1
|
Abatematteo FS, Delre P, Mercurio I, Rezelj VV, Siliqi D, Beaucourt S, Lattanzi G, Colabufo NA, Leopoldo M, Saviano M, Vignuzzi M, Mangiatordi GF, Abate C. A conformational rearrangement of the SARS-CoV-2 host protein sigma-1 is required for antiviral activity: insights from a combined in-silico/in-vitro approach. Sci Rep 2023; 13:12798. [PMID: 37550340 PMCID: PMC10406941 DOI: 10.1038/s41598-023-39662-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
The development of effective drugs to treat coronavirus infections remains a significant challenge for the scientific community. Recent evidence reports on the sigma-1 receptor (S1R) as a key druggable host protein in the SARS-CoV-1 and SARS-CoV-2 interactomes and shows a potent antiviral activity against SARS-CoV-2 for the S1R antagonist PB28. To improve PB28 activity, we designed and tested a series of its analogues and identified a compound that is fourfold more potent against SARS-CoV-2 than PB28 itself. Interestingly, we found no direct correlation between S1R affinity and SARS-CoV-2 antiviral activity. Building on this, we employed comparative induced fit docking and molecular dynamics simulations to gain insights into the possible mechanism that occurs when specific ligand-protein interactions take place and that may be responsible for the observed antiviral activity. Our findings offer a possible explanation for the experimental observations, provide insights into the S1R conformational changes upon ligand binding and lay the foundation for the rational design of new S1R ligands with potent antiviral activity against SARS-CoV-2 and likely other viruses.
Collapse
Affiliation(s)
- Francesca Serena Abatematteo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Pietro Delre
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia, Via Amendola 122/O, 70126, Bari, Italy
| | - Ivan Mercurio
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia, Via Amendola 122/O, 70126, Bari, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Antonio Vivaldi 43, 81100, Caserta, Italy
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, UMR 3569, CNRS, Institut Pasteur, Paris, France
| | - Dritan Siliqi
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia, Via Amendola 122/O, 70126, Bari, Italy
| | - Stephanie Beaucourt
- Viral Populations and Pathogenesis Unit, UMR 3569, CNRS, Institut Pasteur, Paris, France
| | - Gianluca Lattanzi
- Department of Physics, University of Trento, Via Sommarive 9, 38123, Povo-Trento, Italy
- TIFPA Trento Institute for Fundamental Physics and Applications, Via Sommarive 9, 38123, Povo-Trento, Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy
| | - Michele Saviano
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia, Via Vivaldi 43, 81100, Caserta, Italy
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, UMR 3569, CNRS, Institut Pasteur, Paris, France
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #05-13, Singapore, 138648, Singapore
| | - Giuseppe Felice Mangiatordi
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia, Via Amendola 122/O, 70126, Bari, Italy.
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy.
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia, Via Amendola 122/O, 70126, Bari, Italy.
| |
Collapse
|
2
|
Teodori E, Braconi L, Manetti D, Romanelli MN, Dei S. The Tetrahydroisoquinoline Scaffold in ABC Transporter Inhibitors that Act as Multidrug Resistance (MDR) Reversers. Curr Top Med Chem 2022; 22:2535-2569. [PMID: 36284399 DOI: 10.2174/1568026623666221025111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/08/2022] [Accepted: 09/27/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND The failure of anticancer chemotherapy is often due to the development of resistance to a variety of anticancer drugs. This phenomenon is called multidrug resistance (MDR) and is related to the overexpression of ABC transporters, such as P-glycoprotein, multidrug resistance- associated protein 1 and breast cancer resistance protein. Over the past few decades, several ABC protein modulators have been discovered and studied as a possible approach to evade MDR and increase the success of anticancer chemotherapy. Nevertheless, the co-administration of pump inhibitors with cytotoxic drugs, which are substrates of the transporters, does not appear to be associated with an improvement in the therapeutic efficacy of antitumor agents. However, more recently discovered MDR reversing agents, such as the two tetrahydroisoquinoline derivatives tariquidar and elacridar, are characterized by high affinity towards the ABC proteins and by reduced negative properties. Consequently, many analogs of these two derivatives have been synthesized, with the aim of optimizing their MDR reversal properties. OBJECTIVE This review aims to describe the MDR modulators carrying the tetraidroisoquinoline scaffold reported in the literature in the period 2009-2021, highlighting the structural characteristics that confer potency and/or selectivity towards the three ABC transport proteins. RESULTS AND CONCLUSION Many compounds have been synthesized in the last twelve years showing interesting properties, both in terms of potency and selectivity. Although clear structure-activity relationships can be drawn only by considering strictly related compounds, some of the compounds reviewed could be promising starting points for the design of new ABC protein inhibitors.
Collapse
Affiliation(s)
- Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, 50019, Sesto Fiorentino (FI), Italy
| |
Collapse
|
3
|
Qi Y, Xue B, Chen S, Wang W, Zhou H, Chen H. Synthesis, biological evaluation, and molecular docking of novel hydroxyzine derivatives as potential AR antagonists. Front Chem 2022; 10:1053675. [DOI: 10.3389/fchem.2022.1053675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer (PCa) is a malignant tumor with a higher mortality rate in the male reproductive system. In this study, the hydroxyazine derivatives were synthesized with different structure from traditional anti-prostate cancer drugs. In the evaluation of in vitro cytotoxicity and antagonistic activity of PC-3, LNCaP, DU145 and androgen receptor, it was found that the mono-substituted derivatives on the phenyl group (4, 6, 7, and 9) displayed strong cytotoxic activities, and compounds 11–16 showed relatively strong antagonistic potency against AR (Inhibition% >55). Docking analysis showed that compounds 11 and 12 mainly bind to AR receptor through hydrogen bonds and hydrophobic bonds, and the structure-activity relationship was discussed based on activity data. These results suggested that these compounds may have instructive implications for drug structural modification in prostate cancer.
