1
|
Alshubramy MA, Alamry KA, Hussein MA. An overview of the synthetic strategies of C3-symmetric polymeric materials containing benzene and triazine cores and their biomedical applications. RSC Adv 2023; 13:14317-14339. [PMID: 37179987 PMCID: PMC10170496 DOI: 10.1039/d3ra01336g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
C3-symmetric star-shaped materials are an emerging category of porous organic polymers with distinctive properties such as permanent porosity, good thermal and chemical stability, high surface area, and appropriate functionalization that promote outstanding potential in various applications. This review is mostly about constructing benzene or s-triazine rings as the center of C3-symmetric molecules and using side-arm reactions to add functions to these molecules. Over and above this, the performance of various polymerization processes has been additionally investigated in detail, including the trimerization of alkynes or aromatic nitriles, polycondensation of monomers with specific functional groups, and cross-coupling building blocks with benzene or triazine cores. Finally, the most recent progress in biomedical applications for C3-symmetric materials based on benzene or s-triazine have been summarized.
Collapse
Affiliation(s)
- Maha A Alshubramy
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| |
Collapse
|
2
|
Tsuji K, Baffour-Awuah Owusu K, Miura Y, Ishii T, Shinohara K, Kobayakawa T, Emi A, Nakano T, Suzuki Y, Tamamura H. Dimerized fusion inhibitor peptides targeting the HR1-HR2 interaction of SARS-CoV-2. RSC Adv 2023; 13:8779-8793. [PMID: 36950081 PMCID: PMC10026625 DOI: 10.1039/d2ra07356k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/27/2023] [Indexed: 03/22/2023] Open
Abstract
Membrane fusion is a critical and indispensable step in the replication cycles of viruses such as SARS-CoV-2 and human immunodeficiency virus type-1 (HIV-1). In this step, a trimer of the heptad repeat 1 (HR1) region interacts with the three HR2 regions and forms a 6-helix bundle (6-HB) structure to proceed with membrane fusion of the virus envelope and host cells. Recently, several researchers have developed potent peptidic SARS-CoV-2 fusion inhibitors based on the HR2 sequence and including some modifications. We have developed highly potent HIV-1 fusion inhibitors by dimerization of its HR2 peptides. Here, we report the development of dimerized HR2 peptides of SARS-CoV-2, which showed significantly higher antiviral activity than the corresponding monomers, suggesting that the dimerization strategy can facilitate the design of potent inhibitors of SARS-CoV-2.
Collapse
Affiliation(s)
- Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Kofi Baffour-Awuah Owusu
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Yutaro Miura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Takahiro Ishii
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Kouki Shinohara
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| | - Akino Emi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University Takatsuki Osaka 569-8686 Japan
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University Takatsuki Osaka 569-8686 Japan
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University Takatsuki Osaka 569-8686 Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) Chiyoda-ku Tokyo 101-0062 Japan +81-3-5280-8038 +81-3-5280-8036
| |
Collapse
|
3
|
Antonijevic M, Rochais C, Dallemagne P. C3-Symmetric Ligands in Drug Design: When the Target Controls the Aesthetics of the Drug. Molecules 2023; 28:molecules28020679. [PMID: 36677739 PMCID: PMC9862528 DOI: 10.3390/molecules28020679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
A number of proteins are able to adopt a homotrimeric spatial conformation. Among these structures, this feature appears as crucial for biologic targets, since it facilitates the design of C3-symmetric ligands that are especially suitable for displaying optimized ligand-target interactions and therapeutic benefits. Additionally, DNA as a therapeutic target, even if its conformation into a superhelix does not correspond to a C3-symmetry, can also take advantage of these C3-symmetric ligands for better interactions and therapeutic effects. For the moment, this opportunity appears to be under-exploited, but should become more frequent with the discovery of new homotrimeric targets such as the SARS-CoV2 spike protein. Besides their potential therapeutic interest, the synthetic access to these C3-symmetric ligands often leads to chemical challenges, although drug candidates with an aesthetic structure are generally obtained.
