1
|
Zhao J, Baiula M, Cuna E, Francescato M, Matalińska J, Lipiński PF, Bedini A, Gentilucci L. Identification of c[D-Trp-Phe-β-Ala-β-Ala], the First κ-Opioid Receptor-Specific Negative Allosteric Modulator. ACS Pharmacol Transl Sci 2024; 7:3192-3204. [PMID: 39416958 PMCID: PMC11475277 DOI: 10.1021/acsptsci.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
Recently, the fungus secondary metabolite cyclotetrapetide c[Trp-Phe-D-Pro-Phe] (CJ-15,208) and its derivatives deserved some attention for their unusual structure and distinctive in vitro and in vivo activity. These tryptophan-containing noncationic opioid peptides can be truly regarded as versatile picklocks capable of activating all opioid receptors. Intriguingly, minimal modification of the potent κ-opioid receptor (KOR) agonist c[D-Trp-Phe-Gly-β-Ala] (3) yielded c[D-Trp-Phe-β-Ala-β-Ala] (11), the first KOR-specific negative allosteric modulator (NAM) reported to-date. KOR exerts control over numerous functions in the central nervous system, including pain, depression, stress, mood, and reward. Hence, this KOR-selective NAM looks promising for modulating the KOR in addiction and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Junwei Zhao
- Dept.
of Chemistry “G. Ciamician”, University of Bologna, Campus Navile - Ue4, via Gobetti 83, Bologna 40129, Italy
| | - Monica Baiula
- Department
of Pharmacy and Biotechnology, University
of Bologna, Bologna 40126, Italy
| | - Elisabetta Cuna
- Department
of Pharmacy and Biotechnology, University
of Bologna, Bologna 40126, Italy
| | - Marco Francescato
- Dept.
of Chemistry “G. Ciamician”, University of Bologna, Campus Navile - Ue4, via Gobetti 83, Bologna 40129, Italy
| | - Joanna Matalińska
- Department
of Neuropeptides, Mossakowski Medical Research
Institute, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw 02-106, Poland
| | - Piotr F.J. Lipiński
- Department
of Neuropeptides, Mossakowski Medical Research
Institute, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw 02-106, Poland
| | - Andrea Bedini
- Department
of Pharmacy and Biotechnology, University
of Bologna, Bologna 40126, Italy
| | - Luca Gentilucci
- Dept.
of Chemistry “G. Ciamician”, University of Bologna, Campus Navile - Ue4, via Gobetti 83, Bologna 40129, Italy
- Health
Sciences & Technologies (HST) CIRI, University of Bologna, Ozzano
Emilia 40064, Italy
| |
Collapse
|
2
|
Santino F, Gentilucci L. Design of κ-Opioid Receptor Agonists for the Development of Potential Treatments of Pain with Reduced Side Effects. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010346. [PMID: 36615540 PMCID: PMC9822356 DOI: 10.3390/molecules28010346] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
The κ-opioid receptor (KOR) has recently emerged as an alternative therapeutic target for the development of pain medications, without deleterious side effects associated with the μ-opioid receptor (MOR). However, modulation of KOR is currently under investigation for the treatment of depression, mood disorders, psychiatric comorbidity, and specific drug addictions. However, KOR agonists also trigger adverse effects including sedation, dysphoria, and hallucinations. In this respect, there is currently much debate on alternative paradigms. Recent effort has been devoted in search of biased ligands capable of selectively activating favorable signaling over signaling associated with unwanted side effects. On the other hand, the use of partial agonists is expected to allow the analgesia to be produced at dosages lower than those required to produce the adverse effects. More empirically, the unwanted central effects can be also avoided by using peripherally restricted agonists. In this review, we discuss the more recent trends in the design of KOR-selective, biased or partial, and finally, peripherally acting agonists. Special emphasis is given on the discussion of the most recent approaches for controlling functional selectivity of KOR-specific ligands.
