1
|
Tian J, Zhou L. Photoredox radical/polar crossover enables C-H gem-difunctionalization of 1,3-benzodioxoles for the synthesis of monofluorocyclohexenes. Chem Sci 2023; 14:6045-6051. [PMID: 37293655 PMCID: PMC10246682 DOI: 10.1039/d3sc00912b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
A photocatalytic C-H gem-difunctionalization of 1,3-benzodioxoles with two different alkenes for the synthesis of highly functionalized monofluorocyclohexenes is described. Using 4CzIPN as the photocatalyst, the direct single electron oxidation of 1,3-benzodioxoles allows their defluorinative coupling with α-trifluoromethyl alkenes to produce gem-difluoroalkenes in a redox-neutral radical polar crossover manifold. The C-H bond of the resultant γ,γ-difluoroallylated 1,3-benzodioxoles was further functionalized via radical addition to electron-deficient alkenes using a more oxidizing iridium photocatalyst. The capture of in situ generated carbanions by an electrophilic gem-difluoromethylene carbon and consecutive β-fluoride elimination afford monofluorocyclohexenes. The synergistic combination of multiple termination pathways of carbanions enables rapid incorporation of molecular complexity via stitching simple and readily accessible starting materials together.
Collapse
Affiliation(s)
- Jiabao Tian
- School of Chemistry, Sun Yat-Sen University Panyu District Guangzhou 510006 China
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University Panyu District Guangzhou 510006 China
| |
Collapse
|
2
|
Implications of Fragment-Based Drug Discovery in Tuberculosis and HIV. Pharmaceuticals (Basel) 2022; 15:ph15111415. [PMID: 36422545 PMCID: PMC9692459 DOI: 10.3390/ph15111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis (TB) remains a global health problem and the emergence of HIV has further worsened it. Long chemotherapy and the emergence of drug-resistance strains of Mycobacterium tuberculosis as well as HIV has aggravated the problem. This demands urgent the need to develop new anti-tuberculosis and antiretrovirals to treat TB and HIV. The lack of diversity in drugs designed using traditional approaches is a major disadvantage and limits the treatment options. Therefore, new technologies and approaches are required to solve the current issues and enhance the production of drugs. Interestingly, fragment-based drug discovery (FBDD) has gained an advantage over high-throughput screenings as FBDD has enabled rapid and efficient progress to develop potent small molecule compounds that specifically bind to the target. Several potent inhibitor compounds of various targets have been developed using FBDD approach and some of them are under progression to clinical trials. In this review, we emphasize some of the important targets of mycobacteria and HIV. We also discussed about the target-based druggable molecules that are identified using the FBDD approach, use of these druggable molecules to identify novel binding sites on the target and assays used to evaluate inhibitory activities of these identified druggable molecules on the biological activity of the targets.
Collapse
|
3
|
Abstract
A series of small molecules containing polar aromatic substituents and alkynes have been synthesized. One–pot preparations of polar aromatic molecules containing an alkynyl imine and alkynyl amide are reported. A one-pot preparation of a catechol containing an alkynyl amine was also attempted but in our hands it proved much better to synthesize this target molecule via a three step synthesis which we also report here.
Collapse
|
4
|
Pasala C, Katari SK, Nalamolu RM, Bitla AR, Amineni U. In silico probing exercises, bioactive-conformational and dynamic simulations strategies for designing and promoting selective therapeutics against Helicobacter pylori strains. J Mol Graph Model 2019; 92:167-179. [DOI: 10.1016/j.jmgm.2019.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/27/2019] [Accepted: 07/25/2019] [Indexed: 12/25/2022]
|
5
|
|
6
|
Jarrad AM, Ang CW, Debnath A, Hahn HJ, Woods K, Tan L, Sykes ML, Jones AJ, Pelingon R, Butler MS, Avery VM, West NP, Karoli T, Blaskovich MAT, Cooper MA. Design, Synthesis, and Biological Evaluation of 2-Nitroimidazopyrazin-one/-es with Antitubercular and Antiparasitic Activity. J Med Chem 2018; 61:11349-11371. [PMID: 30468386 PMCID: PMC6311682 DOI: 10.1021/acs.jmedchem.8b01578] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tuberculosis and parasitic diseases, such as giardiasis, amebiasis, leishmaniasis, and trypanosomiasis, all urgently require improved treatment options. Recently, it has been shown that antitubercular bicyclic nitroimidazoles such as pretomanid and delamanid have potential as repurposed therapeutics for the treatment of visceral leishmaniasis. Here, we show that pretomanid also possesses potent activity against Giardia lamblia and Entamoeba histolytica, thus expanding the therapeutic potential of nitroimidazooxazines. Synthetic analogues with a novel nitroimidazopyrazin-one/-e bicyclic nitroimidazole chemotype were designed and synthesized, and structure-activity relationships were generated. Selected derivatives had potent antiparasitic and antitubercular activity while maintaining drug-like properties such as low cytotoxicity, good metabolic stability in liver microsomes and high apparent permeability across Caco-2 cells. The kinetic solubility of the new bicyclic derivatives varied and was found to be a key parameter for future optimization. Taken together, these results suggest that promising subclasses of bicyclic nitroimidazoles containing different core architectures have potential for further development.