Collapse
|
4
|
Kobayakawa T, Yokoyama M, Tsuji K, Fujino M, Kurakami M, Onishi T, Boku S, Ishii T, Miura Y, Shinohara K, Kishihara Y, Ohashi N, Kotani O, Murakami T, Sato H, Tamamura H. Low-molecular-weight anti-HIV-1 agents targeting HIV-1 capsid proteins. RSC Adv 2023; 13:2156-2167. [PMID: 36712613 PMCID: PMC9834766 DOI: 10.1039/d2ra06837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
The HIV-1 capsid is a shell that encapsulates viral RNA, and forms a conical structure by assembling oligomers of capsid (CA) proteins. Since the CA proteins are highly conserved among many strains of HIV-1, the inhibition of the CA function could be an appropriate goal for suppression of HIV-1 replication, but to date, no drug targeting CA has been developed. Hydrophobic interactions between two CA molecules through Trp184 and Met185 in the protein are known to be indispensable for conformational stabilization of the CA multimer. In our previous study, a small molecule designed by in silico screening as a dipeptide mimic of Trp184 and Met185 in the interaction site was synthesized and found to have significant anti-HIV-1 activity. In the present study, molecules with different scaffolds based on a dipeptide mimic of Trp184 and Met185 have been designed and synthesized. Their significant anti-HIV activity and their advantages compared to the previous compounds were examined. The present results should be useful in the design of novel CA-targeting anti-HIV agents.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases Musashimurayama 208-0011 Tokyo Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases Shinjuku-ku Tokyo 162-8640 Japan
| | - Masaki Kurakami
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Takato Onishi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Sayaka Boku
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Takahiro Ishii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Yutaro Miura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Kouki Shinohara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Yuki Kishihara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - Nami Ohashi
- Showa Pharmaceutical University Machida 194-8543 Tokyo Japan
| | - Osamu Kotani
- Pathogen Genomics Center, National Institute of Infectious Diseases Musashimurayama 208-0011 Tokyo Japan
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases Shinjuku-ku Tokyo 162-8640 Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases Musashimurayama 208-0011 Tokyo Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| |
Collapse
|
5
|
Wang R, Tsuji K, Kobayakawa T, Liu Y, Yoshimura K, Matsushita S, Harada S, Tamamura H. Hybrids of small CD4 mimics and gp41-related peptides as dual-target HIV entry inhibitors. Bioorg Med Chem 2022; 76:117083. [PMID: 36403413 DOI: 10.1016/j.bmc.2022.117083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Hybrid molecules containing small CD4 mimics and gp41-C-terminal heptad repeat (CHR)-related peptides have been developed. A YIR-821 derivative was adopted as a CD4 mimic, which inhibits the interaction of gp120 with CD4. SC-peptides, SC34 and SC22EK, were also used as CHR-related peptides, which inhibit the interaction between the N-terminal heptad repeat (NHR) and CHR and thereby membrane fusion. Therefore, these hybrid molecules have dual-targets of gp120 and gp41. In the synthesis of the hybrid molecules of CD4 mimic-SC-peptides with different lengths of linkers, two conjugating methods, Cu-catalyzed azide-alkyne cycloaddition and direct cysteine alkylation, were performed. The latter reaction caused simpler operation procedures and higher synthetic yields than the former. The synthesized hybrid molecules of CD4 mimic-SC22EK have significantly higher anti-HIV activity than each sole agent. The present data should be useful in the future design of anti-HIV agents as dual-target entry inhibitors.
Collapse
Affiliation(s)
- Rongyi Wang
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yishan Liu
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kazuhisa Yoshimura
- Institute of Public Health, Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Shuzo Matsushita
- The Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
6
|
Marques MC, Lousa D, Silva PM, Faustino AF, Soares CM, Santos NC. The Importance of Lipid Conjugation on Anti-Fusion Peptides against Nipah Virus. Biomedicines 2022; 10:biomedicines10030703. [PMID: 35327503 PMCID: PMC8945041 DOI: 10.3390/biomedicines10030703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/23/2023] Open
Abstract
Nipah virus (NiV) is a recently emerging zoonotic virus that belongs to the Paramyxoviridae family and the Henipavirus genus. It causes a range of conditions, from asymptomatic infection to acute respiratory illness and fatal encephalitis. The high mortality rate of 40 to 90% ranks these viruses among the deadliest viruses known to infect humans. Currently, there is no antiviral drug available for Nipah virus disease and treatment is only supportive. Thus, there is an urgent demand for efficient antiviral therapies. NiV F protein, which catalyzes fusion between the viral and host membranes, is a potential target for antiviral drugs, as it is a key protein in the initial stages of infection. Fusion inhibitor peptides derived from the HRC-domain of the F protein are known to bind to their complementary domain in the protein’s transient intermediate state, preventing the formation of a six-helix bundle (6HB) thought to be responsible for driving the fusion of the viral and cell membranes. Here, we evaluated the biophysical and structural properties of four different C-terminal lipid-tagged peptides. Different compositions of the lipid tags were tested to search for properties that might promote efficacy and broad-spectrum activity. Fluorescence spectroscopy was used to study the interaction of the peptides with biomembrane model systems and human blood cells. In order to understand the structural properties of the peptides, circular dichroism measurements and molecular dynamics simulations were performed. Our results indicate a peptide preference for cholesterol-enriched membranes and a lipid conjugation-driven stabilization of the peptide α-helical secondary structure. This work may contribute for the development of highly effective viral fusion against NiV inhibitors.
Collapse
Affiliation(s)
- Marta C. Marques
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.C.M.); (P.M.S.); (A.F.F.)
| | - Diana Lousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; (D.L.); (C.M.S.)
| | - Patrícia M. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.C.M.); (P.M.S.); (A.F.F.)
| | - André F. Faustino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.C.M.); (P.M.S.); (A.F.F.)
| | - Cláudio M. Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; (D.L.); (C.M.S.)
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (M.C.M.); (P.M.S.); (A.F.F.)
