1
|
Liu PY, Chen CY, Lin YL, Lin CM, Tsai WC, Tsai YL, Lin GJ, Chen YG, Wang SY, Sun RN, Huang YC, Chang H, Chen YC. RNF128 regulates neutrophil infiltration and myeloperoxidase functions to prevent acute lung injury. Cell Death Dis 2023; 14:369. [PMID: 37344492 DOI: 10.1038/s41419-023-05890-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Acute lung injury (ALI) is characterised by severe pulmonary inflammation, alveolar-capillary barrier disruption, and pulmonary oedema. Therefore, establishing effective therapeutic targets for ALI prevention is crucial. The present study reports a novel function of RNF128 in regulating LPS-induced ALI. Severe lung damage and increased immune cell infiltration were detected in RNF128-deficient mice. In vitro experiments revealed that RNF128 inhibits neutrophil activation by binding to myeloperoxidase (MPO) and reducing its levels and activity. Moreover, RNF128 regulates alveolar macrophage activation and neutrophil infiltration by interacting with TLR4, targeting it for degradation, and inhibiting NF-κB activation, hence decreasing pro-inflammatory cytokines. Our results demonstrate for the first time that RNF128 is a negative regulator of MPO and TLR4 in neutrophils and alveolar macrophages, respectively. However, AAV9-mediated RNF128 overexpression alleviated lung tissue damage and reduced inflammatory cell infiltration. Thus, RNF128 is a promising therapeutic candidate for pharmacological interventions in ALI.
Collapse
Affiliation(s)
- Pei-Yao Liu
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Chih-Yuan Chen
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
- Department of Thoracic surgery, Tri-Service General Hospital Taipei, National Defense Medical Center, Taiwan, Republic of China
| | - Yu-Lung Lin
- The Ph.D. Program for Translational Medicine, College for Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Chien-Ming Lin
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Yu-Guang Chen
- Division of Hematology/Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
- Cancer Institute, University College London, London, UK
| | - Shih-Yun Wang
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Rui-Nong Sun
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Yu-Chuan Huang
- School of Pharmacy & Institute Pharmacy, National Defense Medical Center, Taipei, Republic of China
- Department of Research and Development, National Defense Medical Center, Taipei, Republic of China
| | - Hung Chang
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei 114, Taiwan, Republic of China.
- Department of Thoracic surgery, Tri-Service General Hospital Taipei, National Defense Medical Center, Taiwan, Republic of China.
| | - Ying-Chuan Chen
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei 114, Taiwan, Republic of China.
| |
Collapse
|
2
|
Lipopolysaccharide directly inhibits bicarbonate absorption by the renal outer medullary collecting duct. Sci Rep 2020; 10:20548. [PMID: 33239624 PMCID: PMC7689453 DOI: 10.1038/s41598-020-77363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/03/2020] [Indexed: 11/10/2022] Open
Abstract
Acidosis is associated with E. coli induced pyelonephritis but whether bacterial cell wall constituents inhibit HCO3 transport in the outer medullary collecting duct from the inner stripe (OMCDi) is not known. We examined the effect of lipopolysaccharide (LPS), on HCO3 absorption in isolated perfused rabbit OMCDi. LPS caused a ~ 40% decrease in HCO3 absorption, providing a mechanism for E. coli pyelonephritis-induced acidosis. Monophosphoryl lipid A (MPLA), a detoxified TLR4 agonist, and Wortmannin, a phosphoinositide 3-kinase inhibitor, prevented the LPS-mediated decrease, demonstrating the role of TLR4-PI3-kinase signaling and providing proof-of-concept for therapeutic interventions aimed at ameliorating OMCDi dysfunction and pyelonephritis-induced acidosis.
