1
|
Marek L, Váňa J, Svoboda J, Hanusek J. Eschenmoser coupling reactions starting from primary thioamides. When do they work and when not? Beilstein J Org Chem 2023; 19:808-819. [PMID: 37346496 PMCID: PMC10280059 DOI: 10.3762/bjoc.19.61] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Reactions of thiobenzamide or thioacetamide with 4-bromo-1,1-dimethyl-1,4-dihydroisoquinoline-3(2H)-one, 4-bromoisoquinoline-1,3(2H,4H)-dione and two α-bromo(phenyl)acetamides were examined under various conditions (base, solvent, thiophile, temperature) and structure/medium features that influence product distribution (Eschenmoser coupling reaction, Hantzsch thiazole synthesis and elimination to nitriles) were identified. The key factor that enables the successful Eschenmoser coupling reaction involves the optimum balance in acidity of nitrogen and carbon atoms of the intermediary α-thioiminium salts.
Collapse
Affiliation(s)
- Lukáš Marek
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ532 10 Pardubice, Czech Republic
| | - Jiří Váňa
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ532 10 Pardubice, Czech Republic
| | - Jan Svoboda
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ532 10 Pardubice, Czech Republic
| | - Jiří Hanusek
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ532 10 Pardubice, Czech Republic
| |
Collapse
|
2
|
Mustazza C, Sbriccoli M, Minosi P, Raggi C. Small Molecules with Anti-Prion Activity. Curr Med Chem 2020; 27:5446-5479. [PMID: 31560283 DOI: 10.2174/0929867326666190927121744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 08/08/2019] [Accepted: 09/05/2019] [Indexed: 01/20/2023]
Abstract
Prion pathologies are fatal neurodegenerative diseases caused by the misfolding of the physiological Prion Protein (PrPC) into a β-structure-rich isoform called PrPSc. To date, there is no available cure for prion diseases and just a few clinical trials have been carried out. The initial approach in the search of anti-prion agents had PrPSc as a target, but the existence of different prion strains arising from alternative conformations of PrPSc, limited the efficacy of the ligands to a straindependent ability. That has shifted research to PrPC ligands, which either act as chaperones, by stabilizing the native conformation, or inhibit its interaction with PrPSc. The role of transition-metal mediated oxidation processes in prion misfolding has also been investigated. Another promising approach is the indirect action via other cellular targets, like membrane domains or the Protein- Folding Activity of Ribosomes (PFAR). Also, new prion-specific high throughput screening techniques have been developed. However, so far no substance has been found to be able to extend satisfactorily survival time in animal models of prion diseases. This review describes the main features of the Structure-Activity Relationship (SAR) of the various chemical classes of anti-prion agents.
Collapse
Affiliation(s)
- Carlo Mustazza
- National Centre for Control and Evaluation of Medicines, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marco Sbriccoli
- Department of Neurosciences, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Paola Minosi
- National Centre for Drug Research and Evaluation, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Carla Raggi
- National Centre for Control and Evaluation of Medicines, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
3
|
Wang M, Zhang G, Wang Y, Wang J, Zhu M, Cen S, Wang Y. Design, synthesis and anti-influenza A virus activity of novel 2,4-disubstituted quinazoline derivatives. Bioorg Med Chem Lett 2020; 30:127143. [DOI: 10.1016/j.bmcl.2020.127143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 01/20/2023]
|
4
|
Zhang J, Li P, Zeng H, Huang Y, Hong W. Highly efficient and green synthesis of 2,4-diphenyl substituted thiazoles. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1718711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jungan Zhang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, P. R. China
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, P. R. China
| | - Peipei Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, P. R. China
| | - Hongyun Zeng
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, P. R. China
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, P. R. China
| | - Yu Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan, P. R. China
| | - Wei Hong
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, P. R. China
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, P. R. China
| |
Collapse
|
5
|
Abstract
Prion diseases are associated with the conversion of the cellular prion protein (PrPC), a glycoprotein expressed at the surface of a wide variety of cell types, into a misfolded conformer (the scrapie form of PrP, or PrPSc) that accumulates in brain tissues of affected individuals. PrPSc is a self-catalytic protein assembly capable of recruiting native conformers of PrPC, and causing their rearrangement into new PrPSc molecules. Several previous attempts to identify therapeutic agents against prion diseases have targeted PrPSc, and a number of compounds have shown potent anti-prion effects in experimental models. Unfortunately, so far, none of these molecules has successfully been translated into effective therapies for prion diseases. Moreover, mounting evidence suggests that PrPSc might be a difficult pharmacological target because of its poorly defined structure, heterogeneous composition, and ability to generate different structural conformers (known as prion strains) that can elude pharmacological intervention. In the last decade, a less intuitive strategy to overcome all these problems has emerged: targeting PrPC, the common substrate of any prion strain replication. This alternative approach possesses several technical and theoretical advantages, including the possibility of providing therapeutic effects also for other neurodegenerative disorders, based on recent observations indicating a role for PrPC in delivering neurotoxic signals of different misfolded proteins. Here, we provide an overview of compounds claimed to exert anti-prion effects by directly binding to PrPC, discussing pharmacological properties and therapeutic potentials of each chemical class.