Collapse
|
3
|
Zhao J, Carbone J, Farruggia G, Janecka A, Gentilucci L, Calonghi N. Synthesis and Antiproliferative Activity against Cancer Cells of Indole-Aryl-Amide Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010265. [PMID: 36615458 PMCID: PMC9822155 DOI: 10.3390/molecules28010265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Indoles constitute a large family of heterocyclic compounds widely occurring in nature which are present in a number of bioactive natural and synthetic compounds, including anticancer agents or atypical opioid agonists. As a result, exponential increases in the development of novel methods for the synthesis of indole-containing compounds have been reported in the literature. A series of indole-aryl amide derivatives 1-7 containing tryptamine or an indolylacetic acid nucleus were designed, synthesized, and evaluated as opioid ligands. These new indole derivatives showed negligible to very low affinity for μ- and δ-opioid receptor (OR). On the other hand, compounds 2, 5 and 7 showed Ki values in the low μM range for κ-OR. Since indoles are well known for their anticancer potential, their effect against a panel of tumor cell lines was tested. The target compounds were evaluated for their in vitro cytotoxicity in HT29, HeLa, IGROV-1, MCF7, PC-3, and Jurkat J6 cells. Some of the synthesized compounds showed good activity against the selected tumor cell lines, with the exception of IGROV1. In particular, compound 5 showed a noteworthy selectivity towards HT29 cells, a malignant colonic cell line, without affecting healthy human intestinal cells. Further studies revealed that 5 caused the cell cycle arrest in the G1 phase and promoted apoptosis in HT29 cells.
Collapse
Affiliation(s)
- Junwei Zhao
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Jacopo Carbone
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Correspondence: (L.G.); (N.C.); Tel.: +39-05-1209-9570 (L.G.); +39-05-1209-1231 (N.C.)
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
- Correspondence: (L.G.); (N.C.); Tel.: +39-05-1209-9570 (L.G.); +39-05-1209-1231 (N.C.)
| |
Collapse
|
4
|
Piekielna-Ciesielska J, Artali R, Azzam AAH, Lambert DG, Kluczyk A, Gentilucci L, Janecka A. Pharmacological Characterization of µ-Opioid Receptor Agonists with Biased G Protein or β-Arrestin Signaling, and Computational Study of Conformational Changes during Receptor Activation. Molecules 2020; 26:E13. [PMID: 33375124 PMCID: PMC7792944 DOI: 10.3390/molecules26010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 01/03/2023] Open
Abstract
In recent years, G protein vs. β-arrestin biased agonism at opioid receptors has been proposed as an opportunity to produce antinociception with reduced adverse effects. However, at present this approach is highly debated, a reason why more information about biased ligands is required. While the practical relevance of bias in the case of µ-opioid receptors (MOP) still needs to be validated, it remains important to understand the basis of this bias of MOP (and other GPCRs). Recently, we reported two cyclopeptides with high affinity for MOP, the G protein biased Dmt-c[d-Lys-Phe-pCF3-Phe-Asp]NH2 (F-81), and the β-arrestin 2 biased Dmt-c[d-Lys-Phe-Asp]NH2 (C-33), as determined by calcium mobilization assay and bioluminescence resonance energy transfer-based assay. The biased character of F-81 and C-33 has been further analyzed in the [35S]GTPγS binding assay in human MOP-expressing cells, and the PathHunter enzyme complementation assay, used to measure β-arrestin 2 recruitment. To investigate the structural features of peptide-MOP complexes, we performed conformational analysis by NMR spectroscopy, molecular docking, and molecular dynamics simulation. These studies predicted that the two ligands form alternative complexes with MOP, engaging specific ligand-receptor contacts. This would induce different displays of the cytosolic side of the seven-helices bundle, in particular by stabilizing different angulations of helix 6, that could favor intracellular coupling to either G protein or β-arrestin.