Collapse
|
4
|
Fallica AN, Ciaffaglione V, Modica MN, Pittalà V, Salerno L, Amata E, Marrazzo A, Romeo G, Intagliata S. Structure-activity relationships of mixed σ1R/σ2R ligands with antiproliferative and anticancer effects. Bioorg Med Chem 2022; 73:117032. [DOI: 10.1016/j.bmc.2022.117032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
|
5
|
Zeng Z, Liao S, Zhou H, Liu H, Lin J, Huang Y, Zhou C, Xu D. Novel Sigma-2 receptor ligand A011 overcomes MDR in adriamycin-resistant human breast cancer cells by modulating ABCB1 and ABCG2 transporter function. Front Pharmacol 2022; 13:952980. [PMID: 36120340 PMCID: PMC9473340 DOI: 10.3389/fphar.2022.952980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Multidrug resistance (MDR) is thought to be one of the main reasons for the failure of chemotherapy in cancers. ATP-binding cassette subfamily B member 1 (ABCB1) or P-glycoprotein (P-gp) and ATP-binding cassette subfamily G member 2 (ABCG2) play indispensable roles in cancer cell MDR. Sigma-2 (σ2) receptor is considered to be a cancer biomarker and a potential therapeutic target due to its high expression in various proliferative tumors. Recently, σ2 receptor ligands have been shown to have promising cytotoxic effects against cancer cells and to modulate the activity of P-glycoprotein (ABCB1) in vitro experiments, but their specific effects and mechanisms remain to be elucidated. We found that A011, a σ2 receptor ligand with the structure of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline, showed promising cytotoxicity against breast cancer MCF-7 and adriamycin-resistant MCF-7 (MCF-7/ADR), induced apoptosis, and reversed adriamycin (ADR) and paclitaxel resistance in MCF-7/ADR cells. Furthermore, we demonstrated that A011 increased the accumulation of rhodamine 123 and mitoxantrone in MCF-7/ADR cells. A011 significantly decreased the ATPase activity of the ABCB1 and down-regulated ABCG2 protein expression. In addition, A011, administered alone or in combination with ADR, significantly inhibited tumor growth in the MCF-7/ADR tumor-bearing nude mouse model. A011 may be a potential therapeutic agent for the treatment of tumor resistance.
Collapse
Affiliation(s)
- Zhanwei Zeng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- Department of Pharmacy, Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Shiyi Liao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Huan Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Hongyu Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Jiantao Lin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Yunsheng Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Department of Pharmacology, Guangdong Medical University, Dongguan, China
| | - Chenhui Zhou
- School of Nursing, Guangdong Medical University, Dongguan, China
- *Correspondence: Chenhui Zhou, ; Daohua Xu,
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Department of Pharmacology, Guangdong Medical University, Dongguan, China
- *Correspondence: Chenhui Zhou, ; Daohua Xu,
| |
Collapse
|
6
|
Qi Y, Chen H, Chen S, Shen J, Li J. Synthesis, bioactivity, and molecular docking of novel arylpiperazine derivatives as potential AR antagonists. Front Chem 2022; 10:947065. [PMID: 36046733 PMCID: PMC9420858 DOI: 10.3389/fchem.2022.947065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer is one of the malignant tumors and the second most common malignant tumor in men. Clinically used androgen receptor (AR)–targeted drugs can antagonize androgen and inhibit tumor growth, but these drugs can cause serious resistance problems. To develop novel AR antagonists, 22 kinds of arylpiperazine derivatives were designed and synthesized, and the derivatives 5, 8, 12, 19, 21, 22, 25, and 26 not only showed strong antagonistic potency (>55% inhibition) and binding affinities (IC50 <3 μM) to AR, but also showed stronger inhibitory activity to LNCaP cells versus PC-3 cells. Among them, derivative 21 exhibited the highest binding affinity for AR (IC50 = 0.65 μM) and the highest antagonistic potency (76.2% inhibition). Docking studies suggested that the derivative 21 is primarily bound to the AR-LBP site by the hydrophobic interactions. Overall, those results provided experimental methods for developing novel arylpiperazine derivatives as potent AR antagonists.
Collapse
Affiliation(s)
- Yueheng Qi
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
- *Correspondence: Hong Chen, ; Jianliang Shen, ; Jingguo Li,
| | - Shijin Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Hong Chen, ; Jianliang Shen, ; Jingguo Li,
| | - Jingguo Li
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Hong Chen, ; Jianliang Shen, ; Jingguo Li,
| |
Collapse
|
7
|
Li Y, Xie X, Liao S, Zeng Z, Li S, Xie B, Huang Q, Zhou H, Zhou C, Lin J, Huang Y, Xu D. A011, a novel small-molecule ligand of σ 2 receptor, potently suppresses breast cancer progression via endoplasmic reticulum stress and autophagy. Biomed Pharmacother 2022; 152:113232. [PMID: 35679718 DOI: 10.1016/j.biopha.2022.113232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Breast cancer has surpassed lung cancer to become the most commonly diagnosed cancer in women worldwide. Sigma-2 (σ2) receptor is considered to be a potential therapeutic target for breast cancer because of its high expression in breast cancer cells and low expression in normal breast cells. Many σ2 ligands have been reported to have excellent anticancer activity, but their mechanism of action has not been fully elucidated. We discovered that A011 had high affinity and selectivity for σ2 receptor, reduced proliferation in five cancer cell lines, and significantly inhibited the monoclonal formation ability of MCF-7 cells. Furthermore, A011 rapidly increased the levels of intracellular Ca2+ and reactive oxygen species and induced autophagy. Molecular pharmacology studies revealed that A011 induced endoplasmic reticulum stress, activated the PERK-eIF2α-CHOP pathway and inhibited the activation of the PI3K-Akt-mTOR pathway, leading to cell apoptosis. In an in vivo tumor model, A011 showed obvious anti-tumor activity and no significant toxicity. More importantly, our study demonstrated for the first time that endoplasmic reticulum stress is the main mechanism of anti-cancer effects for σ2 ligands, at least for A011. A011 may potentially be useful as a therapeutic agent for treating breast cancer.
Collapse
Affiliation(s)
- Yuyun Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyang Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Guangdong Medical University, Dongguan 523808, China
| | - Shiyi Liao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Guangdong Medical University, Dongguan 523808, China
| | - Zhanwei Zeng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Guangdong Medical University, Dongguan 523808, China
| | - Siyan Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510016, China
| | - Baocheng Xie
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523018 China
| | - Qunfa Huang
- Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Guangdong Medical University, Dongguan 523808, China
| | - Huan Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Guangdong Medical University, Dongguan 523808, China
| | - Chenhui Zhou
- School of Nursing, Guangdong Medical University, Dongguan 523808, China
| | - Jiantao Lin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Guangdong Medical University, Dongguan 523808, China
| | - Yunsheng Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Guangdong Medical University, Dongguan 523808, China.
