1
|
Gaona-López C, Martínez-Vázquez AV, Villalobos-Rocha JC, Juárez-Rendón KJ, Rivera G. Analysis of Giardia lamblia Nucleolus as Drug Target: A Review. Pharmaceuticals (Basel) 2023; 16:1168. [PMID: 37631082 PMCID: PMC10457859 DOI: 10.3390/ph16081168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Giardia lamblia (G. lamblia) is the main causative agent of diarrhea worldwide, affecting children and adults alike; in the former, it can be lethal, and in the latter a strong cause of morbidity. Despite being considered a predominant disease in low-income and developing countries, current migratory flows have caused an increase in giardiasis cases in high-income countries. Currently, there is a wide variety of chemotherapeutic treatments to combat this parasitosis, most of which have potentially serious side effects, such as genotoxic, carcinogenic, and teratogenic. The necessity to create novel treatments and discover new therapeutic targets to fight against this illness is evident. The current review centers around the controversial nucleolus of G. lamblia, providing a historical perspective that traces its apparent absence to the present evidence supporting its existence as a subnuclear compartment in this organism. Additionally, possible examples of ncRNAs and proteins ubiquitous to the nucleolus that can be used as targets of different therapeutic strategies are discussed. Finally, some examples of drugs under research that could be effective against G. lamblia are described.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | | | - Juan Carlos Villalobos-Rocha
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| | - Karina Janett Juárez-Rendón
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.V.M.-V.); (K.J.J.-R.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
2
|
Zhang S, Wu H, Day CS, Bierbach U. Platinum-Acridine Agents with High Activity in Cancers Expressing the Solute Carrier MATE1 ( SLC47A1). ACS Med Chem Lett 2023; 14:1122-1128. [PMID: 37583829 PMCID: PMC10424322 DOI: 10.1021/acsmedchemlett.3c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
Platinum-acridine anticancer agents (PAs) containing acyclic (1 and 3) and heterocyclic (R)-3-aminopiperidine (2) and 2-iminopyrrolidine (4) based linker moieties were studied. Similar to 1, rigidified 2 shows a strong positive correlation between potency and SLC47A1 (multidrug and toxin extrusion protein 1, MATE1) gene expression levels across the NCI-60 panel of cancer cell lines. All derivatives show nanomolar activity in HepG2 (liver), NCI-H460 (lung), and MDA-MB-436 (breast), which express high levels of SLC47A1 (Cancer Cell Line Encyclopedia, CCLE). The PAs are up to 350-fold more potent than cisplatin. In a MATE1 inhibition assay, a significant reduction in activity is observed in the three cancer cell lines (4000-fold lower for HepG2). Molecular docking experiments provide insight into the compatibility of the structurally diverse set of PAs with MATE1-mediated transport. MATE1 is a predictive marker and actionable target that sensitizes cancer cells regardless of the tissue of origin to PAs.
Collapse
Affiliation(s)
- Shenjie Zhang
- Department
of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Haoqing Wu
- Department
of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Cynthia S. Day
- Department
of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Ulrich Bierbach
- Department
of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| |
Collapse
|
3
|
Jing R, Wang Q, Chen L, Li G, Li R, Zhang L, Zhang H, Zuo B, Seow Y, Qiao X, Wang B, Xu J, Chen J, Song T, Yin H. Functional imaging and targeted drug delivery in mice and patient tumors with a cell nucleolus-localizing and tumor-targeting peptide. Biomaterials 2022; 289:121758. [DOI: 10.1016/j.biomaterials.2022.121758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/31/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
|
4
|
Wu H, Bierbach U. Chemosensitivity-Gene Expression Correlations and Functional Enrichment Analysis Provide Insight into the Mechanism of Action of a Platinum-Acridine Anticancer Agent. ChemMedChem 2022; 17:e202200331. [PMID: 35902361 DOI: 10.1002/cmdc.202200331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/28/2022] [Indexed: 11/07/2022]
Abstract
NCI-60 growth inhibition and gene expression profiles were analyzed using Pearson correlation and functional enrichment computational tools to demonstrate critical mechanistic differences between a nucleolus-targeting platinum-acridine anticancer agent (PA) and other DNA-directed chemotherapies. The results support prior experimental data and are consistent with DNA being a major target of the hybrid agent based on the negative correlations observed between its potency and expression levels of genes implicated in DNA double-strand break (DSB) repair. Gene ontology terms related to RNA processing, including ribosome biogenesis, are also negatively enriched, suggesting a mechanism by which these processes render cancer cells more resistant to the highly cytotoxic agent. The opposite trend is observed for oxaliplatin and other DNA-targeted drugs. Significant functional interactions exist between genes/gene products involved in ribosome biogenesis and DSB repair, including the ribosomal protein (RPL5)-MDM2-p53 surveillance pathway, as a response to the nucleolar stress produced by PAs.
