1
|
Lacanau V, Bonneté F, Wagner P, Schmitt M, Meyer D, Bihel F, Contino-Pépin C, Bourgeois D. From Electronic Waste to Suzuki-Miyaura Cross-Coupling Reaction in Water: Direct Valuation of Recycled Palladium in Catalysis. CHEMSUSCHEM 2020; 13:5224-5230. [PMID: 32672412 DOI: 10.1002/cssc.202001155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/29/2020] [Indexed: 06/11/2023]
Abstract
From electronic waste to Pd-catalyzed reaction! The straightforward valuation of palladium recovered from electronic waste is reported here. Following a classical leaching stage, palladium is selectively extracted from a complex aqueous mixture of metallic cations into an organic phase. Afterwards, the judicious choice of a surfactant enables stabilization of palladium during back extraction cycles, and the direct preparation of an aqueous micellar solution, which can be employed in a model Suzuki-Miyaura cross-coupling reaction. Clean phase separation is observed, and distribution of all components between organic and aqueous phases is mastered. The proposed process avoids several waste generating steps dedicated to palladium isolation and ultimate purification, as well as the preparation of palladium pre-catalyst. This novel approach enables a better use of both natural resources and industrial wastes, through new cycles in circular economy.
Collapse
Affiliation(s)
- Valentin Lacanau
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Université de Montpellier, BP 17171, Marcoule, 30207, Bagnols-sur-Cèze, France
- Equipe Chimie Bioorganique et Systèmes Amphiphiles Institut des Biomolécules Max Mousseron, UMR 5247, Avignon Université, 84911, Avignon, France
| | - Françoise Bonneté
- Equipe Chimie Bioorganique et Systèmes Amphiphiles Institut des Biomolécules Max Mousseron, UMR 5247, Avignon Université, 84911, Avignon, France
- Université de Paris LBPC-PM, CNRS, 75005, Paris, France
- Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Patrick Wagner
- Laboratoire d'Innovation thérapeutique, UMR 7200 Labex Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch, France
| | - Martine Schmitt
- Laboratoire d'Innovation thérapeutique, UMR 7200 Labex Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch, France
| | - Daniel Meyer
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Université de Montpellier, BP 17171, Marcoule, 30207, Bagnols-sur-Cèze, France
| | - Frédéric Bihel
- Laboratoire d'Innovation thérapeutique, UMR 7200 Labex Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch, France
| | - Christiane Contino-Pépin
- Equipe Chimie Bioorganique et Systèmes Amphiphiles Institut des Biomolécules Max Mousseron, UMR 5247, Avignon Université, 84911, Avignon, France
| | - Damien Bourgeois
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Université de Montpellier, BP 17171, Marcoule, 30207, Bagnols-sur-Cèze, France
| |
Collapse
|
2
|
Lorton O, Hyacinthe JN, Desgranges S, Gui L, Klauser A, Celicanin Z, Crowe LA, Lazeyras F, Allémann E, Taulier N, Contino-Pépin C, Salomir R. Molecular oxygen loading in candidate theranostic droplets stabilized with biocompatible fluorinated surfactants: Particle size effect and application to in situ 19F MRI mapping of oxygen partial pressure. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 295:27-37. [PMID: 30096550 DOI: 10.1016/j.jmr.2018.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/04/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE Perfluorocarbon nano- and micron-sized emulsions are a new field of investigation in cancer treatment due to their ability to be used as imaging contrast agents, or as delivery vectors for pharmaceuticals. They also demonstrated capability to enhance the efficiency of high intensity focused ultrasound thermo-therapy. In the context of new biomedical applications we investigated perfluorooctyl bromide (PFOB) theranostic droplets using 19F NMR. Each droplet contains biocompatible fluorinated surfactants composed of a polar Tris(hydroxymethyl)aminomethane head unit and hydrophobic perfluorinated tail (abbreviated as F-TAC). The influence of the droplet size on the oxygen loading capacity was determined from longitudinal relaxation (T1) data of 19F NMR signal. MATERIAL AND METHODS Liquid PFOB and five samples of PFOB droplets of average diameter 0.177, 0.259, 1.43, 3.12 and 4.53 µm were tested with different oxygen levels. A dedicated gas exchange system was validated to maintain steady state oxygen concentrations, including a spatial gradient of oxygen concentration. A prototyped transmit-receive switchable 19F/1H quadrature coil was integrated on a 3 T clinical scanner. The coil is compatible with focused ultrasound sonication for future application. A spectroscopy FID inversion-recovery (IR) sequence was used to measure the T1 value per sample and per value of equilibrium oxygen pressure. Pixel wise, spatial T1 mapping was performed with magnetization prepared 2D gradient echo sequences in tissue mimicking gels doped with theranostic droplets. RESULTS Experimental data indicated that the longitudinal relaxation rate of 19F signal of the investigated theranostic droplets depended approximately linearly on the oxygen level and its slope decreased with the particle size according to a second order polynomial over the investigated range. This semi-empirical model was derived from general thermodynamics and weak electrostatic forces theory and fitted the experimental data within 0.75% precision. The capacity of oxygen transportation for the described theranostic droplets tended to that of pure PFOB, while micron-sized droplets lost up to 50% of this capacity. In a specific setup producing a steady state gradient of oxygen concentration, we demonstrated spatial mapping of oxygen pressure gradient of 6 kPa/mm with 1 mm in-plane resolution. CONCLUSION The size-tunable PFOB theranostic droplets stabilized with F-TAC surfactants could be characterized by 19F MRI in a clinical setup readily compatible with interventional in vivo studies under MR guidance. Current precision and spatial resolution of T1 mapping are promising. A potential challenge for further in vivo studies is the reduction of the imaging time.