Collapse
Affiliation(s)
| | - Roberto Artali
- Scientia Advice, di Roberto Artali, Desio, 20832 Monza and Brianza, Italy;
| | - Ammar A. H. Azzam
- Department of Cardiovascular Sciences, University of Leicester, Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester LE27LX, UK; (A.A.H.A.); (D.G.L.)
- College of Pharmacy, University of Babylon, Babylon 51002, Iraq
| | - David G. Lambert
- Department of Cardiovascular Sciences, University of Leicester, Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester LE27LX, UK; (A.A.H.A.); (D.G.L.)
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland;
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| |
Collapse
|
5
|
Wu Z, Hruby VJ. Toward a Universal μ-Agonist Template for Template-Based Alignment Modeling of Opioid Ligands. ACS OMEGA 2019; 4:17457-17476. [PMID: 31656918 PMCID: PMC6812133 DOI: 10.1021/acsomega.9b02244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/25/2019] [Indexed: 05/04/2023]
Abstract
Opioid ligands are a large group of G-protein-coupled receptor ligands possessing high structural diversity, along with complicated structure-activity relationships (SARs). To better understand their structural correlations as well as the related SARs, we developed the innovative template-based alignment modeling in our recent studies on a variety of opioid ligands. As previously reported, this approach showed promise but also with limitations, which was mainly attributed to the small size of morphine as a template. With this study, we set out to construct an artificial μ-agonist template to overcome this limitation. The newly constructed template contained a largely extended scaffold, along with a few special μ-features relevant to the μ-selectivity of opioid ligands. As demonstrated in this paper, the new template showed significantly improved efficacy in facilitating the alignment modeling of a wide variety of opioid ligands. This report comprises of two main parts. Part 1 discusses the general construction process and the structural features as well as a few typical examples of the template applications and Part 2 focuses on the template refinement and validation.
Collapse
Affiliation(s)
- Zhijun Wu
- ABC Resource, Plainsboro, New Jersey 08536, United States
- E-mail:
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85716, United States
| |
Collapse
|
6
|
Tryptophan-Containing Non-Cationizable Opioid Peptides - a new chemotype with unusual structure and in vivo activity. Future Med Chem 2017; 9:2099-2115. [PMID: 29130348 DOI: 10.4155/fmc-2017-0104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recently, a new family of opioid peptides containing tryptophan came to the spotlight for the absence of the fundamental protonable tyramine 'message' pharmacophore. Structure-activity relationship investigations led to diverse compounds, characterized by different selectivity profiles and agonist or antagonist effects. Substitution at the indole of Trp clearly impacted peripheral/central antinociceptivity. These peculiarities prompted to gather all the compounds in a new class, and to coin the definition 'Tryptophan-Containing Non-Cationizable Opioid Peptides', in short 'TryCoNCOPs'. Molecular docking analysis suggested that the TryCoNCOPs can still interact with the receptors in an agonist-like fashion. However, most TryCoNCOPs showed significant differences between the in vitro and in vivo activities, suggesting that opioid activity may be elicited also via alternative mechanisms.
Collapse
|
7
|
Modern tools for the chemical ligation and synthesis of modified peptides and proteins. Future Med Chem 2016; 8:2287-2304. [DOI: 10.4155/fmc-2016-0175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ability to improve nature's capacity by introducing modification of biological interest in proteins and peptides (P&P) is one of the modern challenges in synthetic chemistry. Due to the unfavorable pharmacokinetic properties, many native P&P are of little use as therapeutic agents. Today, few methods for the preparation of modified proteins are available. Initially introduced to realize the ligation between two standard peptidic sequences, and hence to afford native proteins, the modern chemical methodologies, in other words native chemical ligation, expressed ligation, Staudinger ligation, auxiliary mediated ligation, aldehyde capture, etc., can be virtually utilized to ligate a variety of peptidomimetic partners, allowing a systematic access to modified, unnatural large P&P.