Collapse
Affiliation(s)
- Haoqing Wu
- Wake Forest University, Chemistry, UNITED STATES
| | - Ulrich Bierbach
- Wake Forest University, Chemistry, 1834 Wake Forest Rd, 27109, Winston-Salem, UNITED STATES
| |
Collapse
|
5
|
Targeting Ribosome Biogenesis in Cancer: Lessons Learned and Way Forward. Cancers (Basel) 2022; 14:cancers14092126. [PMID: 35565259 PMCID: PMC9100539 DOI: 10.3390/cancers14092126] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Cells need to produce ribosomes to sustain continuous proliferation and expand in numbers, a feature that is even more prominent in uncontrollably proliferating cancer cells. Certain cancer cell types are expected to depend more on ribosome biogenesis based on their genetic background, and this potential vulnerability can be exploited in designing effective, targeted cancer therapies. This review provides information on anti-cancer molecules that target the ribosome biogenesis machinery and indicates avenues for future research. Abstract Rapid growth and unrestrained proliferation is a hallmark of many cancers. To accomplish this, cancer cells re-wire and increase their biosynthetic and metabolic activities, including ribosome biogenesis (RiBi), a complex, highly energy-consuming process. Several chemotherapeutic agents used in the clinic impair this process by interfering with the transcription of ribosomal RNA (rRNA) in the nucleolus through the blockade of RNA polymerase I or by limiting the nucleotide building blocks of RNA, thereby ultimately preventing the synthesis of new ribosomes. Perturbations in RiBi activate nucleolar stress response pathways, including those controlled by p53. While compounds such as actinomycin D and oxaliplatin effectively disrupt RiBi, there is an ongoing effort to improve the specificity further and find new potent RiBi-targeting compounds with improved pharmacological characteristics. A few recently identified inhibitors have also become popular as research tools, facilitating our advances in understanding RiBi. Here we provide a comprehensive overview of the various compounds targeting RiBi, their mechanism of action, and potential use in cancer therapy. We discuss screening strategies, drug repurposing, and common problems with compound specificity and mechanisms of action. Finally, emerging paths to discovery and avenues for the development of potential biomarkers predictive of therapeutic outcomes across cancer subtypes are also presented.
Collapse
|
6
|
Xue H, Lu J, Yan H, Huang J, Luo HB, Wong MS, Gao Y, Zhang X, Guo L. γ-Glutamyl transpeptidase-activated indole-quinolinium based cyanine as a fluorescence turn-on nucleolus-targeting probe for cancer cell detection and inhibition. Talanta 2022; 237:122898. [PMID: 34736714 DOI: 10.1016/j.talanta.2021.122898] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/10/2021] [Accepted: 09/19/2021] [Indexed: 01/02/2023]
Abstract
A nucleolus as a prominent sub-nuclear, membraneless organelle plays a crucial role in ribosome biogenesis, which is in the major metabolic demand in a proliferating cell, especially in aggressive malignancies. We develop a γ-glutamyltranspeptidase (GGT)-activatable indole-quinolinium (QI) based cyanine consisting of a novel tripeptide fragment (Pro-Gly-Glu), namely QI-PG-Glu as a turn-on red fluorescent probe for the rapid detection of GGT-overexpressed A549 cancer cells in vivo. QI-PG-Glu can be triggered by GGT to rapidly release an activated fluorophore, namely HQI, in two steps including the cleavage of the γ-glutamyl group recognized by GGT and the rapid self-driven cyclization of the Pro-Gly linker. HQI exhibits dramatically red fluorescence upon binding to rRNA for imaging of nucleolus in live A549 cells. HQI also intervenes in rRNA biogenesis by declining the RNA Polymerase I transcription, thus resulting in cell apoptosis via a p53 dependent signaling pathway. Our findings may provide an alternative avenue to develop multifunctional cancer cell-specific nucleolus-targeting fluorescent probes with potential anti-cancer effects.