Collapse
Affiliation(s)
- Orane Lorton
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Switzerland.
| | - Jean-Noël Hyacinthe
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Switzerland; School of Health Sciences, HES-SO // University of Applied Sciences and Arts of Western, Switzerland
| | - Stéphane Desgranges
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Switzerland; University of Avignon, CBSA-IBMM (UMR5247), Avignon, France
| | - Laura Gui
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Switzerland
| | - Antoine Klauser
- Department of Radiology and Medical Informatics, University of Geneva, Switzerland
| | - Zarko Celicanin
- Department of Radiological Physics, University Hospital of Basel, Switzerland
| | - Lindsey A Crowe
- Department of Radiology and Medical Informatics, University of Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Nicolas Taulier
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), F-75006 Paris, France
| | | | - Rares Salomir
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Switzerland; University Hospitals of Geneva, Radiology Department, Geneva, Switzerland
| |
Collapse
|
3
|
Eitan E, Hutchison ER, Greig NH, Tweedie D, Celik H, Ghosh S, Fishbein KW, Spencer RG, Sasaki CY, Ghosh P, Das S, Chigurapati S, Raymick J, Sarkar S, Chigurupati S, Seal S, Mattson MP. Combination therapy with lenalidomide and nanoceria ameliorates CNS autoimmunity. Exp Neurol 2015; 273:151-60. [PMID: 26277686 DOI: 10.1016/j.expneurol.2015.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 08/03/2015] [Accepted: 08/10/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Multiple sclerosis (MS) is a debilitating neurological disorder involving an autoimmune reaction to oligodendrocytes and degeneration of the axons they ensheath in the CNS. Because the damage to oligodendrocytes and axons involves local inflammation and associated oxidative stress, we tested the therapeutic efficacy of combined treatment with a potent anti-inflammatory thalidomide analog (lenalidomide) and novel synthetic anti-oxidant cerium oxide nanoparticles (nanoceria) in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. METHODS C57BL/6 mice were randomly assigned to a control (no EAE) group, or one of the four myelin oligodendrocyte glycoprotein-induced EAE groups: vehicle, lenalidomide, nanoceria, or lenalidomide plus nanoceria. During a 23 day period, clinical EAE symptoms were evaluated daily, and MRI brain scans were performed at 11-13 days and 20-22 days. Histological and biochemical analyses of brain tissue samples were performed to quantify myelin loss and local inflammation. RESULTS Lenalidomide treatment alone delayed symptom onset, while nanoceria treatment had no effect on symptom onset or severity, but did promote recovery; lenalidomide and nanoceria each significantly attenuated white matter pathology and associated inflammation. Combined treatment with lenalidomide and nanoceria resulted in a near elimination of EAE symptoms, and reduced white matter pathology and inflammatory cell responses to a much greater extent than either treatment alone. INTERPRETATION By suppressing inflammation and oxidative stress, combined treatment with lenalidomide and nanoceria can reduce demyelination and associated neurological symptoms in EAE mice. Our preclinical data suggest a potential application of this combination therapy in MS.