Collapse
|
3
|
Verlaet A, van der Bolt N, Meijer B, Breynaert A, Naessens T, Konstanti P, Smidt H, Hermans N, Savelkoul HFJ, Teodorowicz M. Toll-Like Receptor-Dependent Immunomodulatory Activity of Pycnogenol ®. Nutrients 2019; 11:E214. [PMID: 30678156 PMCID: PMC6412808 DOI: 10.3390/nu11020214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pycnogenol® (PYC), an extract of French maritime pine bark, is widely used as a dietary supplement. PYC has been shown to exert anti-inflammatory actions via inhibiting the Toll-like receptor 4 (TLR4) pathway. However, the role of the other receptors from the TLR family in the immunomodulatory activity of PYC has not been described so far. AIM The aim of this study was to investigate whether PYC might exert its immunomodulatory properties through cell membrane TLRs (TLR1/2, TLR5, and TLR2/6) other than TLR4. Moreover, the effect of gastrointestinal metabolism on the immunomodulatory effects of PYC was investigated. FINDINGS We showed that intact non-metabolized PYC dose-dependently acts as an agonist of TLR1/2 and TLR2/6 and as a partial agonist of TLR5. PYC on its own does not agonize or antagonize TLR4. However, after the formation of complexes with lipopolysaccharides (LPS), it is a potent activator of TLR4 signaling. Gastrointestinal metabolism of PYC revealed the immunosuppressive potential of the retentate fraction against TLR1/2 and TLR2/6 when compared to the control fraction containing microbiota and enzymes only. The dialyzed fraction containing PYC metabolites revealed the capacity to induce anti-inflammatory IL-10 secretion. Finally, microbially metabolized PYC affected the colonic microbiota composition during in vitro gastrointestinal digestion. CONCLUSIONS This study showed that gastrointestinal metabolism of PYC reveals its biological activity as a potential inhibitor of TLRs signaling. The results suggest that metabolized PYC acts as a partial agonist of TLR1/2 and TLR2/6 in the presence of the microbiota-derived TLR agonists (retentate fraction) and that it possesses anti-inflammatory potential reflected by the induction of IL-10 from THP-1 macrophages (dialysate fraction).
Collapse
Affiliation(s)
- Annelies Verlaet
- Department of Pharmaceutical Sciences, Laboratory of Nutrition and Functional Food Science, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Nieke van der Bolt
- Department of Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands.
| | - Ben Meijer
- Department of Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands.
| | - Annelies Breynaert
- Department of Pharmaceutical Sciences, Laboratory of Nutrition and Functional Food Science, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Tania Naessens
- Department of Pharmaceutical Sciences, Laboratory of Nutrition and Functional Food Science, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Prokopis Konstanti
- Laboratory of Microbiology, Wageningen University& Research, 6708 WE Wageningen, The Netherlands.
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University& Research, 6708 WE Wageningen, The Netherlands.
| | - Nina Hermans
- Department of Pharmaceutical Sciences, Laboratory of Nutrition and Functional Food Science, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Huub F J Savelkoul
- Department of Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands.
| | - Malgorzata Teodorowicz
- Department of Cell Biology and Immunology, Wageningen University & Research, 6708 WD Wageningen, The Netherlands.
| |
Collapse
|
4
|
Achek A, Yesudhas D, Choi S. Toll-like receptors: promising therapeutic targets for inflammatory diseases. Arch Pharm Res 2016; 39:1032-49. [PMID: 27515048 DOI: 10.1007/s12272-016-0806-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022]
Abstract
The health of living organisms is constantly challenged by bacterial and viral threats. The recognition of pathogenic microorganisms by diverse receptors triggers a variety of host defense mechanisms, leading to their eradication. Toll-like receptors (TLRs), which are type I transmembrane proteins, recognize specific signatures of the invading microbes and activate a cascade of downstream signals inducing the secretion of inflammatory cytokines, chemokines, and type I interferons. The TLR response not only counteracts the pathogens but also initiates and shapes the adaptive immune response. Under normal conditions, inflammation is downregulated after the removal of the pathogen and cellular debris. However, a dysfunctional TLR-mediated response maintains a chronic inflammatory state and leads to local and systemic deleterious effects in host cells and tissues. Such inappropriate TLR response has been attributed to the development and progression of multiple diseases such as cancer, autoimmune, and inflammatory diseases. In this review, we discuss the emerging role of TLRs in the pathogenesis of inflammatory diseases and how targeting of TLRs offers a promising therapeutic strategy for the prevention and treatment of various inflammatory diseases. Additionally, we highlight a number of TLR-targeting agents that are in the developmental stage or in clinical trials.