Collapse
Affiliation(s)
| | | | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California San Diego , La Jolla , California 92093 , United States
| | - Hye Jee Hahn
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California San Diego , La Jolla , California 92093 , United States
| | - Kyra Woods
- Australian Infectious Diseases Research Centre , St. Lucia , Queensland 4067 Australia
| | - Lendl Tan
- Australian Infectious Diseases Research Centre , St. Lucia , Queensland 4067 Australia
| | - Melissa L Sykes
- Discovery Biology, Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia
| | - Amy J Jones
- Discovery Biology, Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia
| | | | - Mark S Butler
- Australian Infectious Diseases Research Centre , St. Lucia , Queensland 4067 Australia
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery , Griffith University , Nathan , Queensland 4111 , Australia
| | - Nicholas P West
- Australian Infectious Diseases Research Centre , St. Lucia , Queensland 4067 Australia
| | | | - Mark A T Blaskovich
- Australian Infectious Diseases Research Centre , St. Lucia , Queensland 4067 Australia
| | - Matthew A Cooper
- Australian Infectious Diseases Research Centre , St. Lucia , Queensland 4067 Australia
| |
Collapse
|
7
|
Heravi MM, Zadsirjan V, Saedi P, Momeni T. Applications of Friedel-Crafts reactions in total synthesis of natural products. RSC Adv 2018; 8:40061-40163. [PMID: 35558228 PMCID: PMC9091380 DOI: 10.1039/c8ra07325b] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/03/2018] [Indexed: 12/17/2022] Open
Abstract
Over the years, Friedel-Crafts (FC) reactions have been acknowledged as the most useful and powerful synthetic tools for the construction of a special kind of carbon-carbon bond involving an aromatic moiety. Its stoichiometric and, more recently, its catalytic procedures have extensively been studied. This reaction in recent years has frequently been used as a key step (steps) in the total synthesis of natural products and targeted complex bioactive molecules. In this review, we try to underscore the applications of intermolecular and intramolecular FC reactions in the total syntheses of natural products and complex molecules, exhibiting diverse biological properties.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Pegah Saedi
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Tayebeh Momeni
- Department of Chemistry, School of Science, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| |
Collapse
|
8
|
Mendes V, Blundell TL. Targeting tuberculosis using structure-guided fragment-based drug design. Drug Discov Today 2016; 22:546-554. [PMID: 27742535 DOI: 10.1016/j.drudis.2016.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 01/20/2023]
Abstract
Fragment-based drug discovery is now widely used in academia and industry to obtain small molecule inhibitors for a given target and is established for many fields of research including antimicrobials and oncology. Many molecules derived from fragment-based approaches are already in clinical trials and two - vemurafenib and venetoclax - are on the market, but the approach has been used sparsely in the tuberculosis field. Here, we describe the progress of our group and others, and examine the most recent successes and challenges in developing compounds with antimycobacterial activity.
Collapse
Affiliation(s)
- Vitor Mendes
- Department of Biochemistry, University of Cambridge, Cambridge CB21GA, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB21GA, UK.
| |
Collapse
|
9
|
Sum TH, Sum TJ, Stokes JE, Galloway WR, Spring DR. Divergent and concise total syntheses of dihydrochalcones and 5-deoxyflavones recently isolated from Tacca species and Mimosa diplotricha. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Villemagne B, Flipo M, Blondiaux N, Crauste C, Malaquin S, Leroux F, Piveteau C, Villeret V, Brodin P, Villoutreix BO, Sperandio O, Soror SH, Wohlkönig A, Wintjens R, Deprez B, Baulard AR, Willand N. Ligand efficiency driven design of new inhibitors of Mycobacterium tuberculosis transcriptional repressor EthR using fragment growing, merging, and linking approaches. J Med Chem 2014; 57:4876-88. [PMID: 24818704 DOI: 10.1021/jm500422b] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tuberculosis remains a major cause of mortality and morbidity, killing each year more than one million people. Although the combined use of first line antibiotics (isoniazid, rifampicin, pyrazinamide, and ethambutol) is efficient to treat most patients, the rapid emergence of multidrug resistant strains of Mycobacterium tuberculosis stresses the need for alternative therapies. Mycobacterial transcriptional repressor EthR is a key player in the control of second-line drugs bioactivation such as ethionamide and has been shown to impair the sensitivity of the human pathogen Mycobacterium tuberculosis to this antibiotic. As a way to identify new potent ligands of this protein, we have developed fragment-based approaches. In the current study, we combined surface plasmon resonance assay, X-ray crystallography, and ligand efficiency driven design for the rapid discovery and optimization of new chemotypes of EthR ligands starting from a fragment. The design, synthesis, and in vitro and ex vivo activities of these compounds will be discussed.