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Key Laboratory of Traditional Chinese Medicine and New Pharmacutical Development, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
8
|
Romanelli MN, Manetti D, Braconi L, Dei S, Gabellini A, Teodori E. The piperazine scaffold for novel drug discovery efforts: the evidence to date. Expert Opin Drug Discov 2022; 17:969-984. [PMID: 35848922 DOI: 10.1080/17460441.2022.2103535] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION . Piperazine is a structural element present in drugs belonging to various chemical classes and used for numerous different therapeutic applications; it has been considered a privileged scaffold for drug design. AREAS COVERED The authors have searched examples of piperazine-containing compounds among drugs recently approved by the FDA, and in some research fields (nicotinic receptor modulators, compounds acting against cancer and bacterial multi-drug resistance), looking in particular to the design behind the insertion of this moiety. EXPERT OPINION Piperazine is widely used due to its peculiar characteristics, such as solubility, basicity, chemical reactivity, and conformational properties. This moiety has represented an important tool to modulate pharmacokinetic and pharmacodynamic properties of drugs.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Dina Manetti
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Alessio Gabellini
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health (NEUROFARBA), University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Abate C, Niso M, Abatematteo FS, Contino M, Colabufo NA, Berardi F. PB28, the Sigma-1 and Sigma-2 Receptors Modulator With Potent Anti-SARS-CoV-2 Activity: A Review About Its Pharmacological Properties and Structure Affinity Relationships. Front Pharmacol 2020; 11:589810. [PMID: 33364961 PMCID: PMC7750835 DOI: 10.3389/fphar.2020.589810] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
These unprecedented times have forced the scientific community to gather to face the COVID-19 pandemic. Efforts in diverse directions have been made. A multi-university team has focused on the identification of the host (human) proteins interacting with SARS-CoV-2 viral proteins, with the aim of hampering these interactions that may cause severe COVID-19 symptoms. Sigma-1 and sigma-2 receptors surprisingly belong to the “druggable” host proteins found, with the pan-sigma receptor modulator PB28 displaying the most potent anti–SARS-CoV-2 activity in in vitro assays. Being 20-fold more active than hydroxychloroquine, without cardiac side effects, PB28 is a promising antiviral candidate worthy of further investigation. Our research group developed PB28 in 1996 and have thoroughly characterized its biological properties since then. Structure–affinity relationship (SAfiR) studies at the sigma receptor subtypes were also undertaken with PB28 as the lead compound. We herein report our knowledge of PB28 to share information that may help to gain insight into the antiviral action of this compound and sigma receptors, while providing structural hints that may speed up the translation into therapeutics of this class of ligands.
Collapse
Affiliation(s)
- Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| | | | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Bari, Italy
| |
Collapse
|
10
|
Chen H, Qian Y, Jia H, Yu Y, Zhang H, Shen J, Zhao S. Synthesis and pharmacological evaluation of naftopidil-based arylpiperazine derivatives containing the bromophenol moiety. Pharmacol Rep 2020; 72:1058-1068. [PMID: 32048266 DOI: 10.1007/s43440-019-00041-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/19/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is the most common malignancy in men and in the absence of any effective treatments available. METHODS For the development of potential anticancer agents, 24 kinds of naftopidil-based arylpiperazine derivatives containing the bromophenol moiety were synthesized and characterized by using spectroscopic methods. Their pharmacological activities were evaluated against human PCa cell lines (PC-3 and LNCaP) and a1-adrenergic receptors (a1-ARs; α1a, α1b, and α1d-ARs). The structure-activity relationship of these designed arylpiperazine derivatives was rationally explored and discussed. RESULTS Among these derivatives, 3c, 3d, 3h, 3k, 3o, and 3s exhibited the most potent activity against the tested cancer cells, and some derivatives with potent anticancer activities exhibited better a1-AR subtype selectivity than others did (selectivity ratio > 10). CONCLUSION This work provided a potential lead compound for the further development of anticancer agents for PCa therapy.
Collapse
Affiliation(s)
- Hong Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, 471934, China
| | - Yuna Qian
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, China.,Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou, 325001, China
| | - Huixia Jia
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, 471934, China
| | - Yuzhong Yu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haibo Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, China. .,Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou, 325001, China.
| | - Shanchao Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Cantonero C, Camello PJ, Abate C, Berardi F, Salido GM, Rosado JA, Redondo PC. NO1, a New Sigma 2 Receptor/TMEM97 Fluorescent Ligand, Downregulates SOCE and Promotes Apoptosis in the Triple Negative Breast Cancer Cell Lines. Cancers (Basel) 2020; 12:E257. [PMID: 31973006 PMCID: PMC7072710 DOI: 10.3390/cancers12020257] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/22/2022] Open
Abstract
(1) Background: The structure of the Sigma 2 receptor/TMEM97 (σ2RTMEM97) has recently been reported. (2, 3) Methods and results: We used genetic and biochemical approaches to identify the molecular mechanism downstream of σ2R/TMEM97. The novel σ2R/TMEM97 fluorescent ligand, NO1, reduced the proliferation and survival of the triple negative breast cancer cell lines (TNBC: MDA-MB-231 and MDA-MB-468 cell lines), due to NO1-induced apoptosis. Greater bioaccumulation and faster uptake of NO1 in MDA-MB-231 cells compared to MCF10A or MCF7 cell lines were also shown. Accordingly, elevated σ2R/TMEM97 expression was confirmed by Western blotting. In contrast to NO1, other σ2R/TMEM97 ligands, such as SM21 and PB28, enhanced MDA-MB-231 cell proliferation and migration. Store-operated calcium entry (SOCE) is crucial for different cancer hallmarks. Here, we show that NO1, but not other σ2R/TMEM97 ligands, reduced SOCE in MDA-MB-231 cells. Similarly, TMEM97 silencing in MDA-MB-231 cells also impaired SOCE. NO1 administration downregulated STIM1-Orai1 interaction, probably by impairing the positive regulatory effect of σ2R/TMEM97 on STIM1, as we were unable to detect interaction with Orai1. (4) Conclusion: σ2R/TMEM97 is a key protein for the survival of triple negative breast cancer cells by promoting SOCE; therefore, NO1 may become a good pharmacological tool to avoid their proliferation.
Collapse
Affiliation(s)
- Carlos Cantonero
- Department of Physiology, Phycell and FIMUL Groups, University of Extremadura, 10003 Caceres, Spain; (C.C.); (P.J.C.)
| | - Pedro Javier Camello
- Department of Physiology, Phycell and FIMUL Groups, University of Extremadura, 10003 Caceres, Spain; (C.C.); (P.J.C.)
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, I-70125 Bari, Italy; (C.A.); (F.B.)
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, I-70125 Bari, Italy; (C.A.); (F.B.)
| | - Gines Maria Salido
- Institute of Molecular Pathology Biomarkers (IMPB) of University of Extremadura, 10003 Caceres, Spain; (G.M.S.); (J.A.R.)
| | - Juan Antonio Rosado
- Institute of Molecular Pathology Biomarkers (IMPB) of University of Extremadura, 10003 Caceres, Spain; (G.M.S.); (J.A.R.)
| | - Pedro C. Redondo
- Institute of Molecular Pathology Biomarkers (IMPB) of University of Extremadura, 10003 Caceres, Spain; (G.M.S.); (J.A.R.)
| |
Collapse
|
12
|
Zhou JH, Shi MJ, Ding L, ShangGuan GQ, Xu J. A comparative study of the crystal structures of 2-(4-(2-(4-(3-chlorophenyl)pipera -zinyl)ethyl) benzyl)isoindoline-1,3-dione by synchrotron radiation X-ray powder diffraction and single-crystal X-ray diffraction. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe crystal structures of the title compound, C27H26ClN3O2, were established by single-crystal X-ray diffraction and synchrotron radiation X-ray powder diffraction. The simulated annealing approach and rigid-body Rietveld refinement were applied to the structure solution from powder data. Direct methods and full-matrix least-squares techniques were used to solve and refine the crystal structure from single-crystal data. The title compound crystallized in space group P
$\bar{1}$
with lattice parameters a=17.396(7) Å, b= 10.010(4) Å, c=6.833(3) Å, α=77.345(12) °, β= 93.534(6) °, γ=97.210(9) °, unit-cell volume V= 1151.0(2) Å3, Z=2 from powder data, and in space group P $\bar{1}$with lattice parameters α=82.485(2) °, β= 86.5110(10) °, γ=77.518(2) °, a=6.8159(6) Å, b= 10.0003(9) Å, c=17.4140(15) Å, unit-cell volume V =1148.3(2) Å3, Z=2 from single-crystal data. No detectable impurities were observed.