Collapse
|
8
|
Weltrowska G, Nguyen TMD, Chung NN, Wood J, Ma X, Guo J, Wilkes BC, Ge Y, Laferrière A, Coderre TJ, Schiller PW. A Cyclic Tetrapeptide ("Cyclodal") and Its Mirror-Image Isomer Are Both High-Affinity μ Opioid Receptor Antagonists. J Med Chem 2016; 59:9243-9254. [PMID: 27676089 DOI: 10.1021/acs.jmedchem.6b01200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Head-to-tail cyclization of the μ opioid receptor (MOR) agonist [Dmt1]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2 (9; Dmt = 2',6'-dimethyltyrosine) resulted in a highly active, selective MOR antagonist, c[-d-Arg-Phe-Lys-Dmt-] (1) ("cyclodal"), with subnanomolar binding affinity. A docking study of cyclodal using the crystal structure of MOR in the inactive form showed a unique binding mode with the two basic residues of the ligand forming salt bridges with the Asp127 and Glu229 receptor residues. Cyclodal showed high plasma stability and was able to cross the blood-brain barrier to reverse morphine-induced, centrally mediated analgesia when given intravenously. Surprisingly, the mirror-image isomer (optical antipode) of cyclodal, c[-Arg-d-Phe-d-Lys-d-Dmt-] (2), also turned out to be a selective MOR antagonist with 1 nM binding affinity, and thus, these two compounds represent the first example of mirror image opioid receptor ligands with both optical antipodes having high binding affinity. Reduction of the Lys-Dmt peptide bond in cyclodal resulted in an analogue, c[-d-Arg-Phe-LysΨ[CH2NH]Dmt-] (8), with MOR agonist activity.
Collapse
Affiliation(s)
- Grazyna Weltrowska
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal , 110 Pine Avenue des Pins Ouest, Montreal, Quebec H2W 1R7, Canada
| | - Thi M-D Nguyen
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal , 110 Pine Avenue des Pins Ouest, Montreal, Quebec H2W 1R7, Canada
| | - Nga N Chung
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal , 110 Pine Avenue des Pins Ouest, Montreal, Quebec H2W 1R7, Canada
| | - JodiAnne Wood
- Center for Drug Discovery, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Xiaoyu Ma
- Center for Drug Discovery, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Jason Guo
- Center for Drug Discovery, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Brian C Wilkes
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal , 110 Pine Avenue des Pins Ouest, Montreal, Quebec H2W 1R7, Canada
| | - Yang Ge
- Anesthesia Research Unit, Department of Anesthesia, McGill University , 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - André Laferrière
- Anesthesia Research Unit, Department of Anesthesia, McGill University , 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Terence J Coderre
- Anesthesia Research Unit, Department of Anesthesia, McGill University , 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Peter W Schiller
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal , 110 Pine Avenue des Pins Ouest, Montreal, Quebec H2W 1R7, Canada.,Department of Pharmacology, Université de Montréal , Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
9
|
De Marco R, Bedini A, Spampinato S, Cavina L, Pirazzoli E, Gentilucci L. Versatile Picklocks To Access All Opioid Receptors: Tuning the Selectivity and Functional Profile of the Cyclotetrapeptide c[Phe-d-Pro-Phe-Trp] (CJ-15,208). J Med Chem 2016; 59:9255-9261. [DOI: 10.1021/acs.jmedchem.6b00420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rossella De Marco
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Andrea Bedini
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Irnerio
48, 40126 Bologna, Italy
| | - Santi Spampinato
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Irnerio
48, 40126 Bologna, Italy
| | - Lorenzo Cavina
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Edoardo Pirazzoli
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Luca Gentilucci
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
10
|
Strack M, Bedini A, Yip KT, Lombardi S, Siegmund D, Stoll R, Spampinato SM, Metzler-Nolte N. A Blocking Group Scan Using a Spherical Organometallic Complex Identifies an Unprecedented Binding Mode with Potent Activity In Vitro and In Vivo for the Opioid Peptide Dermorphin. Chemistry 2016; 22:14605-10. [PMID: 27553294 DOI: 10.1002/chem.201602432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Indexed: 01/12/2023]
Abstract
Herein, the selective enforcement of one particular receptor-ligand interaction between specific domains of the μ-selective opioid peptide dermorphin and the μ opioid receptor is presented. For this, a blocking group scan is described which exploits the steric demand of a bis(quinolinylmethyl)amine rhenium(I) tricarbonyl complex conjugated to a number of different, strategically chosen positions of dermorphin. The prepared peptide conjugates lead to the discovery of two different binding modes: An expected N-terminal binding mode corresponds to the established view of opioid peptide binding, whereas an unexpected C-terminal binding mode is newly discovered. Surprisingly, both binding modes provide high affinity and agonistic activity at the μ opioid receptor in vitro. Furthermore, the unprecedented C-terminal binding mode shows potent dose-dependent antinociception in vivo. Finally, in silico docking studies support receptor activation by both dermorphin binding modes and suggest a biological relevance for dermorphin itself. Relevant ligand-protein interactions are similar for both binding modes, which is in line with previous protein mutation studies.