Collapse
Affiliation(s)
- Huanxin Xue
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiaye Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hongwei Yan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ju Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Man Shing Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yuqi Gao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Xiaolei Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Lei Guo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Green AT, Pickard AJ, Li R, MacKerell AD, Bierbach U, Cho SS. Computational and Experimental Characterization of rDNA and rRNA G-Quadruplexes. J Phys Chem B 2022; 126:609-619. [PMID: 35026949 DOI: 10.1021/acs.jpcb.1c08340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA G-quadruplexes in human telomeres and gene promoters are being extensively studied for their role in controlling the growth of cancer cells. G-quadruplexes have been unambiguously shown to exist both in vitro and in vivo, including in the guanine (G)-rich DNA genes encoding pre-ribosomal RNA (pre-rRNA), which is transcribed in the cell's nucleolus. Recent studies strongly suggest that these DNA sequences ("rDNA"), and the transcribed rRNA, are a potential anticancer target through the inhibition of RNA polymerase I (Pol I) in ribosome biogenesis, but the structures of ribosomal G-quadruplexes at atomic resolution are unknown and very little biophysical characterization has been performed on them to date. In the present study, circular dichroism (CD) spectroscopy is used to show that two putative rDNA G-quadruplex sequences, NUC 19P and NUC 23P and their counterpart rRNAs, predominantly adopt parallel topologies, reminiscent of the analogous telomeric quadruplex structures. Based on this information, we modeled parallel topology atomistic structures of the putative ribosomal G-quadruplexes. We then validated and refined the modeled ribosomal G-quadruplex structures using all-atom molecular dynamics (MD) simulations with the CHARMM36 force field in the presence and absence of stabilizing K+. Motivated by preliminary MD simulations of the telomeric parallel G-quadruplex (TEL 24P) in which the K+ ion is expelled, we used updated CHARMM36 force field K+ parameters that were optimized, targeting the data from quantum mechanical calculations and the polarizable Drude model force field. In subsequent MD simulations with optimized CHARMM36 parameters, the K+ ions are predominantly in the G-quadruplex channel and the rDNA G-quadruplexes have more well-defined, predominantly parallel-topology structures as compared to rRNA. In addition, NUC 19P is more structured than NUC 23P, which contains extended loops. Results from this study set the structural foundation for understanding G-quadruplex functions and the design of novel chemotherapeutics against these nucleolar targets and can be readily extended to other DNA and RNA G-quadruplexes.
Collapse
Affiliation(s)
- Adam T Green
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Amanda J Pickard
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Rongzhong Li
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States.,Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Ulrich Bierbach
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Samuel S Cho
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, United States.,Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
8
|
Kammerud SC, Metge BJ, Elhamamsy AR, Weeks SE, Alsheikh HA, Mattheyses AL, Shevde LA, Samant RS. Novel role of the dietary flavonoid fisetin in suppressing rRNA biogenesis. J Transl Med 2021; 101:1439-1448. [PMID: 34267320 PMCID: PMC8510891 DOI: 10.1038/s41374-021-00642-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
The nucleolus of a cell is a critical cellular compartment that is responsible for ribosome biogenesis and plays a central role in tumor progression. Fisetin, a nutraceutical, is a naturally occurring flavonol from the flavonoid group of polyphenols that has anti-cancer effects. Fisetin negatively impacts several signaling pathways that support tumor progression. However, effect of fisetin on the nucleolus and its functions were unknown. We observed that fisetin is able to physically enter the nucleolus. In the nucleolus, RNA polymerase I (RNA Pol I) mediates the biogenesis of ribosomal RNA. Thus, we investigated the impacts of fisetin on the nucleolus. We observed that breast tumor cells treated with fisetin show a 20-30% decreased nucleolar abundance per cell and a 30-60% downregulation of RNA Pol I transcription activity, as well as a 50-70% reduction in nascent rRNA synthesis, depending on the cell line. Our studies show that fisetin negatively influences MAPK/ERK pathway to impair RNA Pol I activity and rRNA biogenesis. Functionally, we demonstrate that fisetin acts synergistically (CI = 0.4) with RNA Pol I inhibitor, BMH-21 and shows a noteworthy negative impact (60% decrease) on lung colonization of breast cancer cells. Overall, our findings highlight the potential of ribosomal RNA (rRNA) biogenesis as a target for secondary prevention and possible treatment of metastatic disease.