- Correspondence:
| |
Collapse
|
7
|
Tsuji K, Kobayakawa T, Konno K, Masuda A, Takahashi K, Ohashi N, Yoshimura K, Kuwata T, Matsushita S, Harada S, Tamamura H. Exploratory studies on soluble small molecule CD4 mimics as HIV entry inhibitors. Bioorg Med Chem 2022; 56:116616. [DOI: 10.1016/j.bmc.2022.116616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/02/2022]
|
8
|
Kobayakawa T, Yokoyama M, Tsuji K, Fujino M, Kurakami M, Boku S, Nakayama M, Kaneko M, Ohashi N, Kotani O, Murakami T, Sato H, Tamamura H. Small-Molecule Anti-HIV-1 Agents Based on HIV-1 Capsid Proteins. Biomolecules 2021; 11:biom11020208. [PMID: 33546092 PMCID: PMC7913237 DOI: 10.3390/biom11020208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/28/2022] Open
Abstract
The capsid of human immunodeficiency virus type 1 (HIV-1) is a shell that encloses viral RNA and is highly conserved among many strains of the virus. It forms a conical structure by assembling oligomers of capsid (CA) proteins. CA dysfunction is expected to be an important target of suppression of HIV-1 replication, and it is important to understand a new mechanism that could lead to the CA dysfunction. A drug targeting CA however, has not been developed to date. Hydrophobic interactions between two CA molecules via Trp184/Met185 in CA were recently reported to be important for stabilization of the multimeric structure of CA. In the present study, a small molecule designed by in silico screening as a dipeptide mimic of Trp184 and Met185 in the interaction site, was synthesized and its significant anti-HIV-1 activity was confirmed. Structure activity relationship (SAR) studies of its derivatives were performed and provided results that are expected to be useful in the future design and development of novel anti-HIV agents targeting CA.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan; (M.Y.); (O.K.)
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan;
| | - Masaki Kurakami
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Sayaka Boku
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Miyuki Nakayama
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Moemi Kaneko
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
| | - Osamu Kotani
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan; (M.Y.); (O.K.)
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan;
- Correspondence: (T.M.); (H.S.); (H.T.); Tel.: +81-3-4582-2816 (T.M.); +81-42-561-0771 (H.S.); +81-3-5280-8036 (H.T.)
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan; (M.Y.); (O.K.)
- Correspondence: (T.M.); (H.S.); (H.T.); Tel.: +81-3-4582-2816 (T.M.); +81-42-561-0771 (H.S.); +81-3-5280-8036 (H.T.)
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan; (T.K.); (K.T.); (M.K.); (S.B.); (M.N.); (M.K.); (N.O.)
- Correspondence: (T.M.); (H.S.); (H.T.); Tel.: +81-3-4582-2816 (T.M.); +81-42-561-0771 (H.S.); +81-3-5280-8036 (H.T.)
| |
Collapse
|
9
|
Kobayakawa T, Tsuji K, Konno K, Himeno A, Masuda A, Yang T, Takahashi K, Ishida Y, Ohashi N, Kuwata T, Matsumoto K, Yoshimura K, Sakawaki H, Miura T, Harada S, Matsushita S, Tamamura H. Hybrids of Small-Molecule CD4 Mimics with Polyethylene Glycol Units as HIV Entry Inhibitors. J Med Chem 2021; 64:1481-1496. [PMID: 33497209 DOI: 10.1021/acs.jmedchem.0c01153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CD4 mimics are small molecules that inhibit the interaction of gp120 with CD4. We have developed several CD4 mimics. Herein, hybrid molecules consisting of CD4 mimics with a long alkyl chain or a PEG unit attached through a self-cleavable linker were synthesized. In anti-HIV activity, modification with a PEG unit appeared to be more suitable than modification with a long alkyl chain. Thus, hybrid molecules of CD4 mimics, with PEG units attached through an uncleavable linker, were developed and showed high anti-HIV activity and low cytotoxicity. In investigation of pharmacokinetics in a rhesus macaque, a hybrid compound had a more effective PK profile than that of the parent compound, and intramuscular injection was a more useful administration route to maintain the high blood concentration of the CD4 mimic than intravenous injection. The presented hybrid molecules of CD4 mimics with a PEG unit would be practically useful when combined with a neutralizing antibody.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kiju Konno
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Ai Himeno
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ami Masuda
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tingting Yang
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Takahashi
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yusuke Ishida
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nami Ohashi
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takeo Kuwata
- The Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kaho Matsumoto
- The Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kazuhisa Yoshimura
- Institute of Public Health, Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Hiromi Sakawaki
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoyuki Miura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shuzo Matsushita
- The Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
10
|
Tsuji K, Wang R, Kobayakawa T, Owusu KBA, Fujino M, Kaneko M, Yamamoto N, Murakami T, Tamamura H. Potent leads based on CA-19L, an anti-HIV active HIV-1 capsid fragment. Bioorg Med Chem 2020; 30:115923. [PMID: 33316719 DOI: 10.1016/j.bmc.2020.115923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 01/17/2023]
Abstract
Several anti-HIV-1 peptides have previously been found among overlapping fragment peptide libraries that contain an octa-arginyl moiety and cover the whole sequence of an HIV-1 capsid (CA) protein. Several derivatives based on a potent CA fragment peptide CA-19L have been synthesized. CA-19L overlaps with the Helix 9 region of the CA protein, which could be important for oligomerization of the CA proteins. Derivatives of CA-19L in which several amino acid residues were added to the N- and C-termini according to the natural CA sequence, were synthesized and their anti-HIV activity was evaluated. Some potent compounds were found, and these potential new anti-HIV agents are expected to be useful as new tools for elucidation of CA functions.