Collapse
Affiliation(s)
- Jin-Hui Zhou
- College of Pharmacy, Jining Medical University, Rizhao276826, China
- School of Chemistry and Chemical Engineering, University of Shandong, Jinan250100, China
| | - Mao-Jian Shi
- College of Pharmacy, Jining Medical University, Rizhao276826, China
| | - Lin Ding
- College of Pharmacy, Jining Medical University, Rizhao276826, China
| | | | - Jun Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin300072, China
| |
Collapse
|
13
|
Chen H, Zhang J, Hu P, Qian Y, Li J, Shen J. Synthesis, biological evaluation and molecular docking of 4-Amino-2H-benzo[h]chromen-2-one (ABO) analogs containing the piperazine moiety. Bioorg Med Chem 2019; 27:115081. [PMID: 31493989 DOI: 10.1016/j.bmc.2019.115081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 01/13/2023]
Abstract
Prostate cancer (PCa) is a major cause of cancer-related male death in worldwide. To develop of potential anti-prostate cancer agents, 22 kinds of 4-Amino-2H-benzo[h]chromen-2-one analogs were designed and synthesized as potent androgen receptor (AR) antagonist through rational drug modification leading to the discovery of a series of novel antiproliferative compounds. Analogs (3, 4, 5, 7, 8, 10, 11, 12, 16, 18, 21, 23, and 24) exhibited potent antagonistic potency against AR (inhibition >50%), and exhibited potent AR binding affinities as well as displayed the higher activities than finasteride toward LNCaP cells (AR-rich) versus PC-3 cells (AR-deficient). Moreover, the docking study suggested that the most potent antagonist 23 mainly bind to AR ligand binding pocket (LBP) site through Van der Waals' force interactions. The structure-activity relationship (SAR) of these designed 4-Amino-2H-benzo[h]chromen-2-one analogs was rationally explored and discussed. Collectively, this work provides a potential lead compound for anticancer agent development related to prostate cancer therapy, and took a step forward towards the development of novel and improved AR antagonists.
Collapse
Affiliation(s)
- Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Jingxiao Zhang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Peixin Hu
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yuna Qian
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou 325001, China
| | - Jing Li
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou 325001, China.
| |
Collapse
|
14
|
Synthesis and biological evaluation of arylpiperazine derivatives as potential anti-prostate cancer agents. Bioorg Med Chem 2019; 27:133-143. [DOI: 10.1016/j.bmc.2018.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/28/2018] [Accepted: 11/20/2018] [Indexed: 01/24/2023]
|
15
|
Zampieri D, Romano M, Menegazzi R, Mamolo MG. New piperidine-based derivatives as sigma receptor ligands. Synthesis and pharmacological evaluation. Bioorg Med Chem Lett 2018; 28:3206-3209. [DOI: 10.1016/j.bmcl.2018.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 01/27/2023]
|
16
|
Sigma-2 receptor: past, present and perspectives on multiple therapeutic exploitations. Future Med Chem 2018; 10:1997-2018. [DOI: 10.4155/fmc-2018-0072] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Identification of sigma-2 receptor (sig-2R) has been controversial. Nevertheless, interest in sig-2R is high for its overexpression in tumors and potentials in oncology. Additionally, sig-2R antagonists inhibit Aβ binding at neurons, blocking the cognitive impairments of Alzheimer's disease. The most representative classes of sig-2R ligands are herein treated with focus on compounds that served to study sig-2R biology and to produce sig-2R: fluorescent ligands; multifunctional anticancer agents; and targeting nanoparticles. Although fluorescent ligands serve as ‘green’ pharmacological tools, sig-2R-multifunctional conjugates and sig-2R-targeted nanoparticles show how sig-2R targeting increases the activity of anticancer drugs in tumors with reduced toxicity. Altogether, this review draws a picture of the multiple approaches of sig-2R ligands in cancer therapy and as Alzheimer's disease modifying disease agents.
Collapse
|
17
|
Chen H, Liang X, Sun T, Qiao X, Zhan Z, Li Z, He C, Ya H, Yuan M. Synthesis and biological evaluation of estrone 3-O-ether derivatives containing the piperazine moiety. Steroids 2018; 134:101-109. [PMID: 29476759 DOI: 10.1016/j.steroids.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/25/2018] [Accepted: 02/09/2018] [Indexed: 12/29/2022]
Abstract
A series of new estrone derivatives were designed and synthesized, and their structures were confirmed by spectroscopic methods. All new estrone derivatives were investigated for their in vitro cytotoxic efficacies against a panel of three human prostate cancer cell lines (PC-3, LNCaP, and DU145). The derivatives 6, 7, 10, 15, 16, 20, 21, 22, 24 and 26 showed important cytotoxic actions against individual carcinoma cell line collections. Moreover, antagonistic activities of compounds (7, 15, 16 and 21) towards a1-ARs (α1A, α1B, and α1D) were further evaluated using dual-luciferase reporter assays, and the compounds 16 and 21 exhibited better a1-ARs subtype selectivity. The structure-activity relationship (SAR) suggested that the substitute's type and position on the phenyl group leads to the interesting variations within pharmacological effects of resultant molecular systems.
Collapse
Affiliation(s)
- Hong Chen
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China
| | - Xue Liang
- The Fifth Affiliated Hospital of Guangzhou Medical University, 621# Gangwan Road, Guangzhou 510700, Guangdong Province, China
| | - Tao Sun
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China
| | - Xiaoguang Qiao
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China
| | - Zhou Zhan
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China
| | - Ziyong Li
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China
| | - Chaojun He
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China
| | - Huiyuan Ya
- College of Food and Drug, Luoyang Normal University, 6# Jiqing Road, Luoyang 471934, Henan Province, China.
| | - Mu Yuan
- Pharmaceutical Research Center, Guangzhou Medical University, 195# Dongfengxi Road, Guangzhou 511436, Guangdong Province, China.
| |
Collapse
|
18
|
Synthesis, biological evaluation and SAR of naftopidil-based arylpiperazine derivatives. Bioorg Med Chem Lett 2018; 28:1534-1539. [DOI: 10.1016/j.bmcl.2018.03.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/16/2018] [Accepted: 03/24/2018] [Indexed: 01/03/2023]
|
19
|
Chen H, Jia HX, Xu QT. Crystal structure of 1-(4-((benzo[ d][1,3]dioxol-5-yloxy)methyl)phenethyl)-4-(3-chlorophenyl) piperazin-1-ium chloride, C 26H 28Cl 2N 2O 3. Z KRIST-NEW CRYST ST 2018. [DOI: 10.1515/ncrs-2017-0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C26H28Cl2N2O3, monoclinic, P21/c (no. 14), a = 13.422(3) Å, b = 7.0011(14) Å, c = 26.249(5) Å, β = 101.06(3)°, V = 2420.8(9) Å3, Z = 4, R
gt(F) = 0.0516, wR
ref(F
2) = 0.1370, T = 296 K.