Collapse
Affiliation(s)
- Sarah C Kammerud
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amr R Elhamamsy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shannon E Weeks
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Heba A Alsheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Birmingham VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
9
|
Qiao X, Gao YY, Zheng LX, Ding XJ, Xu LW, Hu JJ, Gao WZ, Xu JY. Targeting ROS-AMPK pathway by multiaction Platinum(IV) prodrugs containing hypolipidemic drug bezafibrate. Eur J Med Chem 2021; 223:113730. [PMID: 34388483 DOI: 10.1016/j.ejmech.2021.113730] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022]
Abstract
Alterations in lipid metabolism, commonly disregarded in the past, have been accepted as a hallmark for cancer. Exploring cancer therapeutics that interrupt the lipid metabolic pathways by monotherapy or combination with conventional chemotherapy or immunotherapy is of great importance. Here we modified cisplatin with an FDA-approved hypolipidemic drug, bezafibrate (BEZ), via the well-established Pt(IV) strategy, affording two multi-functional Pt(IV) anticancer agents cis,cis,trans-[Pt(NH3)2Cl2(BEZ)(OH)] (CB) and cis,cis,trans-[Pt(NH3)2Cl2(BEZ)2] (CP) (BEZ = bezafibrate). The Pt(IV) prodrug CB exhibited an enhanced anticancer activity up to 187-fold greater than the clinical anticancer drug cisplatin. Both CB and CP had less toxicity to normal cells, showing higher efficacies and superior therapeutic indexes than cisplatin. Mechanism studies revealed that the bezafibrate-conjugated Pt(IV) complex CB, as a representative, could massively accumulate in A549 cells and genomic DNA, induce DNA damage, elevate intracellular ROS levels, perturb mitochondrial transmembrane potentials, activate the cellular metabolic sensor AMPK, and result in profound proliferation inhibition and apoptosis. Further cellular data also provided evidence that phosphorylation of AMPK, as a metabolic sensor, could suppress the downstream HMGB1, NF-κB, and VEGFA, which may contribute to the inhibition of angiogenesis and metastasis. Our study suggests that the antitumor action of CB and CP mechanistically distinct from the conventional platinum drugs and that functionalizing platinum-based agents with lipid-modulating agents may represent a novel practical strategy for cancer treatment.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yu-Yang Gao
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Li-Xia Zheng
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xiao-Jing Ding
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Ling-Wen Xu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Juan-Juan Hu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Wei-Zhen Gao
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China; Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
10
|
He H, Chen X, Feng Z, Liu L, Wang Q, Bi S. Nanoscopic Imaging of Nucleolar Stress Enabled by Protein-Mimicking Carbon Dots. NANO LETTERS 2021; 21:5689-5696. [PMID: 34181434 DOI: 10.1021/acs.nanolett.1c01420] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The nucleolus is a central hub for coordinating cellular stress responses during cancer development and treatment. Accurate identification of nucleolar stress response is crucially desired for nucleolus-based diagnostics and therapeutics but technically challenging due to the need to address the ultrastructural analysis. Here, we report a protein-like CD with the integration of fluorescent blinking domains and RNA-binding motifs, which offers the ability to perform enhanced super-resolution imaging of the nucleolar ultrastructure. This image allows extraction of multidimensional information from the nucleolus for accurate distinguishment of different cells from the same cell types. Furthermore, we demonstrate for the first time this CD-depicted nucleolar ultrastructure as a sensitive hallmark to identify and discriminate subtle responses to various stressors as well as to afford RNA-related information that has been inaccessible by conventional immunofluorescence methods. This protein-mimicking CD could become a broadly useful probe for nucleolar stress studies in cell diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hua He
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoliang Chen
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhenzhen Feng
- Technical Center of Qingdao Customs District, Qingdao 266500, China
| | - Lihua Liu
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qian Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Simin Bi
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
11
|
Huang S, Zhu Z, Jia B, Zhang W, Song J. Design of acid-activated cell-penetrating peptides with nuclear localization capacity for anticancer drug delivery. J Pept Sci 2021; 27:e3354. [PMID: 34101293 DOI: 10.1002/psc.3354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/27/2023]
Abstract
Camptothecin (CPT), a DNA-toxin drug, exerts anticancer activity by inhibiting topoisomerase I. Targeted delivery of CPT into the cancer cell nucleus is important for enhancing its therapeutic efficiency. In this study, a new type of acid-activated cell-penetrating peptide (CPP) with nuclear localization capacity was constructed by conjugating six histidine residues and a hydrophobic peptide sequence, PFVYLI, to the nuclear localization sequence (NLS). Our results indicated that HNLS-3 displayed significant pH-dependent cellular uptake efficiency, endosomal escape ability, and nuclear localization activity. More importantly, the HNLS-3-CPT conjugate showed obviously enhanced cytotoxicity and selectivity compared with CPT. Taken together, our findings provide an effective approach to develop efficient CPPs with both cancer- and nucleus-targeting properties.
Collapse
Affiliation(s)
- Sujie Huang
- School of Life Sciences, Lanzhou University, Lanzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zhongwen Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bo Jia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingjing Song
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Sutton EC, DeRose VJ. Early nucleolar responses differentiate mechanisms of cell death induced by oxaliplatin and cisplatin. J Biol Chem 2021; 296:100633. [PMID: 33819479 PMCID: PMC8131322 DOI: 10.1016/j.jbc.2021.100633] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Recent reports provide evidence that the platinum chemotherapeutic oxaliplatin causes cell death via ribosome biogenesis stress, while cisplatin causes cell death via the DNA damage response (DDR). Underlying differences in mechanisms that might initiate disparate routes to cell death by these two broadly used platinum compounds have not yet been carefully explored. Additionally, prior studies had demonstrated that cisplatin can also inhibit ribosome biogenesis. Therefore, we sought to directly compare the initial influences of oxaliplatin and cisplatin on nucleolar processes and on the DDR. Using pulse-chase experiments, we found that at equivalent doses, oxaliplatin but not cisplatin significantly inhibited ribosomal RNA (rRNA) synthesis by Pol I, but neither compound affected rRNA processing. Inhibition of rRNA synthesis occurred as early as 90 min after oxaliplatin treatment in A549 cells, concurrent with the initial redistribution of the nucleolar protein nucleophosmin (NPM1). We observed that the nucleolar protein fibrillarin began to redistribute by 6 h after oxaliplatin treatment and formed canonical nucleolar caps by 24 h. In cisplatin-treated cells, DNA damage, as measured by γH2AX immunofluorescence, was more extensive, whereas nucleolar organization was unaffected. Taken together, our results demonstrate that oxaliplatin causes early nucleolar disruption via inhibition of rRNA synthesis accompanied by NPM1 relocalization and subsequently causes extensive nucleolar reorganization, while cisplatin causes early DNA damage without significant nucleolar disruption. These data support a model in which, at clinically relevant doses, cisplatin kills cells via the canonical DDR, and oxaliplatin kills cells via ribosome biogenesis stress, specifically via rapid inhibition of rRNA synthesis.