Collapse
Affiliation(s)
- Asma Achek
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Dhanusha Yesudhas
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea.
| |
Collapse
|
5
|
Marzabadi CH, Franck RW. Small-Molecule Carbohydrate-Based Immunostimulants. Chemistry 2016; 23:1728-1742. [PMID: 27385422 DOI: 10.1002/chem.201601539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Indexed: 01/07/2023]
Abstract
In this review, we discuss small-molecule, carbohydrate-based immunostimulants that target Toll-like receptor 4 (TLR-4) and cluster of differentiation 1D (CD1d) receptors. The design and use of these molecules in immunotherapy as well as results from their use in clinical trials are described. How these molecules work and their utilization as vaccine adjuvants are also discussed. Future applications and extensions for the use of these analogues as therapeutic agents will be outlined.
Collapse
Affiliation(s)
- Cecilia H Marzabadi
- Department of Chemistry & Biochemistry, Seton Hall University, 400 South Orange Ave., South Orange, NJ, 07079, USA
| | - Richard W Franck
- Department of Chemistry & Biochemistry, Hunter College/CUNY, 695 Park Ave., New York, NY, 10065, USA
| |
Collapse
|
6
|
Kabanov DS, Serov DA, Zubova SV, Grachev SV, Prokhorenko IR. Dynamics of antagonistic potency of Rhodobacter capsulatus PG lipopolysaccharide against endotoxin-induced effects. BIOCHEMISTRY (MOSCOW) 2016; 81:275-83. [DOI: 10.1134/s000629791603010x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Ciaramelli C, Calabrese V, Sestito SE, Pérez-Regidor L, Klett J, Oblak A, Jerala R, Piazza M, Martín-Santamaría S, Peri F. Glycolipid-based TLR4 Modulators and Fluorescent Probes: Rational Design, Synthesis, and Biological Properties. Chem Biol Drug Des 2016; 88:217-29. [PMID: 26896420 DOI: 10.1111/cbdd.12749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/08/2015] [Accepted: 02/08/2016] [Indexed: 12/13/2022]
Abstract
The cationic glycolipid IAXO-102, a potent TLR4 antagonist targeting both MD-2 and CD14 co-receptors, has been used as scaffold to design new potential TLR4 modulators and fluorescent labels for the TLR4 receptor complex (membrane TLR4.MD-2 dimer and CD14). The primary amino group of IAXO-102, not involved in direct interaction with MD-2 and CD14 receptors, has been exploited to covalently attach a fluorescein (molecules 1 and 2) or to link two molecules of IAXO-102 through diamine and diammonium spacers, obtaining 'dimeric' molecules 3 and 4. The structure-based rational design of compounds 1-4 was guided by the optimization of MD-2 and CD14 binding. Compounds 1 and 2 inhibited TLR4 activation, in a concentration-dependent manner, and signaling in HEK-Blue TLR4 cells. The fluorescent labeling of murine macrophages by molecule 1 was inhibited by LPS and was also abrogated when cell surface proteins were digested by trypsin, thus suggesting an interaction of fluorescent probe 1 with membrane proteins of the TLR4 receptor system.