Collapse
Affiliation(s)
- Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Rongyi Wang
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kofi Baffour-Awuah Owusu
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8150, Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Moemi Kaneko
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Naoki Yamamoto
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8150, Japan; Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8150, Japan.
| |
Collapse
|
11
|
Kobayakawa T, Ebihara K, Tsuji K, Kawada T, Fujino M, Honda Y, Ohashi N, Murakami T, Tamamura H. Bivalent HIV-1 fusion inhibitors based on peptidomimetics. Bioorg Med Chem 2020; 28:115812. [PMID: 33157478 DOI: 10.1016/j.bmc.2020.115812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Membrane fusion is a valid target for inhibition of HIV-1 replication. A 34-mer fragment peptide (C34), which is contained in the HIV-1 envelope protein gp41, has significant anti-HIV activity. Previously, a dimeric derivative of C34 linked by a disulfide bridge at its C-terminus was found to have more potent anti-HIV activity than the C34 peptide monomer. To date, several peptidomimetic small inhibitors have been reported, but most have lower potency than peptide derivatives related to C34. In the present study we applied this dimerization concept to these peptidomimetic small inhibitors and designed several bivalent peptidomimetic HIV-1 fusion inhibitors. The importance of the length of linkers crosslinking two peptidomimetic compounds was demonstrated and several potent bivalent inhibitors containing tethered peptidomimetics were produced.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kento Ebihara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuma Kawada
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yuzuna Honda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
12
|
Tsuji K, Owusu KBA, Kobayakawa T, Wang R, Fujino M, Kaneko M, Yamamoto N, Murakami T, Tamamura H. Exploratory studies on CA-15L, an anti-HIV active HIV-1 capsid fragment. Bioorg Med Chem 2020; 28:115488. [PMID: 32305183 DOI: 10.1016/j.bmc.2020.115488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 02/04/2023]
Abstract
Utilizing overlapping fragment peptide libraries covering the whole sequence of an HIV-1 capsid (CA) protein with the addition of an octa-arginyl moiety, we had previously found several peptides with anti-HIV-1 activity. Herein, among these potent CA fragment peptides, CA-15L was examined because this peptide sequence overlaps with Helix 7, a helix region of the CA protein, which may be important for oligomerization of the CA proteins. A CA-15L surrogate with hydrophilic residues, and its derivatives, in which amino acid sequences are shifted toward the C-terminus by one or more residues, were synthesized and their anti-HIV activity was evaluated. In addition, its derivatives with substitution for the Ser149 residue were synthesized and their anti-HIV activity was evaluated because Ser149 might be phosphorylated in the step of degradation of CA protein oligomers. Several active compounds were found and might become new anti-HIV agents and new tools for elucidation of CA functions.
Collapse
Affiliation(s)
- Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kofi Baffour-Awuah Owusu
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8150, Japan
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Rongyi Wang
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Moemi Kaneko
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Naoki Yamamoto
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8150, Japan.
| |
Collapse
|
13
|
Maeda K, Das D, Kobayakawa T, Tamamura H, Takeuchi H. Discovery and Development of Anti-HIV Therapeutic Agents: Progress Towards Improved HIV Medication. Curr Top Med Chem 2019; 19:1621-1649. [PMID: 31424371 PMCID: PMC7132033 DOI: 10.2174/1568026619666190712204603] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 01/09/2023]
Abstract
The history of the human immunodeficiency virus (HIV)/AIDS therapy, which spans over 30 years, is one of the most dramatic stories of science and medicine leading to the treatment of a disease. Since the advent of the first AIDS drug, AZT or zidovudine, a number of agents acting on different drug targets, such as HIV enzymes (e.g. reverse transcriptase, protease, and integrase) and host cell factors critical for HIV infection (e.g. CD4 and CCR5), have been added to our armamentarium to combat HIV/AIDS. In this review article, we first discuss the history of the development of anti-HIV drugs, during which several problems such as drug-induced side effects and the emergence of drug-resistant viruses became apparent and had to be overcome. Nowadays, the success of Combination Antiretroviral Therapy (cART), combined with recently-developed powerful but nonetheless less toxic drugs has transformed HIV/AIDS from an inevitably fatal disease into a manageable chronic infection. However, even with such potent cART, it is impossible to eradicate HIV because none of the currently available HIV drugs are effective in eliminating occult “dormant” HIV cell reservoirs. A number of novel unique treatment approaches that should drastically improve the quality of life (QOL) of patients or might actually be able to eliminate HIV altogether have also been discussed later in the review.
Collapse
Affiliation(s)
- Kenji Maeda
- National Center for Global Health and Medicine (NCGM) Research Institute, Tokyo 162-8655, Japan
| | - Debananda Das
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health (NCI/NIH), Bethesda, MD, United States
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Hirokazu Tamamura
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Hiroaki Takeuchi
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| |
Collapse
|
14
|
Trimeric heptad repeat synthetic peptides HR1 and HR2 efficiently inhibit HIV-1 entry. Biosci Rep 2019; 39:BSR20192196. [PMID: 31477581 PMCID: PMC6757187 DOI: 10.1042/bsr20192196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
The trimeric heptad repeat domains HR1 and HR2 of the human immunodeficiency virus 1 (HIV-1) gp41 play a key role in HIV-1-entry by membrane fusion. To develop efficient inhibitors against this step, the corresponding trimeric-N36 and C34 peptides were designed and synthesized. Analysis by circular dichroism of monomeric and trimeric N36 and C34 peptides showed their capacities to adopt α-helical structures and to establish physical interactions. At the virological level, while trimeric-C34 conserves the same high anti-fusion activity as monomeric-C34, trimerization of N36-peptide induced a significant increase, reaching 500-times higher in anti-fusion activity, against R5-tropic virus-mediated fusion. This result was associated with increased stability of the N36 trimer peptide with respect to the monomeric form, as demonstrated by the comparative kinetics of their antiviral activities during 6-day incubation in a physiological medium. Collectively, our findings demonstrate that while the trimerization of C34 peptide had no beneficial effect on its stability and antiviral activity, the trimerization of N36 peptide strengthened both stability and antiviral activity. This approach, promotes trimers as new promising HIV-1 inhibitors and point to future development aimed toward innovative peptide fusion inhibitors, microbicides or as immunogens.