Collapse
Affiliation(s)
- Emily C Sutton
- Department of Biology, University of Oregon, Eugene, Oregon, USA; Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Victoria J DeRose
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA; Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
13
|
Legin AA, Schintlmeister A, Sommerfeld NS, Eckhard M, Theiner S, Reipert S, Strohhofer D, Jakupec MA, Galanski MS, Wagner M, Keppler BK. Nano-scale imaging of dual stable isotope labeled oxaliplatin in human colon cancer cells reveals the nucleolus as a putative node for therapeutic effect. NANOSCALE ADVANCES 2021; 3:249-262. [PMID: 36131874 PMCID: PMC9419577 DOI: 10.1039/d0na00685h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/11/2020] [Indexed: 05/04/2023]
Abstract
Oxaliplatin shows a superior clinical activity in colorectal cancer compared to cisplatin. Nevertheless, the knowledge about its cellular distribution and the mechanisms responsible for the different range of oxaliplatin-responsive tumors is far from complete. In this study, we combined highly sensitive element specific and isotope selective imaging by nanometer-scale secondary ion mass spectrometry (NanoSIMS) with transmission electron microscopy to investigate the subcellular accumulation of oxaliplatin in three human colon cancer cell lines (SW480, HCT116 wt, HCT116 OxR). Oxaliplatin bearing dual stable isotope labeled moieties, i.e. 2H-labeled diaminocyclohexane (DACH) and 13C-labeled oxalate, were applied for comparative analysis of the subcellular distribution patterns of the central metal and the ligands. In all the investigated cell lines, oxaliplatin was found to have a pronounced tendency for cytoplasmic aggregation in single membrane bound organelles, presumably related to various stages of the endocytic pathway. Moreover, nuclear structures, heterochromatin and in particular nucleoli, were affected by platinum-drug exposure. In order to explore the consequences of oxaliplatin resistance, subcellular drug distribution patterns were investigated in a pair of isogenic malignant cell lines with distinct levels of drug sensitivity (HCT116 wt and HCT116 OxR, the latter with acquired resistance to oxaliplatin). The subcellular platinum distribution was found to be similar in both cell lines, with only slightly higher accumulation in the sensitive HCT116 wt cells which is inconsistent with the resistance factor of more than 20-fold. Instead, the isotopic analysis revealed a disproportionally high accumulation of the oxalate ligand in the resistant cell line.
Collapse
Affiliation(s)
- Anton A Legin
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
- Research Cluster "Translational Cancer Therapy Research", University of Vienna A-1090 Vienna Austria
- Research Network "Chemistry Meets Microbiology and Environmental Systems Science", University of Vienna A-1090 Vienna Austria
| | - Arno Schintlmeister
- Research Network "Chemistry Meets Microbiology and Environmental Systems Science", University of Vienna A-1090 Vienna Austria
- Division of Microbial Ecology, Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna A-1090 Vienna Austria
| | - Nadine S Sommerfeld
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
| | - Margret Eckhard
- Core Facility Cell Imaging and Ultrastructural Research, University of Vienna A-1090 Vienna Austria
| | - Sarah Theiner
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
- Research Cluster "Translational Cancer Therapy Research", University of Vienna A-1090 Vienna Austria
| | - Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructural Research, University of Vienna A-1090 Vienna Austria
| | - Daniel Strohhofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
- Research Cluster "Translational Cancer Therapy Research", University of Vienna A-1090 Vienna Austria
- Research Network "Chemistry Meets Microbiology and Environmental Systems Science", University of Vienna A-1090 Vienna Austria
| | - Mathea S Galanski
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
| | - Michael Wagner
- Research Network "Chemistry Meets Microbiology and Environmental Systems Science", University of Vienna A-1090 Vienna Austria