Collapse
Affiliation(s)
- Martin Strack
- Chair of Inorganic Chemistry I, Bioinorganic Chemistry, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Andrea Bedini
- Department of Pharmacy and Biochemistry, University of Bologna, Via Irnerio 48, Bologna, Italy
| | - King T Yip
- Biomolecular NMR, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Sara Lombardi
- Department of Pharmacy and Biochemistry, University of Bologna, Via Irnerio 48, Bologna, Italy
| | - Daniel Siegmund
- Chair of Inorganic Chemistry I, Bioinorganic Chemistry, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Raphael Stoll
- Biomolecular NMR, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany
| | - Santi M Spampinato
- Department of Pharmacy and Biochemistry, University of Bologna, Via Irnerio 48, Bologna, Italy
| | - Nils Metzler-Nolte
- Chair of Inorganic Chemistry I, Bioinorganic Chemistry, Ruhr University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
| |
Collapse
|
11
|
Biological evaluation and molecular docking studies of AA3052, a compound containing a μ-selective opioid peptide agonist DALDA and d-Phe-Phe-d-Phe-Leu-Leu-NH2, a substance P analogue. Eur J Pharm Sci 2016; 93:11-20. [PMID: 27423260 DOI: 10.1016/j.ejps.2016.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/05/2016] [Accepted: 07/10/2016] [Indexed: 11/20/2022]
Abstract
The design of novel drugs for pain relief with improved analgesic properties and diminished side effect induction profile still remains a challenging pursuit. Tolerance is one of the most burdensome phenomena that may hamper ongoing opioid therapy, especially in chronic pain patients. Therefore, a promising strategy of hybridizing two pharmacophores that target distinct binding sites involved in pain modulation and transmission was established. Previous studies have led to the development of opioid agonist/NK1 agonist hybrids that produce sufficient analgesia and also suppress opioid-induced tolerance development. In our present investigation we assessed the antinociceptive potency of a new AA3052 chimera comprised of a potent MOR selective dermorphin derivative (DALDA) and an NK1 agonist, a stabilized substance P analogue. We have shown that AA3052 significantly prolonged responses to both mechanical and noxious thermal stimuli in rats after intracerebroventricular administration. Additionally, AA3052 did not trigger the development of tolerance in a 6-day daily injection paradigm nor did it produce any sedative effects, as assessed in the rotarod performance test. However, the antinociceptive effect of AA3052 was independent of opioid receptor stimulation by the DALDA pharmacophore as shown in the agonist-stimulated G-protein assay. Altogether the current results confirm the antinociceptive effectiveness of a novel opioid/SP hybrid agonist, AA3052, and more importantly its ability to inhibit the development of tolerance.