Collapse
|
15
|
Kobayakawa T, Ebihara K, Honda Y, Fujino M, Nomura W, Yamamoto N, Murakami T, Tamamura H. Dimeric C34 Derivatives Linked through Disulfide Bridges as New HIV-1 Fusion Inhibitors. Chembiochem 2019; 20:2101-2108. [PMID: 31012222 DOI: 10.1002/cbic.201900187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Indexed: 11/12/2022]
Abstract
C34, a 34-mer fragment peptide, is contained in the HIV-1 envelope protein gp41. A dimeric derivative of C34 linked through a disulfide bridge at its C terminus was synthesized and found to display potent anti-HIV activity, comparable with that of a previously reported PEGylated dimer of C34REG. The reduction in the size of the linker moiety for dimerization was thus successful, and this result might shed some light on the mechanism of the suppression of six-helix bundle formation by these C34 dimeric derivatives. Addition of a Gly-Cys(CH2 CONH2 )-Gly-Gly motif at the N-terminal position of a C34 monomeric derivative significantly increased the anti-HIV-1 activity. This moiety functions as a new pharmacophore, and this might provide a useful insight into the design of potent HIV-1 fusion inhibitors.
Collapse
Affiliation(s)
- Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Kento Ebihara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yuzuna Honda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Naoki Yamamoto
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
16
|
Nomura W. Creation of Functional Molecules Based on Biomolecular Interactions; Development toward Chemical Biology. YAKUGAKU ZASSHI 2017; 137:1223-1231. [PMID: 28966263 DOI: 10.1248/yakushi.17-00125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interactions between bio-macromolecules such as proteins, DNA, and polysaccharides play pivotal roles in maintaining homeostasis in living systems. For elucidating the function of biomolecules, peptides are powerful tools, compared to native proteins, because of their lower molecular weights, compatibility with chemical modification, and predictability of interaction with the target molecules. These advantages enabled us to develop peptide-based functional molecules. However, for the purposes of controlling or regulating biomolecule functions, designing artificial proteins is also an effective approach. Not only rational protein design, but also directed molecular evolution, are now regarded as powerful methods for optimizing protein function. The interactions of proteins with bio-macromolecules are usually highly specific and show high affinity because of larger interaction surfaces as compared to small molecules or peptides. Thus, the use of proteins for designing biofunctional molecules is also important for wider applications in the biotechnology field. In this review, four topics will be discussed: 1) the development of fluorescently-labeled ligands for G protein-coupled receptors (GPCR), as well as bivalent ligands for GPCR imaging and function analysis, 2) the design and synthesis of gp41 trimer mimics as HIV-1 inhibitors or vaccines, 3) the development of a ZIP tag-probe system and its application to intracellular protein imaging, and 4) the functional analysis of sequence-specific DNA recombinase for expanding the scope of genome editing. The results of these studies indicate the importance of precision in the design of peptides or proteins for regulating bio-macromolecular interactions.
Collapse
Affiliation(s)
- Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
17
|
Mizuguchi T, Ohashi N, Matsumoto D, Hashimoto C, Nomura W, Yamamoto N, Murakami T, Tamamura H. Development of anti-HIV peptides based on a viral capsid protein. Biopolymers 2017; 108. [PMID: 27428649 DOI: 10.1002/bip.22920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 01/01/2023]
Abstract
Peptide inhibitors with cell permeability targeting an HIV-1 capsid (CA) protein might make therapeutic by regulating HIV-1 replication. Overlapping fragment peptide libraries covering the whole sequence of an HIV-1 CA protein have been synthesized with the addition of an octa-arginyl moiety to increase their cell permeability. Amongst these peptides, several compounds which inhibit the HIV-1 replication cycle have been found. Conjugation of cell-penetrating functions such as an octa-arginyl group to individual peptides in combination with the addition of chloroquine in cell-based anti-HIV assays was previously proven to be a useful assay method with which to search for active peptides. Anti-HIV assays have been performed in the presence or absence of chloroquine and found that most of compounds have higher anti-HIV activity in the presence, rather than in the absence of chloroquine. Some potent seeds as anti-HIV agents might naturally lie hidden in CA proteins, and could become useful leads to HIV inhibitors.