- Division of Microbial Ecology, Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Centre for Microbiology and Environmental Systems Science, University of Vienna A-1090 Vienna Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna A-1090 Vienna Austria +43 1 4277 852601 +43 1 4277 52610
- Research Cluster "Translational Cancer Therapy Research", University of Vienna A-1090 Vienna Austria
- Research Network "Chemistry Meets Microbiology and Environmental Systems Science", University of Vienna A-1090 Vienna Austria
| |
Collapse
|
14
|
Mayank, Rani R, Singh A, Garg N, Kaur N, Singh N. Mitochondria- and nucleolus-targeted copper(i) complexes with pyrazole-linked triphenylphosphine moieties for live cell imaging. Analyst 2020; 145:83-90. [PMID: 31710323 DOI: 10.1039/c9an01513b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The labelling and imaging of mitochondria and nucleolus have attracted great attention because of the involvement of these cellular organelles in critical cellular activities. Therefore, a large number of mitochondria- or nucleolus-labelling probes have been developed throughout the world. However, in the current study, we successfully developed two pyrazole-based, copper-linked triphenylphosphine-coupled emissive metallo-complexes (C1 and C2) for the simultaneous visualization of mitochondria and nucleolus in a single run. These complexes were very inexpensive and could be synthesized by a simple one-pot multicomponent reaction scheme. The complexes were very specific, and only a small concentration of 5 μM was found to be sufficient to probe both the organelles efficiently. Additionally, even under a shorter incubation period (half hour), the fluorescence intensity from the cells was appreciable. Also, both the compounds were found to be photostable when torched with 10% of a 100 mW laser for up to 10 min. All these results indicate that both the complexes may contribute towards the future development of cell imaging tools. To the best of our knowledge, this is the first report on the development of multifunctional live cell imaging tools for simultaneous mitochondria and nucleolus imaging and within the shortest incubation time of about 30 minutes.
Collapse
Affiliation(s)
- Mayank
- Department of Chemistry, Indian Institute of Technology Ropar, India.
| | - Richa Rani
- Department of Chemistry, Indian Institute of Technology Ropar, India.
| | - Ashutosh Singh
- School of Basic Sciences, Indian Institute of Technology Mandi, India.
| | - Neha Garg
- School of Basic Sciences, Indian Institute of Technology Mandi, India.
| | - Navneet Kaur
- Department of Chemistry, Punjab University Chandigarh, India.
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, India.
| |
Collapse
|
15
|
Chen Y, Orr AA, Tao K, Wang Z, Ruggiero A, Shimon LJW, Schnaider L, Goodall A, Rencus-Lazar S, Gilead S, Slutsky I, Tamamis P, Tan Z, Gazit E. High-Efficiency Fluorescence through Bioinspired Supramolecular Self-Assembly. ACS NANO 2020; 14:2798-2807. [PMID: 32013408 PMCID: PMC7098056 DOI: 10.1021/acsnano.9b10024] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/04/2020] [Indexed: 05/23/2023]
Abstract
Peptide self-assembly has attracted extensive interest in the field of eco-friendly optoelectronics and bioimaging due to its inherent biocompatibility, intrinsic fluorescence, and flexible modulation. However, the practical application of such materials was hindered by the relatively low quantum yield of such assemblies. Here, inspired by the molecular structure of BFPms1, we explored the "self-assembly locking strategy" to design and manipulate the assembly of metal-stabilized cyclic(l-histidine-d-histidine) into peptide material with the high-fluorescence efficiency. We used this bioorganic material as an emissive layer in photo- and electroluminescent prototypes, demonstrating the feasibility of utilizing self-assembling peptides to fabricate a biointegrated microchip that incorporates eco-friendly and tailored optoelectronic properties. We further employed a "self-encapsulation" strategy for constructing an advanced nanocarrier with integrated in situ monitoring. The strategy of the supramolecular capture of functional components exemplifies the use of bioinspired organic chemistry to provide frontiers of smart materials, potentially allowing a better interface between sustainable optoelectronics and biomedical applications.