Collapse
Affiliation(s)
- Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Valentina Calabrese
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Stefania E Sestito
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Lucia Pérez-Regidor
- Department of Chemistry and Biochemistry, Universidad CEU San Pablo, 28668-Boadilla del Monte, Madrid, Spain.,Department of Chemical and Physical Biology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Javier Klett
- Department of Chemistry and Biochemistry, Universidad CEU San Pablo, 28668-Boadilla del Monte, Madrid, Spain.,Department of Chemical and Physical Biology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Alja Oblak
- Department of Biotechnology, National Institute of Chemistry Ljubljana and EN-FIST Center of Excellence, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Biotechnology, National Institute of Chemistry Ljubljana and EN-FIST Center of Excellence, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
| | - Matteo Piazza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Sonsoles Martín-Santamaría
- Department of Chemistry and Biochemistry, Universidad CEU San Pablo, 28668-Boadilla del Monte, Madrid, Spain.,Department of Chemical and Physical Biology, Center for Biological Research, CIB-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| |
Collapse
|
8
|
Molecular simplification of lipid A structure: TLR4-modulating cationic and anionic amphiphiles. Mol Immunol 2015; 63:153-61. [DOI: 10.1016/j.molimm.2014.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/26/2014] [Accepted: 05/26/2014] [Indexed: 12/13/2022]
|
9
|
Lonez C, Bessodes M, Scherman D, Vandenbranden M, Escriou V, Ruysschaert JM. Cationic lipid nanocarriers activate Toll-like receptor 2 and NLRP3 inflammasome pathways. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:775-82. [DOI: 10.1016/j.nano.2013.12.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/12/2013] [Indexed: 01/31/2023]
|
10
|
Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med 2013; 45:e66. [PMID: 24310172 PMCID: PMC3880462 DOI: 10.1038/emm.2013.97] [Citation(s) in RCA: 769] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/22/2013] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) is a major component of the outer membrane of Gram-negative bacteria. Minute amounts of LPS released from infecting pathogens can initiate potent innate immune responses that prime the immune system against further infection. However, when the LPS response is not properly controlled it can lead to fatal septic shock syndrome. The common structural pattern of LPS in diverse bacterial species is recognized by a cascade of LPS receptors and accessory proteins, LPS binding protein (LBP), CD14 and the Toll-like receptor4 (TLR4)–MD-2 complex. The structures of these proteins account for how our immune system differentiates LPS molecules from structurally similar host molecules. They also provide insights useful for discovery of anti-sepsis drugs. In this review, we summarize these structures and describe the structural basis of LPS recognition by LPS receptors and accessory proteins.
Collapse
|
11
|
Peri F, Calabrese V. Toll-like receptor 4 (TLR4) modulation by synthetic and natural compounds: an update. J Med Chem 2013; 57:3612-22. [PMID: 24188011 DOI: 10.1021/jm401006s] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toll-like receptor 4 (TLR4), together with MD-2, binds bacterial endotoxins (E) with high affinity, triggering formation of the activated homodimer (E.MD-2.TLR4)2. Activated TLR4 induces intracellular signaling leading to activation of transcription factors that result in cytokine and chemokine production and initiation of inflammatory and immune responses. TLR4 also responds to endogenous ligands called danger associated molecular patterns (DAMPs). Increased sensitivity to infection and a variety of immune pathologies have been associated with either too little or too much TLR4 activation. We review here the molecular mechanisms of TLR4 activation (agonism) or inhibition (antagonism) by small organic molecules of both natural and synthetic origin. The role of co-receptors MD-2 and CD14 in the TLR4 modulation process is also discussed. Recent achievements in the field of chemical TLR4 modulation are reviewed, with special focus on nonclassical TLR4 ligands with a chemical structure different from that of lipid A.