Collapse
|
11
|
Tran AT, Wen D, West NP, Baker EN, Britton WJ, Payne RJ. Inhibition studies on Mycobacterium tuberculosis N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). Org Biomol Chem 2014; 11:8113-26. [PMID: 24158720 DOI: 10.1039/c3ob41896k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peptidoglycan is an essential component of the cell wall of bacteria, including Mycobacterium tuberculosis, that provides structural strength and rigidity to enable internal osmotic pressure to be withstood. The first committed step in the biosynthesis of peptidoglycan involves the formation of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) from uridine triphosphate (UTP) and GlcNAc-1-phosphate. This reaction is catalysed by N-acetylglucosamine-1-phosphate uridyltransferase (GlmU), a bifunctional enzyme with two independent active sites that possess acetyltransferase and uridyltransferase activities. Herein, we report the first inhibition study targeted against the uridyltransferase activity of M. tuberculosis GlmU. A number of potential inhibitors were initially prepared leading to the discovery of active aminoquinazoline-based compounds. The most potent inhibitor in this series exhibited an IC50 of 74 μM against GlmU uridyltransferase activity and serves as a promising starting point for the discovery of more potent inhibitors.
Collapse
Affiliation(s)
- Anh Thu Tran
- School of Chemistry, Building F11. and The University of Sydney, Camperdown, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
12
|
Green KD, Garneau-Tsodikova S. Resistance in tuberculosis: what do we know and where can we go? Front Microbiol 2013; 4:208. [PMID: 23888158 PMCID: PMC3719028 DOI: 10.3389/fmicb.2013.00208] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/05/2013] [Indexed: 12/05/2022] Open
Abstract
Tuberculosis (TB) has become a worldwide threat, mainly due to the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis (Mtb). This mini-review is focused on the various mechanisms of resistance to the currently available anti-TB drugs and provides perspective on novel strategies and lead scaffolds/compounds aimed at inhibiting/overcoming these resistance mechanisms.
Collapse
Affiliation(s)
- Keith D Green
- Department of Pharmaceutical Sciences, University of Kentucky Lexington, KY, USA
| | | |
Collapse
|
13
|
Peón A, Coderch C, Gago F, González-Bello C. Comparative binding energy COMBINE analysis for understanding the binding determinants of type II dehydroquinase inhibitors. ChemMedChem 2013; 8:740-7. [PMID: 23450741 DOI: 10.1002/cmdc.201300013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Indexed: 11/08/2022]
Abstract
Herein we report comparative binding energy (COMBINE) analyses to derive quantitative structure-activity relationship (QSAR) models that help rationalize the determinants of binding affinity for inhibitors of type II dehydroquinase (DHQ2), the third enzyme of the shikimic acid pathway. Independent COMBINE models were derived for Helicobacter pylori and Mycobacterium tuberculosis DHQ2, which is an essential enzyme in both these pathogenic bacteria that has no counterpart in human cells. These studies quantify the importance of the hydrogen bonding interactions between the ligands and the water molecule involved in the DHQ2 reaction mechanism. They also highlight important differences in the ligand interactions with the interface pocket close to the active site that could provide guides for future inhibitor design.
Collapse
Affiliation(s)
- Antonio Peón
- Centro Singular de Investigación en Química Biológica y Materiales, Moleculares CIQUS, Universidad de Santiago de Compostela calle Jenaro de la Fuente s/n, 15782 Santiago de Compostela Spain
| | | | | | | |
Collapse
|
14
|
Manos-Turvey A, Cergol KM, Salam NK, Bulloch EMM, Chi G, Pang A, Britton WJ, West NP, Baker EN, Lott JS, Payne RJ. Synthesis and evaluation of M. tuberculosis salicylate synthase (MbtI) inhibitors designed to probe plasticity in the active site. Org Biomol Chem 2012; 10:9223-36. [DOI: 10.1039/c2ob26736e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|