Collapse
|
12
|
Piekielna J, De Marco R, Gentilucci L, Cerlesi MC, Calo' G, Tömböly C, Artali R, Janecka A. Redoubling the ring size of an endomorphin-2 analog transforms a centrally acting mu-opioid receptor agonist into a pure peripheral analgesic. Biopolymers 2016; 106:309-17. [DOI: 10.1002/bip.22846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Justyna Piekielna
- Department of Biomolecular Chemistry, Faculty of Medicine; Medical University of Lodz; Lodz Poland
| | - Rossella De Marco
- Department of Chemistry “G. Ciamician,”; University of Bologna; via Selmi 2 Bologna 40126 Italy
| | - Luca Gentilucci
- Department of Chemistry “G. Ciamician,”; University of Bologna; via Selmi 2 Bologna 40126 Italy
| | - Maria Camilla Cerlesi
- Department of Medical Science, Section of Pharmacology; National Institute of Neuroscience, University of Ferrara; Ferrara 44121 Italy
| | - Girolamo Calo'
- Department of Medical Science, Section of Pharmacology; National Institute of Neuroscience, University of Ferrara; Ferrara 44121 Italy
| | - Csaba Tömböly
- Institute of Biochemistry; Biological Research Centre of Hungarian Academy of Sciences; Szeged Hungary
| | - Roberto Artali
- Di Roberto Artali; Scientia Advice; Desio MB 20832 Italy
| | - Anna Janecka
- Department of Biomolecular Chemistry, Faculty of Medicine; Medical University of Lodz; Lodz Poland
| |
Collapse
|
13
|
Synthesis, biological evaluation and structural analysis of novel peripherally active morphiceptin analogs. Bioorg Med Chem 2016; 24:1582-8. [DOI: 10.1016/j.bmc.2016.02.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 11/20/2022]
|
14
|
Perlikowska R, Piekielna J, Gentilucci L, De Marco R, Cerlesi MC, Calo G, Artali R, Tömböly C, Kluczyk A, Janecka A. Synthesis of mixed MOR/KOR efficacy cyclic opioid peptide analogs with antinociceptive activity after systemic administration. Eur J Med Chem 2016; 109:276-86. [DOI: 10.1016/j.ejmech.2015.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022]
|
15
|
Cyclic endomorphin analogs in targeting opioid receptors to achieve pain relief. Future Med Chem 2015; 6:2093-101. [PMID: 25531970 DOI: 10.4155/fmc.14.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Endomorphins, the endogenous ligands of the µ-opioid receptor, are attractive candidates for opioid-based pain-relieving agents. These tetrapeptides, with their remarkable affinity for the µ-opioid receptor, display favorable antinociceptive activity when injected directly into the brain of experimental animals. However, the application of endomorphins as clinical analgesics has been impeded by their instability in body fluids and inability to reach the brain after systemic administration. Among numerous modifications of the endomorphin structure aimed at improving their pharmacological properties, cyclization can be viewed as an interesting option. Here, we have summarized recent advances in obtaining endomorphin-based cyclic peptide analogs.
Collapse
|
16
|
Cyclic side-chain-linked opioid analogs utilizing cis - and trans -4-aminocyclohexyl- d -alanine. Bioorg Med Chem 2014; 22:6545-6551. [DOI: 10.1016/j.bmc.2014.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/09/2014] [Accepted: 10/15/2014] [Indexed: 11/17/2022]
|
17
|
Ermert P, Moehle K, Obrecht D. Macrocyclic Inhibitors of GPCR's, Integrins and Protein–Protein Interactions. MACROCYCLES IN DRUG DISCOVERY 2014. [DOI: 10.1039/9781782623113-00283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This chapter summarizes some highlights of macrocyclic drug discovery in the area of GPCRs, integrins, and protein–protein interactions spanning roughly the last 30 years. Several examples demonstrate that incorporation of pharmacophores derived from natural peptide ligands into the context of a constrained macrocycle (“lock of the bioactive conformation”) has proven a powerful approach for the discovery of potent and selective macrocyclic drugs. In addition, it will be shown that macrocycles, due to their semi-rigid nature, can exhibit unique properties that can be beneficially exploited by medicinal chemists. Macrocycles can adapt their conformation during binding to a flexible protein target surface (“induced fit”), and due to their size, can interact with larger protein interfaces (“hot spots”). Also, macrocycles can display favorable ADME properties well beyond the rule of 5 in particular exhibiting favorable cell penetrating properties and oral bioavailability.