Collapse
Affiliation(s)
| | - Nunzio Iraci
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Silvia Biggi
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy.
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Emiliano Biasini
- Dulbecco Telethon Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy.
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.
| |
Collapse
|
6
|
Hussaini SR, Chamala RR, Wang Z. The Eschenmoser sulfide contraction method and its application in the synthesis of natural products. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Synthesis and evaluation of novel diphenylthiazole derivatives as potential anti-inflammatory agents. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1418-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Kumar A, Paliwal D, Saini D, Thakur A, Aggarwal S, Kaushik D. A comprehensive review on synthetic approach for antimalarial agents. Eur J Med Chem 2014; 85:147-78. [DOI: 10.1016/j.ejmech.2014.07.084] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 01/11/2023]
|
9
|
Stanton JB, Schneider DA, Dinkel KD, Balmer BF, Baszler TV, Mathison BA, Boykin DW, Kumar A. Discovery of a novel, monocationic, small-molecule inhibitor of scrapie prion accumulation in cultured sheep microglia and Rov cells. PLoS One 2012; 7:e51173. [PMID: 23226483 PMCID: PMC3511409 DOI: 10.1371/journal.pone.0051173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/30/2012] [Indexed: 11/24/2022] Open
Abstract
Prion diseases, including sheep scrapie, are neurodegenerative diseases with the fundamental pathogenesis involving conversion of normal cellular prion protein (PrPC) to disease-associated prion protein (PrPSc). Chemical inhibition of prion accumulation is widely investigated, often using rodent-adapted prion cell culture models. Using a PrPSc-specific ELISA we discovered a monocationic phenyl-furan-benzimidazole (DB772), which has previously demonstrated anti-pestiviral activity and represents a chemical category previously untested for anti-prion activity, that inhibited PrPSc accumulation and prion infectivity in primary sheep microglial cell cultures (PRNP 136VV/154RR/171QQ) and Rov9 cultures (VRQ-ovinized RK13 cells). We investigated potential mechanisms of this anti-prion activity by evaluating PrPC expression with quantitative RT-PCR and PrP ELISA, comparing the concentration-dependent anti-prion and anti-pestiviral effects of DB772, and determining the selectivity index. Results demonstrate at least an approximate two-log inhibition of PrPSc accumulation in the two cell systems and confirmed that the inhibition of PrPSc accumulation correlates with inhibition of prion infectivity. PRNP transcripts and total PrP protein concentrations within cell lysates were not decreased; thus, decreased PrPC expression is not the mechanism of PrPSc inhibition. PrPSc accumulation was multiple logs more resistant than pestivirus to DB772, suggesting that the anti-PrPSc activity was independent of anti-pestivirus activity. The anti-PrPSc selectivity index in cell culture was approximately 4.6 in microglia and 5.5 in Rov9 cells. The results describe a new chemical category that inhibits ovine PrPSc accumulation in primary sheep microglia and Rov9 cells, and can be used for future studies into the treatment and mechanism of prion diseases.