Collapse
Affiliation(s)
- Hong Chen
- College of Food and Drug , Luoyang Normal University , Luoyang, Henan 471934 , P. R. China
| | - Hui-Xia Jia
- College of Food and Drug , Luoyang Normal University , Luoyang, Henan 471934 , P. R. China
| | - Qi-Tai Xu
- College of Food and Drug , Luoyang Normal University , Luoyang, Henan 471934 , P. R. China
| |
Collapse
|
20
|
Zhou J, Jiang Q, Fu P, Liu S, Zhang S, Xu S, Zhang Q. Syntheses of 4-(Heteroaryl)cyclohexanones via Palladium-Catalyzed Ester α-Arylation and Decarboxylation. J Org Chem 2017; 82:9851-9858. [DOI: 10.1021/acs.joc.7b01443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianguang Zhou
- Chemical and Analytical Development, Suzhou Novartis Pharma Technology Company Ltd., Changshu, Jiangsu 215537, China
| | - Qun Jiang
- Chemical and Analytical Development, Suzhou Novartis Pharma Technology Company Ltd., Changshu, Jiangsu 215537, China
| | - Peng Fu
- Chemical and Analytical Development, Suzhou Novartis Pharma Technology Company Ltd., Changshu, Jiangsu 215537, China
| | - Siqian Liu
- Chemical and Analytical Development, Suzhou Novartis Pharma Technology Company Ltd., Changshu, Jiangsu 215537, China
| | - Sisi Zhang
- Chemical and Analytical Development, Suzhou Novartis Pharma Technology Company Ltd., Changshu, Jiangsu 215537, China
| | - Su Xu
- Chemical and Analytical Development, Suzhou Novartis Pharma Technology Company Ltd., Changshu, Jiangsu 215537, China
| | - Qi Zhang
- Chemical and Analytical Development, Suzhou Novartis Pharma Technology Company Ltd., Changshu, Jiangsu 215537, China
| |
Collapse
|
21
|
Pati ML, Hornick JR, Niso M, Berardi F, Spitzer D, Abate C, Hawkins W. Sigma-2 receptor agonist derivatives of 1-Cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine (PB28) induce cell death via mitochondrial superoxide production and caspase activation in pancreatic cancer. BMC Cancer 2017; 17:51. [PMID: 28086830 PMCID: PMC5237291 DOI: 10.1186/s12885-016-3040-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/23/2016] [Indexed: 11/30/2022] Open
Abstract
Background Despite considerable efforts by scientific research, pancreatic cancer is the fourth leading cause of cancer related mortalities. Sigma-2 receptors, which are overexpressed in several tumors, represent promising targets for triggering selective pancreatic cancer cells death. Methods We selected five differently structured high-affinity sigma-2 ligands (PB28, PB183, PB221, F281 and PB282) to study how they affect the viability of diverse pancreatic cancer cells (human cell lines BxPC3, AsPC1, Mia PaCa-2, and Panc1 and mouse Panc-02, KCKO and KP-02) and how this is reflected in vivo in a tumor model. Results Important cytotoxicity was shown by the compounds in the aggressive Panc02 cells, where cytotoxic activity was caspase-3 independent for four of the five compounds. However, both cytotoxicity and caspase-3 activation involved generation of Reactive Oxygen Species (ROS), which could be partially reverted by the lipid antioxidant α-tocopherol, but not by the hydrophilic N-acetylcysteine (NAC) indicating crucial differences in the intracellular sites exposed to oxidative stress induced by sigma-2 receptor ligands. Importantly, all the compounds strongly increased the production of mitochondrial superoxide radicals except for PB282. Despite a poor match between in vitro and the in vivo efficacy, daily treatment of C57BL/6 mice bearing Panc02 tumors resulted in promising effects with PB28 and PB282 which were similar compared to the current standard-of-care chemotherapeutic gemcitabine without showing signs of systemic toxicities. Conclusions Overall, this study identified differential sensitivities of pancreatic cancer cells to structurally diverse sigma-2 receptor ligands. Of note, we identified the mitochondrial superoxide pathway as a previously unrecognized sigma-2 receptor-activated process, which encourages further studies on sigma-2 ligand-mediated cancer cell death for the targeted treatment of pancreatic tumors.
Collapse
Affiliation(s)
- Maria Laura Pati
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125, Bari, Italy
| | - John R Hornick
- Department of Surgery, Division of Hepatobiliary, Pancreatic, and Gastrointestinal Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125, Bari, Italy
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125, Bari, Italy
| | - Dirk Spitzer
- Department of Surgery, Division of Hepatobiliary, Pancreatic, and Gastrointestinal Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125, Bari, Italy.
| | - William Hawkins
- Department of Surgery, Division of Hepatobiliary, Pancreatic, and Gastrointestinal Surgery, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
22
|
Abstract
Sigma1 (also known as sigma-1 receptor, Sig1R, σ1 receptor) is a unique pharmacologically regulated integral membrane chaperone or scaffolding protein. The majority of publications on the subject have focused on the neuropharmacology of Sigma1. However, a number of publications have also suggested a role for Sigma1 in cancer. Although there is currently no clinically used anti-cancer drug that targets Sigma1, a growing body of evidence supports the potential of Sigma1 ligands as therapeutic agents to treat cancer. In preclinical models, compounds with affinity for Sigma1 have been reported to inhibit cancer cell proliferation and survival, cell adhesion and migration, tumor growth, to alleviate cancer-associated pain, and to have immunomodulatory properties. This review will highlight that although the literature supports a role for Sigma1 in cancer, several fundamental questions regarding drug mechanism of action and the physiological relevance of aberrant SIGMAR1 transcript and Sigma1 protein expression in certain cancers remain unanswered or only partially answered. However, emerging lines of evidence suggest that Sigma1 is a component of the cancer cell support machinery, that it facilitates protein interaction networks, that it allosterically modulates the activity of its associated proteins, and that Sigma1 is a selectively multifunctional drug target.
Collapse
Affiliation(s)
- Felix J Kim
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Philadelphia, PA, USA.
| | - Christina M Maher
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| |
Collapse
|
23
|
Reilly SW, Mach RH. Pd-Catalyzed Synthesis of Piperazine Scaffolds Under Aerobic and Solvent-Free Conditions. Org Lett 2016; 18:5272-5275. [PMID: 27736075 PMCID: PMC5984194 DOI: 10.1021/acs.orglett.6b02591] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A facile Pd-catalyzed methodology providing an efficient synthetic route to biologically relevant arylpiperazines under aerobic conditions is reported. Electron donating and sterically hindered aryl chlorides were aminated to afford yields up to 97%, with examples using piperazine as solvent, illustrating an ecofriendly, cost-effective synthesis of these privileged structures.