Collapse
Affiliation(s)
- Philipp Ermert
- Polyphor Ltd Hegenheimermattweg 125 CH-4123 Allschwil Switzerland
| | - Kerstin Moehle
- University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Daniel Obrecht
- Polyphor Ltd Hegenheimermattweg 125 CH-4123 Allschwil Switzerland
| |
Collapse
|
18
|
De Marco R, Cavina L, Greco A, Gentilucci L. Easy preparation of dehydroalanine building blocks equipped with oxazolidin-2-one chiral auxiliaries, and applications to the stereoselective synthesis of substituted tryptophans. Amino Acids 2014; 46:2823-39. [DOI: 10.1007/s00726-014-1839-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/09/2014] [Indexed: 12/23/2022]
|
19
|
De Marco R, Bedini A, Spampinato S, Gentilucci L. Synthesis of tripeptides containing D-Trp substituted at the indole ring, assessment of opioid receptor binding and in vivo central antinociception. J Med Chem 2014; 57:6861-6. [PMID: 25051243 DOI: 10.1021/jm5002925] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The noncationizable tripeptide Ac-D-Trp-Phe-GlyNH2 was recently proposed as a novel minimal recognition motif for μ-opioid receptor. The introduction of different substituents (methyl, halogens, nitro, etc.) at the indole of D-Trp significantly influenced receptor affinities and resulted in serum stability and in a measurable effect on central antinociception in mice after ip administration.
Collapse
Affiliation(s)
- Rossella De Marco
- Department of Chemistry "G. Ciamician", University of Bologna , via Selmi 2, 40126 Bologna, Italy
| | | | | | | |
Collapse
|
20
|
Lesma G, Salvadori S, Airaghi F, Murray TF, Recca T, Sacchetti A, Balboni G, Silvani A. Structural and biological exploration of phe(3)-phe(4)-modified endomorphin-2 peptidomimetics. ACS Med Chem Lett 2013; 4:795-9. [PMID: 24900748 DOI: 10.1021/ml400189r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/11/2013] [Indexed: 12/24/2022] Open
Abstract
This study reports on our ongoing investigation on hybrid EM-2 analogues, in which the great potential of β-amino acids was exploited to generate multiple conformational modifications at the key positions 3 and 4 of the parent peptide. The effect on the opioid binding affinity was evaluated, by means of ligand stimulated binding assays, which indicated a high nanomolar affinity toward the μ-receptor, with appreciable μ/δ selectivity, for some of the new compounds. The three-dimensional properties of the high affinity μ opioid receptor (MOR) ligands were investigated by proton nuclear magnetic resonance, molecular dynamics, and docking studies. In solution, the structures showed extended conformations, which are in agreement with the commonly accepted pharmacophore model for EM-2. From docking studies on an active form of the MOR model, different ligand-receptor interactions have been identified, thus confirming the ability of active compounds to assume a biologically active conformation.