Collapse
Affiliation(s)
- James B Stanton
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Cheng D, Sun R, Yan J. CuBr-Catalysed Oxidative Desulfurisation of Thiobenzamides. JOURNAL OF CHEMICAL RESEARCH 2012. [DOI: 10.3184/174751912x13318177149710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An efficient oxidative desulfurisation of thioamides by CuBr/TBHP is reported. Thioamides containing alkyl or aryl on the nitrogen undergo desulfurisation and give amides with good yields. Thioamides not containing substituent on the nitrogen undergo desulfurisation and give 1,2,4-thiadiazoles in moderate to good yields.
Collapse
Affiliation(s)
- Dongping Cheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ruirui Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jizhong Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
11
|
Thompson MJ, Louth JC, Little SM, Jackson MP, Boursereau Y, Chen B, Coldham I. Synthesis and Evaluation of 1-Amino-6-halo-β-carbolines as Antimalarial and Antiprion Agents. ChemMedChem 2012; 7:578-86. [DOI: 10.1002/cmdc.201200002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Indexed: 11/06/2022]
|
12
|
Thompson MJ, Louth JC, Ferrara S, Sorrell FJ, Irving BJ, Cochrane EJ, Meijer AJHM, Chen B. Structure-activity relationship refinement and further assessment of indole-3-glyoxylamides as a lead series against prion disease. ChemMedChem 2011; 6:115-30. [PMID: 21154498 DOI: 10.1002/cmdc.201000383] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Structure-activity relationships within the indole-3-glyoxylamide series of antiprion agents have been explored further, resulting in discovery of several new compounds demonstrating excellent activity in a cell line model of prion disease (EC₅₀ <10 nM). After examining a range of substituents at the para-position of the N-phenylglyoxylamide moiety, five-membered heterocycles containing at least two heteroatoms were found to be optimal for the antiprion effect. A number of modifications were made to probe the importance of the glyoxylamide substructure, although none were well tolerated. The most potent compounds did, however, prove largely stable towards microsomal metabolism, and the most active library member cured scrapie-infected cells indefinitely on administration of a single treatment. The present results thereby confirm the indole-3-glyoxylamides as a promising lead series for continuing in vitro and in vivo evaluation against prion disease.
Collapse
Affiliation(s)
- Mark J Thompson
- Department of Chemistry, University of Sheffield, Brook Hill, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
2,4-Diarylthiazole antiprion compounds as a novel structural class of antimalarial leads. Bioorg Med Chem Lett 2011; 21:3644-7. [DOI: 10.1016/j.bmcl.2011.04.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 11/23/2022]
|
14
|
Nguyen T, Sakasegawa Y, Doh-Ura K, Go ML. Anti-prion activities and drug-like potential of functionalized quinacrine analogs with basic phenyl residues at the 9-amino position. Eur J Med Chem 2011; 46:2917-29. [PMID: 21531054 DOI: 10.1016/j.ejmech.2011.04.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/02/2011] [Accepted: 04/04/2011] [Indexed: 11/16/2022]
Abstract
In this paper, we report the synthesis and cell-based anti-prion activity of quinacrine analogs derived by replacing the basic alkyl side chain of quinacrine with 4-(4-methylpiperazin-I-yl)phenyl, (1-benzylpiperidin-4-yl) and their structural variants. Several promising analogs were found that have a more favorable anti-prion profile than quinacrine in terms of potency and activity across different prion-infected murine cell models. They also exhibited greater binding affinities for a human prion protein fragment (hPrP(121-231)) than quinacrine, and had permeabilities on the PAMPA-BBB assay that fall within the range of CNS permeant candidates. When evaluated on bidirectional assays on a Pgp overexpressing cell line, one analog was less susceptible to Pgp efflux activity compared to quinacrine. Taken together, the results point to an important role for the substituted 9-amino side chain attached to the acridine, tetrahydroacridine and quinoline scaffolds. The nature of this side chain influenced cell-based potency, PAMPA permeability and binding affinity to hPrP(121-231).
Collapse
Affiliation(s)
- Thuy Nguyen
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | | | | | | |
Collapse
|