Collapse
Affiliation(s)
- Takaaki Mizuguchi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Daichi Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Chie Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Naoki Yamamoto
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
18
|
Nomura W, Mizuguchi T, Tamamura H. Multimerized HIV-gp41-derived peptides as fusion inhibitors and vaccines. Biopolymers 2017; 106:622-8. [PMID: 26583370 DOI: 10.1002/bip.22782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 11/11/2022]
Abstract
To date, several antigens based on the amino-terminal leucine/isoleucine heptad repeat (NHR) region of an HIV-1 envelope protein gp41 and fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of gp41 have been reported. We have developed a synthetic antigen targeting the membrane-fusion mechanism of HIV-1. This uses a template designed with C3-symmetric linkers and mimics the trimeric form of the NHR-derived peptide N36. The antiserum obtained by immunization of the N36 trimeric antigen binds preferentially to the N36 trimer and blocks HIV-1 infection effectively, compared with the antiserum obtained by immunization of the N36 monomer. Using another template designed with different C3-symmetric linkers, we have also developed a synthetic peptide mimicking the trimeric form of the CHR-derived peptide C34, with ∼100 times the inhibitory activity against the HIV-1 fusion mechanism than that of the monomer C34 peptide. A dimeric derivative of C34 has potent inhibitory activity at almost the same levels as this C34 trimer mimic, suggesting that presence of a dimeric form of C34 is structurally critical for fusion inhibitors. As examples of rising mid-size drugs, this review describes an effective strategy for the design of HIV vaccines and fusion inhibitors based on a relationship with the native structure of proteins involved in HIV fusion mechanisms. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 622-628, 2016.
Collapse
Affiliation(s)
- Wataru Nomura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-Ku, Tokyo 101-0062, Japan
| | - Takaaki Mizuguchi
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-Ku, Tokyo 101-0062, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-Ku, Tokyo 101-0062, Japan
| |
Collapse
|
19
|
Chen YS. A comprehensive identification-evidence based alternative for HIV/AIDS treatment with HAART in the healthcare industries. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 131:111-126. [PMID: 27265053 DOI: 10.1016/j.cmpb.2016.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/03/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND AND OBJECTIVE The HIV/AIDS-related issue has given rise to a priority concern in which potential new therapies are increasingly highlighted to lessen the negative impact of highly active anti-retroviral therapy (HAART) in the healthcare industry. With the motivation of "medical applications," this study focuses on the main advanced feature selection techniques and classification approaches that reflect a new architecture, and a trial to build a hybrid model for interested parties. METHODS This study first uses an integrated linear-nonlinear feature selection technique to identify the determinants influencing HAART medication and utilizes organizations of different condition-attributes to generate a hybrid model based on a rough set classifier to study evolving HIV/AIDS research in order to improve classification performance. RESULTS The proposed model makes use of a real data set from Taiwan's specialist medical center. The experimental results show that the proposed model yields a satisfactory result that is superior to the listed methods, and the core condition-attributes PVL, CD4, Code, Age, Year, PLT, and Sex were identified in the HIV/AIDS data set. In addition, the decision rule set created can be referenced as a knowledge-based healthcare service system as the best of evidence-based practices in the workflow of current clinical diagnosis. CONCLUSIONS This study highlights the importance of these key factors and provides the rationale that the proposed model is an effective alternative to analyzing sustained HAART medication in follow-up studies of HIV/AIDS treatment in practice.
Collapse
Affiliation(s)
- You-Shyang Chen
- Department of Information Management, Hwa Hsia University of Technology, 111, Gongzhuan Rd., Zhonghe Dist., New Taipei City 235, Taiwan.
| |
Collapse
|
20
|
Groß A, Hashimoto C, Sticht H, Eichler J. Synthetic Peptides as Protein Mimics. Front Bioeng Biotechnol 2016; 3:211. [PMID: 26835447 PMCID: PMC4717299 DOI: 10.3389/fbioe.2015.00211] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
The design and generation of molecules capable of mimicking the binding and/or functional sites of proteins represents a promising strategy for the exploration and modulation of protein function through controlled interference with the underlying molecular interactions. Synthetic peptides have proven an excellent type of molecule for the mimicry of protein sites because such peptides can be generated as exact copies of protein fragments, as well as in diverse chemical modifications, which includes the incorporation of a large range of non-proteinogenic amino acids as well as the modification of the peptide backbone. Apart from extending the chemical and structural diversity presented by peptides, such modifications also increase the proteolytic stability of the molecules, enhancing their utility for biological applications. This article reviews recent advances by this and other laboratories in the use of synthetic protein mimics to modulate protein function, as well as to provide building blocks for synthetic biology.
Collapse
Affiliation(s)
- Andrea Groß
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Chie Hashimoto
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jutta Eichler
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
21
|
Membrane-Active Sequences within gp41 Membrane Proximal External Region (MPER) Modulate MPER-Containing Peptidyl Fusion Inhibitor Activity and the Biosynthesis of HIV-1 Structural Proteins. PLoS One 2015; 10:e0134851. [PMID: 26230322 PMCID: PMC4521866 DOI: 10.1371/journal.pone.0134851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/14/2015] [Indexed: 12/04/2022] Open
Abstract
The membrane proximal external region (MPER) is a highly conserved membrane-active region located at the juxtamembrane positions within class I viral fusion glycoproteins and essential for membrane fusion events during viral entry. The MPER in the human immunodeficiency virus type I (HIV-1) envelope protein (Env) interacts with the lipid bilayers through a cluster of tryptophan (Trp) residues and a C-terminal cholesterol-interacting motif. The inclusion of the MPER N-terminal sequence contributes to the membrane reactivity and anti-viral efficacy of the first two anti-HIV peptidyl fusion inhibitors T20 and T1249. As a type I transmembrane protein, Env also interacts with the cellular membranes during its biosynthesis and trafficking. Here we investigated the roles of MPER membrane-active sequences during both viral entry and assembly, specifically, their roles in the design of peptidyl fusion inhibitors and the biosynthesis of viral structural proteins. We found that elimination of the membrane-active elements in MPER peptides, namely, penta Trp→alanine (Ala) substitutions and the disruption of the C-terminal cholesterol-interacting motif through deletion inhibited the anti-viral effect against the pseudotyped HIV-1. Furthermore, as compared to C-terminal dimerization, N-terminal dimerization of MPER peptides and N-terminal extension with five helix-forming residues enhanced their anti-viral efficacy substantially. The secondary structure study revealed that the penta-Trp→Ala substitutions also increased the helical content in the MPER sequence, which prompted us to study the biological relevance of such mutations in pre-fusion Env. We observed that Ala mutations of Trp664, Trp668 and Trp670 in MPER moderately lowered the intracellular and intraviral contents of Env while significantly elevating the content of another viral structural protein, p55/Gag and its derivative p24/capsid. The data suggest a role of the gp41 MPER in the membrane-reactive events during both viral entry and budding, and provide insights into the future development of anti-viral therapeutics.