Collapse
Affiliation(s)
- Erez Eitan
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Emmette R Hutchison
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Nigel H Greig
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - David Tweedie
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Hasan Celik
- Laboratory of Clinical Investigation, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Soumita Ghosh
- Laboratory of Clinical Investigation, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Kenneth W Fishbein
- Laboratory of Clinical Investigation, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Carl Y Sasaki
- Laboratory of Immunology, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Paritosh Ghosh
- Laboratory of Immunology, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Soumen Das
- Material Science and Engineering College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Susheela Chigurapati
- Arkansas Regional Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, 3900 NCTR Road, Building 26, Jefferson, AR 72079, USA
| | - James Raymick
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, AR 72079, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, AR 72079, USA
| | - Srinivasulu Chigurupati
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, AR 72079, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center, Mechanical Materials Aerospace Engineering, University of Central Florida, Orlando, Fl 32816, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Astafyeva K, Somaglino L, Desgranges S, Berti R, Patinote C, Langevin D, Lazeyras F, Salomir R, Polidori A, Contino-Pépin C, Urbach W, Taulier N. Perfluorocarbon nanodroplets stabilized by fluorinated surfactants: characterization and potentiality as theranostic agents. J Mater Chem B 2015; 3:2892-2907. [DOI: 10.1039/c4tb01578a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We aim to produce emulsions that can act as contrast agents and drug carriers for cancer imaging and therapy.
Collapse
|
5
|
Evaluation of the anti-Schistosoma mansoni activity of thiosemicarbazones and thiazoles. Antimicrob Agents Chemother 2013; 58:352-63. [PMID: 24165185 DOI: 10.1128/aac.01900-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schistosomiasis is a chronic and debilitating disease caused by a trematode of the genus Schistosoma and affects over 207 million people. Chemotherapy is the only immediate recourse for minimizing the prevalence of this disease and involves predominately the administration of a single drug, praziquantel (PZQ). Although PZQ has proven efficacy, there is a recognized need to develop new drugs as schistosomicides since studies have shown that repeated use of this drug in areas of endemicity may cause a temporary reduction in susceptibility in isolates of Schistosoma mansoni. Hydrazones, thiosemicarbazones, phthalimides, and thiazoles are thus regarded as privileged structures used for a broad spectrum of activities and are potential candidates for sources of new drug prototypes. The present study determined the in vitro schistosomicidal activity of 10 molecules containing these structures. During the assays, parameters such motility and mortality, oviposition, morphological changes in the tegument, cytotoxicity, and immunomodulatory activity caused by these compounds were evaluated. The results showed that compounds formed of thiazole and phthalimide led to higher mortality of worms, with a significant decline in motility, inhibition of pairing and oviposition, and a mortality rate of 100% starting from 144 h of exposure. These compounds also stimulated the production of nitric oxide and tumor necrosis factor alpha (TNF-α), thereby demonstrating the presence of immunomodulatory activity. The phthalyl thiazole LpQM-45 caused significant ultrastructural alterations, with destruction of the tegument in both male and female worms. According to the present study, phthalyl thiazole compounds possess antischistosomal activities and should form the basis for future experimental and clinical trials.
Collapse
|
6
|
Bowie LE, Roscoe WA, Lui EMK, Smith R, Karlik SJ. Effects of an aqueous extract of North American ginseng on MOG(35-55)-induced EAE in mice. Can J Physiol Pharmacol 2012; 90:933-9. [PMID: 22720838 DOI: 10.1139/y2012-092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system, in which the release of reactive oxygen species by infiltrating immune cells contributes to demyelination. American ginseng ( Panax quinquefolius ) is a natural health product with numerous beneficial properties, including anti-inflammatory and anti-oxidant effects. The purpose of this study was to determine whether ginseng could influence the course of the disease experimental autoimmune encephalomyelitis (EAE), an animal model of MS. C57BL/6J mice were immunized with MOG((35-55)) peptide to induce EAE. After clinical disease appeared, mice received either oral doses of an aqueous extract of ginseng (150 mg/kg body mass), or the vehicle. Clinical symptoms were recorded, and spinal cord tissue samples were analyzed for pathological signs of disease. The aqueous extract of ginseng significantly decreased (i) clinical signs of EAE, (ii) levels of circulating TNF-α, and (iii) central nervous system immunoreactive iNOS and demyelination scores, without a change in other neuropathological measures. This study shows that an aqueous extract of ginseng may be able to attenuate certain signs of EAE, suggesting that it may be a useful adjuvant therapy for MS.
Collapse
Affiliation(s)
- Laura E Bowie
- Department of Pathology, University of Western Ontario, London, Canada
| | | | | | | | | |
Collapse
|