Collapse
Affiliation(s)
- Yu Chen
- Department
of Molecular Microbiology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Asuka A. Orr
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Kai Tao
- Department
of Molecular Microbiology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Zhibin Wang
- State
Key Laboratory of Alternate Electrical Power System with Renewable
Energy Sources, North China Electric Power
University, Beijing 102206, China
| | - Antonella Ruggiero
- Department
of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv
University, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Linda J. W. Shimon
- Department
of Chemical Research Support, Weizmann Institute
of Science, 76100, Rehovot, Israel
| | - Lee Schnaider
- Department
of Molecular Microbiology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Alicia Goodall
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Sigal Rencus-Lazar
- Department
of Molecular Microbiology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Sharon Gilead
- Department
of Molecular Microbiology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Inna Slutsky
- Department
of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv
University, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Phanourios Tamamis
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Zhan’ao Tan
- Beijing Advanced
Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ehud Gazit
- Department
of Molecular Microbiology and Biotechnology, George S. Wise Faculty
of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|
16
|
Sutton EC, McDevitt CE, Prochnau JY, Yglesias MV, Mroz AM, Yang MC, Cunningham RM, Hendon CH, DeRose VJ. Nucleolar Stress Induction by Oxaliplatin and Derivatives. J Am Chem Soc 2019; 141:18411-18415. [PMID: 31670961 DOI: 10.1021/jacs.9b10319] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platinum(II) compounds are a critical class of chemotherapeutic agents. Recent studies have highlighted the ability of a subset of Pt(II) compounds, including oxaliplatin but not cisplatin, to induce cytotoxicity via nucleolar stress rather than a canonical DNA damage response. In this study, influential properties of Pt(II) compounds were investigated using redistribution of nucleophosmin (NPM1) as a marker of nucleolar stress. NPM1 assays were coupled to calculated and measured properties such as compound size and hydrophobicity. The oxalate leaving group of oxaliplatin is not required for NPM1 redistribution. Interestingly, although changes in diaminocyclohexane (DACH) ligand ring size and aromaticity can be tolerated, ring orientation appears important for stress induction. The specificity of ligand requirements provides insight into the striking ability of only certain Pt(II) compounds to activate nucleolar processes.
Collapse
|
17
|
Michel J, Nolin F, Wortham L, Lalun N, Tchelidze P, Banchet V, Terryn C, Ploton D. Various Nucleolar Stress Inducers Result in Highly Distinct Changes in Water, Dry Mass and Elemental Content in Cancerous Cell Compartments: Investigation Using a Nano-Analytical Approach. Nanotheranostics 2019; 3:179-195. [PMID: 31183313 PMCID: PMC6536780 DOI: 10.7150/ntno.31878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/20/2019] [Indexed: 01/10/2023] Open
Abstract
Rationale: Numerous chemotherapeutic drugs that affect ribosome biogenesis in the nucleolus induce nucleolar stress. Improving our understanding of the effects of these drugs will require uncovering and comparing their impact on several biophysical parameters of the major cell compartments. Here, we quantified the water content and dry mass of cancerous cells treated with CX-5461, DRB or DAM to calculate macromolecular crowding and the volume occupied by free water, as well as elemental content. Methods: HeLa-H2B-GFP cells were treated with CX-5461, DRB or DAM. Water content and dry mass were measured in numerous regions of interest of ultrathin cryo-sections by quantitative scanning transmission electron microscope dark-field imaging and the elements quantified by energy dispersive X-ray spectrometry. The data were used to calculate macromolecular crowding and the volume occupied by free water in all cell compartments of control and treated cells. Hydrophobic and unfolded proteins were revealed by 8-Anilinonaphtalene-1-sulfonic acid (ANS) staining and imaging by two-photon microscopy. Immunolabeling of UBF, pNBS1 and pNF-κB was carried out and the images acquired with a confocal microscope for 3D imaging to address whether the localization of these proteins changes in treated cells. Results: Treatment with CX-5461, DRB or DAM induced completely different changes in macromolecular crowding and elemental content. Macromolecular crowding and elemental content were much higher in CX-5461-treated, moderately higher in DRB-treated, and much lower in DAM-treated cells than control cells. None of the drugs alone induced nucleolar ANS staining but it was induced by heat-shock of control cells and cells previously treated with DAM. UBF and pNBS1 were systematically co-localized in the nucleolus of CX-5461- and DAM-treated cells. pNF-κB only localized to the nucleolar caps of pre-apoptotic DAM-treated cells. Conclusion: We directly quantified water and ion content in cell compartments using cryo-correlative electron microscopy. We show that different chemotherapeutic nucleolar stress inducers result in distinctive, thus far-unrecognized changes in macromolecular crowding and elemental content which are known to modify cell metabolism. Moreover we were able to correlate these changes to the sensitivity of treated cells to heat-shock and the behavior of nucleolar pNBS1 and pNF-κB.