Collapse
|
22
|
Mizuguchi T, Ohashi N, Nomura W, Komoriya M, Hashimoto C, Yamamoto N, Murakami T, Tamamura H. Anti-HIV screening for cell-penetrating peptides using chloroquine and identification of anti-HIV peptides derived from matrix proteins. Bioorg Med Chem 2015; 23:4423-4427. [PMID: 26094944 DOI: 10.1016/j.bmc.2015.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 11/17/2022]
Abstract
Previously, compounds which inhibit the HIV-1 replication cycle were found in overlapping peptide libraries covering the whole sequence of an HIV-1 matrix (MA) protein constructed with the addition of an octa-arginyl group. The two top lead compounds are sequential fragments MA-8L and MA-9L. In the present study, the addition of chloroquine in cell-based anti-HIV assays was proven to be an efficient method with which to find anti-HIV compounds among several peptides conjugated by cell-penetrating signals such as an octa-arginyl group: the conjugation of an octa-arginyl group to individual peptides contained in whole proteins in combination with the addition of chloroquine in cells is a useful assay method to search active peptides. To find more potent fragment peptides, individual peptides between MA-8L and MA-9L, having the same peptide chain length but with sequences shifted by one amino acid residue, were synthesized in this paper and their anti-HIV activity was evaluated with an anti-HIV assay using chloroquine. As a result, the peptides in the C-terminal side of the series, which are relatively close to MA-9L, showed more potent inhibitory activity against both X4-HIV-1 and R5-HIV-1 than the peptides in the N-terminal side.
Collapse
Affiliation(s)
- Takaaki Mizuguchi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Nami Ohashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Mao Komoriya
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Chie Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Naoki Yamamoto
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
23
|
Augusto MT, Hollmann A, Castanho MARB, Porotto M, Pessi A, Santos NC. Improvement of HIV fusion inhibitor C34 efficacy by membrane anchoring and enhanced exposure. J Antimicrob Chemother 2014; 69:1286-97. [PMID: 24464268 DOI: 10.1093/jac/dkt529] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The aim of the present work was to evaluate the interaction of two new HIV fusion inhibitors {HIVP3 [C34-polyethylene glycol (PEG)₄-cholesterol] and HIVP4 [(C34-PEG₄)₂-cholesterol]} with membrane model systems and human blood cells in order to clarify where and how the fusion inhibitors locate, allowing us to understand their mechanism of action at the molecular level, and which strategies may be followed to increase efficacy. METHODS Lipid vesicles with defined compositions were used for peptide partition and localization studies, based on the intrinsic fluorescence of HIVP3 and HIVP4. Lipid monolayers were employed in surface pressure studies. Finally, human erythrocytes and peripheral blood mononuclear cells (PBMCs) isolated from blood samples were used in dipole potential assays. RESULTS Membrane partition, dipole potential and surface pressure assays indicate that the new fusion inhibitors interact preferentially with cholesterol-rich liquid-ordered membranes, mimicking biological membrane microdomains known as lipid rafts. HIVP3 and HIVP4 are able to interact with human erythrocytes and PBMCs to a similar degree as a previously described simpler drug with monomeric C34 and lacking the PEG spacer, C34-cholesterol. However, the pocket-binding domain (PBD) of both HIVP3 and HIVP4 is more exposed to the aqueous environment than in C34-cholesterol. CONCLUSIONS The present data allow us to conclude that more efficient blocking of HIV entry results from the synergism between the membranotropic behaviour and the enhanced exposure of the PBD.