Collapse
Affiliation(s)
- Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza, 2, 20126 Milano, Italy
| | | |
Collapse
|
12
|
Bernardi A, Jiménez-Barbero J, Casnati A, De Castro C, Darbre T, Fieschi F, Finne J, Funken H, Jaeger KE, Lahmann M, Lindhorst TK, Marradi M, Messner P, Molinaro A, Murphy PV, Nativi C, Oscarson S, Penadés S, Peri F, Pieters RJ, Renaudet O, Reymond JL, Richichi B, Rojo J, Sansone F, Schäffer C, Turnbull WB, Velasco-Torrijos T, Vidal S, Vincent S, Wennekes T, Zuilhof H, Imberty A. Multivalent glycoconjugates as anti-pathogenic agents. Chem Soc Rev 2013; 42:4709-27. [PMID: 23254759 PMCID: PMC4399576 DOI: 10.1039/c2cs35408j] [Citation(s) in RCA: 429] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multivalency plays a major role in biological processes and particularly in the relationship between pathogenic microorganisms and their host that involves protein-glycan recognition. These interactions occur during the first steps of infection, for specific recognition between host and bacteria, but also at different stages of the immune response. The search for high-affinity ligands for studying such interactions involves the combination of carbohydrate head groups with different scaffolds and linkers generating multivalent glycocompounds with controlled spatial and topology parameters. By interfering with pathogen adhesion, such glycocompounds including glycopolymers, glycoclusters, glycodendrimers and glyconanoparticles have the potential to improve or replace antibiotic treatments that are now subverted by resistance. Multivalent glycoconjugates have also been used for stimulating the innate and adaptive immune systems, for example with carbohydrate-based vaccines. Bacteria present on their surfaces natural multivalent glycoconjugates such as lipopolysaccharides and S-layers that can also be exploited or targeted in anti-infectious strategies.
Collapse
Affiliation(s)
- Anna Bernardi
- Università di Milano, Dipartimento di Chimica Organica e Industriale and Centro di Eccellenza CISI, via Venezian 21, 20133 Milano, Italy
| | | | - Alessandro Casnati
- Università degli Studi di Parma, Dipartimento di Chimica, Parco Area delle Scienze 17/a, 43100 Parma, Italy
| | - Cristina De Castro
- Department of Chemical Sciences, Università di Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012, Berne, Switzerland
| | - Franck Fieschi
- Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | - Jukka Finne
- Department of Biosciences, University of Helsinki, P. O. Box 56, FI-00014 Helsinki, Finland
| | - Horst Funken
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-42425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-42425 Jülich, Germany
| | - Martina Lahmann
- School of Chemistry, Bangor University, Deiniol Road Bangor, Gwynedd LL57 2UW, UK
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, D-24098 Kiel, Germany
| | - Marco Marradi
- Laboratory of GlycoNanotechnology, CIC biomaGUNE and CIBER-BBN, P1 de Miramón 182, 20009 San Sebastián, Spain
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Muthgasse 11, A-1190 Vienna, Austria
| | - Antonio Molinaro
- Department of Chemical Sciences, Università di Napoli Federico II, Complesso Universitario Monte Santangelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Paul V. Murphy
- School of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Cristina Nativi
- Dipartimento di Chimica, Universitá degli Studi di Firenze, Via della Lastruccia, 13, I-50019 Sesto Fiorentino – Firenze, Italy
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Soledad Penadés
- Laboratory of GlycoNanotechnology, CIC biomaGUNE and CIBER-BBN, P1 de Miramón 182, 20009 San Sebastián, Spain
| | - Francesco Peri
- Organic and Medicinal Chemistry, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Roland J. Pieters
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Olivier Renaudet
- Département de Chimie Moléculaire, UMR-CNRS 5250 & ICMG FR 2607, Université Joseph Fourier, BP53, 38041 Grenoble Cedex 9, France
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012, Berne, Switzerland
| | - Barbara Richichi
- Dipartimento di Chimica, Universitá degli Studi di Firenze, Via della Lastruccia, 13, I-50019 Sesto Fiorentino – Firenze, Italy
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas, CSIC – Universidad de Sevilla, Av. Américo Vespucio, 49, Seville 41092, Spain
| | - Francesco Sansone
- Università degli Studi di Parma, Dipartimento di Chimica, Parco Area delle Scienze 17/a, 43100 Parma, Italy
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Muthgasse 11, A-1190 Vienna, Austria
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246, CNRS, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Stéphane Vincent
- University of Namur (FUNDP), Département de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands
- Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anne Imberty
- Centre de Recherche sur les Macromolécules Végétales (CERMAV – CNRS), affiliated with Grenoble-Université and ICMG, F-38041 Grenoble, France
| |
Collapse
|
13
|
Kelley SL, Lukk T, Nair SK, Tapping RI. The crystal structure of human soluble CD14 reveals a bent solenoid with a hydrophobic amino-terminal pocket. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:1304-11. [PMID: 23264655 PMCID: PMC3552104 DOI: 10.4049/jimmunol.1202446] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human monocyte differentiation Ag CD14 is a pattern recognition receptor that enhances innate immune responses to infection by sensitizing host cells to bacterial LPS (endotoxin), lipoproteins, lipoteichoic acid, and other acylated microbial products. CD14 physically delivers these lipidated microbial products to various TLR signaling complexes that subsequently induce intracellular proinflammatory signaling cascades upon ligand binding. The ensuing cellular responses are usually protective to the host but can also result in host fatality through sepsis. In this work, we have determined the x-ray crystal structure of human CD14. The structure reveals a bent solenoid typical of leucine-rich repeat proteins with an amino-terminal pocket that presumably binds acylated ligands including LPS. Comparison of human and mouse CD14 structures shows great similarity in overall protein fold. However, compared with mouse CD14, human CD14 contains an expanded pocket and alternative rim residues that are likely to be important for LPS binding and cell activation. The x-ray crystal structure of human CD14 presented in this article may foster additional ligand-bound structural studies, virtual docking studies, and drug design efforts to mitigate LPS-induced sepsis and other inflammatory diseases.