Collapse
Affiliation(s)
- Sean W Reilly
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
24
|
Computer-assisted design, synthesis, binding and cytotoxicity assessments of new 1-(4-(aryl(methyl)amino)butyl)-heterocyclic sigma 1 ligands. Eur J Med Chem 2016; 121:712-726. [DOI: 10.1016/j.ejmech.2016.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 11/21/2022]
|
25
|
Estrada M, Pérez C, Soriano E, Laurini E, Romano M, Pricl S, Morales-García JA, Pérez-Castillo A, Rodríguez-Franco MI. New neurogenic lipoic-based hybrids as innovative Alzheimer's drugs with σ-1 agonism and β-secretase inhibition. Future Med Chem 2016; 8:1191-207. [PMID: 27402296 DOI: 10.4155/fmc-2016-0036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neurogenic agents emerge as innovative drugs for the treatment of Alzheimer's disease (AD), whose pathological complexity suggests strengthening research in the multi-target directed ligands strategy. RESULTS By combining the lipoic acid structure with N-benzylpiperidine or N,N-dibenzyl(N-methyl)amine fragments, new multi-target directed ligands were obtained that act at three relevant targets in AD: σ-1 receptor (σ1R), β-secretase-1 (BACE1) and acetylcholinesterase (AChE). Moreover, they show potent neurogenic properties, good antioxidant capacity and favorable CNS permeability. Molecular modeling studies on AChE, σ1R and BACE1 highlight relevant drug-protein interactions that may contribute to the development of new disease-modifying drugs. CONCLUSION New lipoic-based σ1 agonists endowed with neurogenic, antioxidant, cholinergic and amyloid β-peptide-reducing properties have been discovered for the potential treatment of AD.
Collapse
Affiliation(s)
- Martín Estrada
- Instituto de Química Médica (IQM-CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain
| | - Concepción Pérez
- Instituto de Química Médica (IQM-CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain
| | - Elena Soriano
- Instituto de Química Orgánica General (IQOG-CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain
| | - Erik Laurini
- Molecular Simulation Engineering (MOSE) Laboratory, DEA, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 - Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulation Engineering (MOSE) Laboratory, DEA, Piazzale Europa 1, University of Trieste, 34127 Trieste, Italy
- National Interuniversity Consortium for Material Science & Technology (INSTM), Research Unit MOSE-DEA, University of Trieste, Trieste, Italy
| | - José A Morales-García
- Instituto de Investigaciones Biomédicas "Alberto Sols" (IIB-CSIC), C/Arturo Duperier 4, 28029-Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031-Madrid, Spain
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas "Alberto Sols" (IIB-CSIC), C/Arturo Duperier 4, 28029-Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), C/Valderrebollo 5, 28031-Madrid, Spain
| | | |
Collapse
|
26
|
Design, synthesis and biological evaluation of novel arylpiperazine derivatives on human prostate cancer cell lines. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2015.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Abate C, Riganti C, Pati ML, Ghigo D, Berardi F, Mavlyutov T, Guo LW, Ruoho A. Development of sigma-1 (σ1) receptor fluorescent ligands as versatile tools to study σ1 receptors. Eur J Med Chem 2016; 108:577-585. [PMID: 26717207 PMCID: PMC4755300 DOI: 10.1016/j.ejmech.2015.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 11/16/2022]
Abstract
Despite their controversial physiology, sigma-1 (σ1) receptors are intriguing targets for the development of therapeutic agents for central nervous system diseases. With the aim of providing versatile pharmacological tools to study σ1 receptors, we developed three σ1 fluorescent tracers by functionalizing three well characterized σ1 ligands with a fluorescent tag. A good compromise between σ1 binding affinity and fluorescent properties was reached, and the σ1 specific targeting of the novel tracers was demonstrated by confocal microscopy and flow cytometry. These novel ligands were also successfully used in competition binding studies by flow cytometry, showing their utility in nonradioactive binding assays as an alternative strategy to the more classical radioligand binding assays. To the best of our knowledge these are the first σ1 fluorescent ligands to be developed and successfully employed in living cells, representing promising tools to strengthen σ1 receptors related studies.
Collapse
Affiliation(s)
- Carmen Abate
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125, Bari, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126, Torino, Italy
| | - Maria Laura Pati
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125, Bari, Italy
| | - Dario Ghigo
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126, Torino, Italy
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze Del Farmaco, Università Degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125, Bari, Italy
| | - Timur Mavlyutov
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Arnold Ruoho
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| |
Collapse
|
28
|
van Waarde A, Rybczynska AA, Ramakrishnan NK, Ishiwata K, Elsinga PH, Dierckx RAJO. Potential applications for sigma receptor ligands in cancer diagnosis and therapy. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:2703-14. [PMID: 25173780 DOI: 10.1016/j.bbamem.2014.08.022] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/04/2014] [Accepted: 08/19/2014] [Indexed: 01/03/2023]
Abstract
Sigma receptors (sigma-1 and sigma-2) represent two independent classes of proteins. Their endogenous ligands may include the hallucinogen N,N-dimethyltryptamine (DMT) and sphingolipid-derived amines which interact with sigma-1 receptors, besides steroid hormones (e.g., progesterone) which bind to both sigma receptor subpopulations. The sigma-1 receptor is a ligand-regulated molecular chaperone with various ion channels and G-protein-coupled membrane receptors as clients. The sigma-2 receptor was identified as the progesterone receptor membrane component 1 (PGRMC1). Although sigma receptors are over-expressed in tumors and up-regulated in rapidly dividing normal tissue, their ligands induce significant cell death only in tumor tissue. Sigma ligands may therefore be used to selectively eradicate tumors. Multiple mechanisms appear to underlie cell killing after administration of sigma ligands, and the signaling pathways are dependent both on the type of ligand and the type of tumor cell. Recent evidence suggests that the sigma-2 receptor is a potential tumor and serum biomarker for human lung cancer and an important target for inhibiting tumor invasion and cancer progression. Current radiochemical efforts are focused on the development of subtype-selective radioligands for positron emission tomography (PET) imaging. Right now, the mostpromising tracers are [18F]fluspidine and [18F]FTC-146 for sigma-1 receptors and [11C]RHM-1 and [18F]ISO-1 for the sigma-2 subtype. Nanoparticles coupled to sigma ligands have shown considerable potential for targeted delivery of antitumor drugs in animal models of cancer, but clinical studies exploring this strategy in cancer patients have not yet been reported. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Anna A Rybczynska
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nisha K Ramakrishnan
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Kiichi Ishiwata
- Tokyo Metropolitan Institute of Gerontology, Research Team for Neuroimaging, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo 173-0015, Japan
| | - Philip H Elsinga
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; University of Ghent, University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
29
|
Abate C, Niso M, Infantino V, Menga A, Berardi F. Elements in support of the ‘non-identity’ of the PGRMC1 protein with the σ2 receptor. Eur J Pharmacol 2015; 758:16-23. [DOI: 10.1016/j.ejphar.2015.03.067] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
|
30
|
Niso M, Riganti C, Pati ML, Ghigo D, Berardi F, Abate C. Novel and Selective Fluorescent σ2 -Receptor Ligand with a 3,4-Dihydroisoquinolin-1-one Scaffold: A Tool to Study σ2 Receptors in Living Cells. Chembiochem 2015; 16:1078-83. [PMID: 25757101 DOI: 10.1002/cbic.201402712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 11/11/2022]
Abstract
Although sigma-2 (σ2 ) receptors are still enigmatic proteins, they are promising targets for tumor treatment and diagnosis. With the aim of clarifying their role in oncology, we developed a σ2 -selective fluorescent tracer (compound 5) as a specific tool to study σ2 receptors. By using flow cytometry with 5, we performed competition binding studies on three different cell lines where we also detected the content of the σ2 receptors, avoiding the inconvenient use of radioligands. Comparison with a previously developed mixed σ1 /σ2 fluorescent tracer (1) also allowed for the detection of σ1 receptors within these cells. Results obtained by flow cytometry with tracers 1 and 5 were confirmed by standard methods (western blot for σ1 , and Scatchard analysis for σ2 receptors). Thus, we have produced powerful new tools for research on the σ whose reliability and adaptability to a number of fluorescence techniques will be useful to elucidate the roles of σ receptors in oncology.