Collapse
Affiliation(s)
- Giordano Lesma
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, 20133 Milano, Italy
| | - Severo Salvadori
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Ferrara, via Fossato
di Mortara 17-19, 44100 Ferrara, Italy
| | - Francesco Airaghi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, 20133 Milano, Italy
| | - Thomas F. Murray
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska 68102,
United States
| | - Teresa Recca
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, 20133 Milano, Italy
| | - Alessandro Sacchetti
- Dipartimento
di Chimica, Materiali ed Ingegneria Chimica ‘Giulio Natta’, Politecnico di Milano, p.zza Leonardo
da Vinci 32, 20133 Milano, Italy
| | - Gianfranco Balboni
- Dipartimento di Scienze della Vita e dell’Ambiente, Università degli Studi di Cagliari, Via Ospedale
72, 09124 Cagliari, Italy
| | - Alessandra Silvani
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, 20133 Milano, Italy
| |
Collapse
|
21
|
Aldrich JV, Senadheera SN, Ross NC, Ganno ML, Eans SO, McLaughlin JP. The macrocyclic peptide natural product CJ-15,208 is orally active and prevents reinstatement of extinguished cocaine-seeking behavior. JOURNAL OF NATURAL PRODUCTS 2013; 76:433-438. [PMID: 23327691 PMCID: PMC3879116 DOI: 10.1021/np300697k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The macrocyclic tetrapeptide natural product CJ-15,208 (cyclo[Phe-d-Pro-Phe-Trp]) exhibited both dose-dependent antinociception and kappa opioid receptor (KOR) antagonist activity after oral administration. CJ-15,208 antagonized a centrally administered KOR selective agonist, providing strong evidence it crosses the blood-brain barrier to reach KOR in the CNS. Orally administered CJ-15,208 also prevented both cocaine- and stress-induced reinstatement of extinguished cocaine-seeking behavior in the conditioned place preference assay in a time- and dose-dependent manner. Thus, CJ-15,208 is a promising lead compound with a unique activity profile for potential development, particularly as a therapeutic to prevent relapse to drug-seeking behavior in abstinent subjects.
Collapse
Affiliation(s)
- Jane V Aldrich
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
23
|
Synthesis, pharmacological evaluation and conformational investigation of endomorphin-2 hybrid analogues. Mol Divers 2012; 17:19-31. [DOI: 10.1007/s11030-012-9399-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/24/2012] [Indexed: 01/26/2023]
|
24
|
De Marco R, Tolomelli A, Spampinato S, Bedini A, Gentilucci L. Opioid activity profiles of oversimplified peptides lacking in the protonable N-terminus. J Med Chem 2012; 55:10292-6. [PMID: 22995061 DOI: 10.1021/jm301213s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, we described cyclopeptide opioid agonists containing the d-Trp-Phe sequence. To expand the scope of this atypical pharmacophore, we tested the activity profiles of the linear peptides Ac-Xaa-Phe-Yaa (Xaa = l/d-Trp, d-His/Lys/Arg; Yaa = H, GlyNH(2)). Ac-d-Trp-PheNH(2) appeared to be the minimal binding sequence, while Ac-d-Trp-Phe-GlyNH(2) emerged as the first noncationizable short peptide (partial) agonist with high μ-opioid receptor affinity and selectivity. Conformational analysis suggested that 5 adopts in solution a β-turn conformation.
Collapse
Affiliation(s)
- Rossella De Marco
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | | | | | | | | |
Collapse
|
25
|
Borics A, Mallareddy JR, Timári I, Kövér KE, Keresztes A, Tóth G. The Effect of Pro2 Modifications on the Structural and Pharmacological Properties of Endomorphin-2. J Med Chem 2012; 55:8418-28. [DOI: 10.1021/jm300836n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Attila Borics
- Institute of Biochemistry, Biological
Research Center of the Hungarian Academy of Sciences, P.O. Box 521,
H-6701 Szeged, Hungary
| | - Jayapal R. Mallareddy
- Institute of Biochemistry, Biological
Research Center of the Hungarian Academy of Sciences, P.O. Box 521,
H-6701 Szeged, Hungary
| | - István Timári
- Department of Chemistry, University
of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary
| | - Katalin E. Kövér
- Department of Chemistry, University
of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary
| | - Attila Keresztes
- Institute of Biochemistry, Biological
Research Center of the Hungarian Academy of Sciences, P.O. Box 521,
H-6701 Szeged, Hungary
| | - Géza Tóth
- Institute of Biochemistry, Biological
Research Center of the Hungarian Academy of Sciences, P.O. Box 521,
H-6701 Szeged, Hungary
| |
Collapse
|