Collapse
Affiliation(s)
- Stacy L. Kelley
- Department of Biochemistry, University of Illinois at Urbana-Champaign
| | - Tiit Lukk
- Department of Biochemistry, University of Illinois at Urbana-Champaign
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign
| | - Richard I. Tapping
- Department of Microbiology, University of Illinois at Urbana-Champaign
- College of Medicine, University of Illinois at Urbana-Champaign
| |
Collapse
|
14
|
Garate JA, Oostenbrink C. Lipid A from lipopolysaccharide recognition: structure, dynamics and cooperativity by molecular dynamics simulations. Proteins 2013. [PMID: 23184816 DOI: 10.1002/prot.24223] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular dynamics simulations of Lipid A and its natural precursor Lipid IVA from E.coli have been carried out free in solution, bound to the myeliod differentiation protein 2 (MD2) and in the complex of MD2 with the toll like receptor 4 (TLR4). In addition, simulations of the ligand free MD2 and MD2-TLR4 complex were performed. A structural and energetic characterization of the bound and unbound states of Lipid A/IVA was generated. As the crystal structures depict, the main driving force for MD2-Lipid A/IVA are the hydrophobic interactions between the aliphatic tails and the MD2 cavity. The charged phosphate groups do strongly interact with positively charged residues, located at the surface of MD2. However, they are not essential for keeping the lipids in the cavity, indicating a more prominent role in binding recognition and ionic interactions with TLR4 at the MD2/TLR4 interface. Interestingly, in the absence of any ligand MD2 rapidly closes, blocking the binding cavity. The presence of TLR4, though changing the dynamics, was not able to impede the aforementioned closing event. We hypothesize that fluctuations of the H1 region are essential for this phenomenon, and it is plausible that an equilibrium between the open and closed states exists, although the lengths of our simulations are not sufficient to encompass the reversible process. The MD2/Lipid A-TLR4 complex simulations show that the presence of the ligand energetically stabilizes the complex relative to the ligand-free structures, indicating cooperativity in the binding process.
Collapse
Affiliation(s)
- Jose Antonio Garate
- Department of Medical Sciences and Process Engineering, Institute of Molecular Modelling and Simulation, University of Natural Resources and Life Sciences, Vienna, Austria
| | | |
Collapse
|
15
|
Abstract
Are there general rules to obtain efficient immunization against carbohydrate antigens? Thanks to technological advances in glycobiology and glycochemistry we entered a new era in which the rational design of carbohydrate vaccines has become an achievable goal. The aim of this Tutorial Review is to present the most recent accomplishments in the field of semi and fully synthetic carbohydrate vaccines against viruses, bacteria and cancer. It is also pointed out that the understanding of the chemical and biochemical processes related to immunization allows the modern chemist to rationally design carbohydrate vaccines with improved efficiency.
Collapse
Affiliation(s)
- Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| |
Collapse
|