Collapse
Affiliation(s)
- Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Via Orabona, 4. 70125 Bari (Italy)
| | | | | | | | | | | |
Collapse
|
31
|
Chen H, Xu F, Liang X, Xu BB, Yang ZL, He XL, Huang BY, Yuan M. Design, synthesis and biological evaluation of novel arylpiperazine derivatives on human prostate cancer cell lines. Bioorg Med Chem Lett 2015; 25:285-7. [DOI: 10.1016/j.bmcl.2014.11.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/12/2014] [Accepted: 11/18/2014] [Indexed: 01/16/2023]
|
32
|
Pati ML, Abate C, Contino M, Ferorelli S, Luisi R, Carroccia L, Niso M, Berardi F. Deconstruction of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline moiety to separate P-glycoprotein (P-gp) activity from σ2 receptor affinity in mixed P-gp/σ2 receptor agents. Eur J Med Chem 2014; 89:691-700. [PMID: 25462276 DOI: 10.1016/j.ejmech.2014.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/15/2014] [Accepted: 11/01/2014] [Indexed: 12/01/2022]
Abstract
6,7-Dimethoxytetrahydroisoquinoline is widely used as basic moiety in σ2 receptor ligands, in order to provide σ2versus σ1 selectivity. This same moiety is also widely exploited in modulators of P-glycoprotein (P-gp) efflux pump, so that mixed σ2/P-gp agents are often obtained. Deconstruction of 6,7-dimethoxytetrahydroisoquinoline moiety present in the potent mixed σ2/P-gp agent 6,7-dimethoxy-2-[4-[1-(4-fluorophenyl)-1H-indol-3-yl]butyl]-1,2,3,4-tetrahydroisoquinoline (1) could lead to the separation of σ2 affinity from P-gp activity. Therefore, phenethylamino-, benzylamino- and indanamine series were obtained. The NH group was also methylated in the N-phenethylamino series, and ethylated in the benzylamino series, to better match 6,7-dimethoxytetrahydroisoquinoline. The σ2 affinity drastically decreased with the increase of conformational freedom, whereas alkylation of the NH-group was beneficial for σ2 receptor interaction. By contrast, deconstruction of 6,7-dimethoxytetrahydroisoquinoline slightly reduced P-gp activity, with dimethoxy-substituted derivatives displaying potent P-gp interaction. Therefore, 'ring-opened' 6,7-dimethoxytetrahydroisoquinoline derivatives represent a promising strategy to obtain P-gp selective agents devoid of σ2 receptor affinity.
Collapse
Affiliation(s)
- Maria Laura Pati
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, I-70125 Bari, Italy
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, I-70125 Bari, Italy.
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, I-70125 Bari, Italy
| | - Savina Ferorelli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, I-70125 Bari, Italy
| | - Renzo Luisi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, I-70125 Bari, Italy
| | - Laura Carroccia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, I-70125 Bari, Italy
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, I-70125 Bari, Italy
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, I-70125 Bari, Italy
| |
Collapse
|
33
|
Abate C, Pati ML, Contino M, Colabufo NA, Perrone R, Niso M, Berardi F. From mixed sigma-2 receptor/P-glycoprotein targeting agents to selective P-glycoprotein modulators: small structural changes address the mechanism of interaction at the efflux pump. Eur J Med Chem 2014; 89:606-15. [PMID: 25462269 DOI: 10.1016/j.ejmech.2014.10.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/15/2022]
Abstract
Generations of modulators of the efflux pump P-glycoprotein (P-gp) have been produced as tools to counteract the Multidrug Resistance (MDR) phenomenon in tumor therapy, but clinical trials were not successful so far. With the aim of contributing to the development of novel P-gp modulators, we started from recently studied high-affinity sigma-2 (σ2) receptor ligands that showed also potent interaction with P-gp. For σ2 receptors high-affinity binding, a basic N-atom is a strict requirement. Therefore, we reduced the basic character of the N-atom present in these ligands, and we obtained potent P-gp modulators with poor or null σ2 receptor affinity. We also evaluated whether modulation of P-gp by these novel compounds involved consumption of ATP (as P-gp substrates do), as a source of energy to support the efflux. Surprisingly, even small structural changes resulted in opposite behavior, with amide 13 depleting ATP, in contrast to its isomer 18. Two compounds, 15 and 25, emerged for their potent activity at P-gp, and deserve further investigations as tools for P-gp modulation.
Collapse
Affiliation(s)
- Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy.
| | - Maria Laura Pati
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Roberto Perrone
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| | - Francesco Berardi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, I-70125 Bari, Italy
| |
Collapse
|
34
|
Abate C, Niso M, Marottoli R, Riganti C, Ghigo D, Ferorelli S, Ossato G, Perrone R, Lacivita E, Lamb DC, Berardi F. Novel derivatives of 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine (PB28) with improved fluorescent and σ receptors binding properties. J Med Chem 2014; 57:3314-23. [PMID: 24697311 DOI: 10.1021/jm401874n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the promising potentials of σ2 receptors in cancer therapy and diagnosis, there are still ambiguities related to the nature and physiological role of the σ2 protein. With the aim of providing potent and reliable tools to be used in σ2 receptor research, we developed a novel series of fluorescent σ2 ligands on the basis of our previous work, where high-affinity σ2 ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-n-propyl]piperazine (1, PB28) was used as the pharmacophore. Compared to the previous compounds, these novel ligands displayed improved fluorescence and σ2 binding properties, were σ2-specifically taken up by breast tumor cells, and were successfully employed in confocal microscopy. Compound 14, which was the best compromise between pharmacological and fluorescent properties, was successfully employed in flow cytometry, demonstrating its potential to be used as a tool in nonradioactive binding assays for studying the affinity of putative σ2 receptor ligands.