Collapse
Affiliation(s)
- Marcelo T Augusto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
24
|
A CD4 mimic as an HIV entry inhibitor: Pharmacokinetics. Bioorg Med Chem 2013; 21:7884-9. [DOI: 10.1016/j.bmc.2013.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/05/2013] [Accepted: 10/05/2013] [Indexed: 11/19/2022]
|
25
|
Hashimoto C, Nomura W, Narumi T, Fujino M, Nakahara T, Yamamoto N, Murakami T, Tamamura H. CXCR4-derived synthetic peptides inducing anti-HIV-1 antibodies. Bioorg Med Chem 2013; 21:6878-85. [PMID: 24119449 DOI: 10.1016/j.bmc.2013.09.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 01/17/2023]
Abstract
Despite almost 30 years since the identification of the human immunodeficiency virus type I (HIV-1), development of effective AIDS vaccines has been hindered by the high mutability of HIV-1. The HIV-1 co-receptors CCR5 and CXCR4 are genetically stable, but viral proteins may mutate rapidly during the course of infection. CXCR4 is a seven transmembrane G protein-coupled receptor, possessing an N-terminal region (NT) and three extracellular loops (ECL1-3). Previous studies have shown that the CXCR4-ED-derived peptides inhibit the entry of HIV-1 by interacting with gp120, an HIV-1 envelope glycoprotein. In the present study, antigenicity of CXCR4-derived peptides has been investigated and the anti-HIV-1 effects of induced antisera have been assessed. It was found that CXCR4-ED-derived antigen molecules immunize mice, showing that the linear peptides have higher antigenicity than the cyclic peptides. The L1- and L2-induced antisera inhibited the HIV-1 entry significantly, while anti-N1 antibodies have no inhibitory activity. This study produced promising examples for the design of AIDS vaccines which target the human protein and can overcome mutability of HIV-1.
Collapse
Affiliation(s)
- Chie Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Xiao J, Tolbert TJ. Modular assembly of dimeric HIV fusion inhibitor peptides with enhanced antiviral potency. Bioorg Med Chem Lett 2013; 23:6046-51. [PMID: 24094817 DOI: 10.1016/j.bmcl.2013.09.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/11/2013] [Indexed: 01/07/2023]
Abstract
The HIV-1 envelope gp120/gp41 glycoprotein complex plays a critical role in virus-host cell membrane fusion and has been a focus for the development of HIV fusion inhibitors. In this Letter, we present the synthesis of dimers of HIV fusion inhibitor peptides C37H6 and CP32M, which target the trimeric gp41 in the pre-hairpin intermediate state to inhibit membrane fusion. Reactive peptide modules were synthesized using native chemical ligation and then assembled into dimers with varying linker lengths using Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) 'click' chemistry. Cell-cell fusion inhibition assays demonstrated that dimers with a (PEG)7 linker showed enhanced antiviral potency over the corresponding monomers. Moreover, the bio-orthogonal nature of the CuAAC 'click' reaction provides a practical way to assemble heterodimers of HIV fusion inhibitors. Heterodimers consisting of the T20-sensitive strain inhibitor C37H6 and the T20-resistant strain inhibitor CP32M were produced that may have broader spectrum activities against both T20-sensitive and T20-resistant strains.
Collapse
Affiliation(s)
- Junpeng Xiao
- Interdisciplinary Biochemistry Graduate Program, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
27
|
Ling Y, Xue H, Jiang X, Cai L, Liu K. Increase of anti-HIV activity of C-peptide fusion inhibitors using a bivalent drug design approach. Bioorg Med Chem Lett 2013; 23:4770-3. [DOI: 10.1016/j.bmcl.2013.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
|
28
|
Nomura W, Hashimoto C, Suzuki T, Ohashi N, Fujino M, Murakami T, Yamamoto N, Tamamura H. Multimerized CHR-derived peptides as HIV-1 fusion inhibitors. Bioorg Med Chem 2013; 21:4452-8. [PMID: 23800723 DOI: 10.1016/j.bmc.2013.05.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 11/24/2022]
Abstract
To date, several HIV-1 fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of an HIV-1 envelope protein gp41 have been discovered. We have shown that a synthetic peptide mimetic of a trimer form of the CHR-derived peptide C34 has potent inhibitory activity against the HIV-1 fusion mechanism, compared to a monomer C34 peptide. The present study revealed that a dimeric form of C34 is evidently structurally critical for fusion inhibitors, and that the activity of multimerized CHR-derived peptides in fusion inhibition is affected by the properties of the unit peptides C34, SC34EK, and T20. The fluorescence-based study suggested that the N36-interactive sites of the C34 trimer, including hydrophobic residues, are exposed outside the trimer and that trimerization of C34 caused a remarkable increase in fusion inhibitory activity. The present results could be useful in the design of fusion inhibitors against viral infections which proceed via membrane fusion with host cells.
Collapse
Affiliation(s)
- Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Hashimoto C, Nomura W, Ohya A, Urano E, Miyauchi K, Narumi T, Aikawa H, Komano JA, Yamamoto N, Tamamura H. Evaluation of a synthetic C34 trimer of HIV-1 gp41 as AIDS vaccines. Bioorg Med Chem 2012; 20:3287-91. [PMID: 22507207 DOI: 10.1016/j.bmc.2012.03.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/21/2012] [Accepted: 03/21/2012] [Indexed: 11/16/2022]
Abstract
An artificial antigen forming the C34 trimeric structure targeting membrane-fusion mechanism of HIV-1 has been evaluated as an HIV vaccine. The C34 trimeric molecule was previously designed and synthesized using a novel template with C3-symmetric linkers by us. The antiserum produced by immunization of the C34 trimeric form antigen showed 23-fold higher binding affinity for the C34 trimer than for the C34 monomer and showed significant neutralizing activity. The present results suggest effective strategies of the design of HIV vaccines and anti-HIV agents based on the native structure mimic of proteins targeting dynamic supramolecular mechanisms in HIV fusion.
Collapse
Affiliation(s)
- Chie Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|