamycin, are described in the literature. We also highlight important features of the carbapenems that are presently in clinical use: imipenem-cilastatin, meropenem, ertapenem, doripenem, panipenem-betamipron, and biapenem. In closing, we emphasize some major challenges and urge the medicinal chemist to continue development of these versatile and potent compounds, as they have served us well for more than 3 decades.
Collapse
Affiliation(s)
- Krisztina M. Papp-Wallace
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
- Departments of Medicine
| | - Andrea Endimiani
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
- Institute for Infectious Diseases, University of Bern 3010, Bern, Switzerland
- Departments of Medicine
| | | | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106
- Departments of Medicine
- Pharmacology
- Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
41
|
Brincat JP, Carosati E, Sabatini S, Manfroni G, Fravolini A, Raygada JL, Patel D, Kaatz GW, Cruciani G. Discovery of novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. J Med Chem 2010; 54:354-65. [PMID: 21141825 DOI: 10.1021/jm1011963] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four novel inhibitors of the NorA efflux pump of Staphylococcus aureus, discovered through a virtual screening process, are reported. The four compounds belong to different chemical classes and were tested for their in vitro ability to block the efflux of a well-known NorA substrate, as well as for their ability to potentiate the effect of ciprofloxacin (CPX) on several strains of S. aureus, including a NorA overexpressing strain. Additionally, the MIC values of each of the compounds individually are reported. A structure-activity relationship study was also performed on these novel chemotypes, revealing three new compounds that are also potent NorA inhibitors. The virtual screening procedure employed FLAP, a new methodology based on GRID force field descriptors.
Collapse
|