Collapse
Affiliation(s)
- Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO , Via Orabona 4, I-70125 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Niso M, Abate C, Contino M, Ferorelli S, Azzariti A, Perrone R, Colabufo NA, Berardi F. Sigma-2 receptor agonists as possible antitumor agents in resistant tumors: hints for collateral sensitivity. ChemMedChem 2013; 8:2026-35. [PMID: 24106081 DOI: 10.1002/cmdc.201300291] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/06/2013] [Indexed: 11/12/2022]
Abstract
With the aim of contributing to the development of novel antitumor agents, high-affinity σ2 receptor agonists were developed, with 6,7-dimethoxy-2-[4-[1-(4-fluorophenyl)-1H-indol-3-yl]butyl]-1,2,3,4-tetrahydroisoquinoline (15) and 9-[4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)butyl]-9H-carbazole (25) showing exceptional selectivity for the σ2 subtype. Most of the compounds displayed notable antiproliferative activity in human MCF7 breast adenocarcinoma cells, with similar activity in the corresponding doxorubicin-resistant MCF7adr cell line. Surprisingly, a few compounds, including 25, displayed enhanced activity in MCF7adr cells over parent cells, recalling the phenomenon of collateral sensitivity, which is under study for the treatment of drug-resistant tumors. All of the compounds showed interaction with P-glycoprotein (P-gp), and 15 and 25, with the greatest activity, were able to revert P-gp-mediated resistance and reestablish the antitumor effect of doxorubicin in MCF7adr cells. We therefore identified a series of σ2 receptor agonists endowed with intriguing antitumor properties; these compounds deserve further investigation for the development of alternate strategies against multidrug- resistant cancers.
Collapse
Affiliation(s)
- Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, 70125 Bari (Italy)
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abate C, Ferorelli S, Niso M, Lovicario C, Infantino V, Convertini P, Perrone R, Berardi F. 2-Aminopyridine Derivatives as Potential σ2Receptor Antagonists. ChemMedChem 2012; 7:1847-57. [DOI: 10.1002/cmdc.201200246] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/20/2012] [Indexed: 11/06/2022]
|
37
|
Hornick JR, Vangveravong S, Spitzer D, Abate C, Berardi F, Goedegebuure P, Mach RH, Hawkins WG. Lysosomal membrane permeabilization is an early event in Sigma-2 receptor ligand mediated cell death in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:41. [PMID: 22551149 PMCID: PMC3414770 DOI: 10.1186/1756-9966-31-41] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 05/02/2012] [Indexed: 01/13/2023]
Abstract
Background Sigma-2 receptor ligands have been studied for treatment of pancreatic cancer because they are preferentially internalized by proliferating cells and induce apoptosis. This mechanism of apoptosis is poorly understood, with varying reports of caspase-3 dependence. We evaluated multiple sigma-2 receptor ligands in this study, each shown to decrease tumor burden in preclinical models of human pancreatic cancer. Results Fluorescently labeled sigma-2 receptor ligands of two classes (derivatives of SW43 and PB282) localize to cell membrane components in Bxpc3 and Aspc1 pancreatic cancer cells and accumulate in lysosomes. We found that interactions in the lysosome are critical for cell death following sigma-2 ligand treatment because selective inhibition of a protective lysosomal membrane glycoprotein, LAMP1, with shRNA greatly reduced the viability of cells following treatment. Sigma-2 ligands induced lysosomal membrane permeabilization (LMP) and protease translocation triggering downstream effectors of apoptosis. Subsequently, cellular oxidative stress was greatly increased following treatment with SW43, and the hydrophilic antioxidant N-acetylcysteine (NAC) gave greater protection against this than a lipophilic antioxidant, α-tocopherol (α-toco). Conversely, PB282-mediated cytotoxicity relied less on cellular oxidation, even though α-toco did provide protection from this ligand. In addition, we found that caspase-3 induction was not as significantly inhibited by cathepsin inhibitors as by antioxidants. Both NAC and α-toco protected against caspase-3 induction following PB282 treatment, while only NAC offered protection following SW43 treatment. The caspase-3 inhibitor DEVD-FMK offered significant protection from PB282, but not SW43. Conclusions Sigma-2 ligand SW43 commits pancreatic cancer cells to death by a caspase-independent process involving LMP and oxidative stress which is protected from by NAC. PB282 however undergoes a caspase-dependent death following LMP protected by DEVD-FMK and α-toco, which is also known to stabilize the mitochondrial membrane during apoptotic stimuli. These differences in mechanism are likely dependent on the structural class of the compounds versus the inherent sigma-2 binding affinity. As resistance of pancreatic cancers to specific apoptotic stimuli from chemotherapy is better appreciated, and patient-tailored treatments become more available, ligands with high sigma-2 receptor affinity should be chosen based on sensitivities to apoptotic pathways.
Collapse
Affiliation(s)
- John R Hornick
- Department of Surgery, Washington University School of Medicine, S, Euclid Avenue, St, Louis, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Arylamides hybrids of two high-affinity σ2 receptor ligands as tools for the development of PET radiotracers. Eur J Med Chem 2011; 46:4733-41. [DOI: 10.1016/j.ejmech.2011.05.057] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/19/2011] [Accepted: 05/23/2011] [Indexed: 11/17/2022]
|
39
|
Abate C, Hornick JR, Spitzer D, Hawkins WG, Niso M, Perrone R, Berardi F. Fluorescent derivatives of σ receptor ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine (PB28) as a tool for uptake and cellular localization studies in pancreatic tumor cells. J Med Chem 2011; 54:5858-67. [PMID: 21744858 DOI: 10.1021/jm200591t] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fluorescent derivatives of σ(2) high affinity ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine 1 (PB28) were synthesized. NBD or dansyl fluorescent tags were connected through a 5- or 6-atom linker in two diverse positions of 1 structure. Good σ(2) affinities were obtained when the fluorescent tag was linked to 5-methoxytetralin nucleus replacing the methyl function. NBD-bearing compound 16 displayed high σ(2) affinity (K(i) = 10.8 nM) and optimal fluorescent properties. Its uptake in pancreatic tumor cells was evaluated by flow cytometry, showing that it partially occurs through endocytosis. In proliferating cells, the uptake was higher supporting that σ(2) receptors are markers of cell proliferation and that the higher the proliferation is, the stronger the antiproliferative effect of σ(2) agonists is. Colocalization of 16 with subcellular organelles was studied by confocal microscopy: the greatest was in endoplasmic reticulum and lysosomes. Fluorescent σ(2) ligands show their potential in clarifying the mechanisms of action of σ(2) receptors.
Collapse
Affiliation(s)
- Carmen Abate
- Dipartimento Farmacochimico, Università degli Studi di Bari Aldo Moro, Via Orabona 4, I-70125 Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|