Collapse
Affiliation(s)
- Jean Michel
- UMR-S 1250 INSERM, Université de Reims Champagne Ardenne
| | | | - Laurence Wortham
- Platform of Cell and Tissue Imaging (PICT), Université de Reims Champagne Ardenne
| | - Nathalie Lalun
- UMR-S 1250 INSERM, Université de Reims Champagne Ardenne
| | - Pavel Tchelidze
- Faculty of Exact and Life Sciences, Department of Morphology, Tbilisi State University, Tbilisi, Georgia
| | | | - Christine Terryn
- Platform of Cell and Tissue Imaging (PICT), Université de Reims Champagne Ardenne
| | | |
Collapse
|
18
|
Song XQ, Wang ZG, Wang Y, Huang YY, Sun YX, Ouyang Y, Xie CZ, Xu JY. Syntheses, characterization, DNA/HSA binding ability and antitumor activities of a family of isostructural binuclear lanthanide complexes containing hydrazine Schiff base. J Biomol Struct Dyn 2019; 38:733-743. [DOI: 10.1080/07391102.2019.1587511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xue-Qing Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Zhi-Gang Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Yang Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Yu-Ying Huang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Yu-Xuan Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Yan Ouyang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, P. R. China
| | - Cheng-Zhi Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, P. R. China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| |
Collapse
|
19
|
Ribosome biogenesis: An emerging druggable pathway for cancer therapeutics. Biochem Pharmacol 2018; 159:74-81. [PMID: 30468711 DOI: 10.1016/j.bcp.2018.11.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 01/05/2023]
Abstract
Ribosomes are nanomachines essential for protein production in all living cells. Ribosome synthesis increases in cancer cells to cope with a rise in protein synthesis and sustain unrestricted growth. This increase in ribosome biogenesis is reflected by severe morphological alterations of the nucleolus, the cell compartment where the initial steps of ribosome biogenesis take place. Ribosome biogenesis has recently emerged as an effective target in cancer therapy, and several compounds that inhibit ribosome production or function, killing preferentially cancer cells, have entered clinical trials. Recent research indicates that cells express heterogeneous populations of ribosomes and that the composition of ribosomes may play a key role in tumorigenesis, exposing novel therapeutic opportunities. Here, we review recent data demonstrating that ribosome biogenesis is a promising druggable pathway in cancer therapy, and discuss future research perspectives.
Collapse
|
20
|
Zhang ZL, Zhao CL, Chen Q, Xu K, Qiao X, Xu JY. Targeting RNA polymerase I transcription machinery in cancer cells by a novel monofunctional platinum-based agent. Eur J Med Chem 2018; 155:434-444. [PMID: 29908438 DOI: 10.1016/j.ejmech.2018.05.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/03/2018] [Accepted: 05/28/2018] [Indexed: 01/04/2023]
Abstract
Aberrant ribosome biogenesis and enlarged nucleoli have long been used by pathologists as a marker of aggressive tumors. Suppression of RNA polymerase I (Pol I) transcription machinery within the nucleolus could be a direct way to trigger the nucleolar stress and to inhibit the rapid proliferation of cancer cells. Here we modified cisplatin with an analogue of the selective inhibitor of RNA polymerase I-mediated transcription BMH-21 to develop a novel platinum-based Pol I selective inhibitor. We show that this novel monofunctional platinum-based agent, P1-B1, had enhanced antitumor activity of up to 17-fold greater than the clinical drug cisplatin in cisplatin-resistant non-small cell lung cancer cells. P1-B1 also had significantly lower cytotoxicity compared to cisplatin as well as the Pol I selective inhibitor BMH-21 in MRC-5 normal lung fibroblast cells, and the selectivity index (SI) greatly increases. Mechanistic investigations revealed that P1-B1 displayed significant nucleolar accumulation, selectively inhibited Pol I transcription, and induced nucleolar stress, leading to S-phase arrest and apoptosis. Our results suggest that the effects of P1-B1 are mechanistically distinct from those of conventional platinum agents and the recently described non-classical platinum compounds and that functionalizing platinum-based agents with directly Pol I transcription inhibition properties may represent an improved modality for cancer treatment.
Collapse
Affiliation(s)
- Zhen-Lei Zhang
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Chun-Lai Zhao
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Qian Chen
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Kai Xu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China.
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China.
| |
Collapse
|
21
|
Chao XJ, Wang KN, Sun LL, Cao Q, Ke ZF, Cao DX, Mao ZW. Cationic Organochalcogen with Monomer/Excimer Emissions for Dual-Color Live Cell Imaging and Cell Damage Diagnosis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13264-13273. [PMID: 29616788 DOI: 10.1021/acsami.7b12521] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Studies on the development of fluorescent organic molecules with different emission colors for imaging of organelles and their biomedical application are gaining lots of focus recently. Here, we report two cationic organochalcogens 1 and 2, both of which exhibit very weak green emission (Φ1 = 0.12%; Φ2 = 0.09%) in dilute solution as monomers, but remarkably enhanced green emission upon interaction with nucleic acids and large red-shifted emission in aggregate state by the formation of excimers at high concentration. More interestingly, the monomer emission and excimer-like emission can be used for dual color imaging of different organelles. Upon passively diffusing into cells, both probes selectively stain nucleoli with strong green emission upon 488 nm excitation, whereas upon 405 nm excitation, a completely different stain pattern by staining lysosomes (for 1) or mitochondria (for 2) with distinct red emission is observed because of the highly concentrated accumulation in these organelles. Studies on the mechanism of the accumulation in lysosomes (for 1) or mitochondria (for 2) found that the accumulations of the probes are dependent on the membrane permeabilization, which make the probes have great potential in diagnosing cell damage by sensing lysosomal or mitochondrial membrane permeabilization. The study is demonstrative, for the first time, of two cationic molecules for dual-color imaging nucleoli and lysosomes (1)/mitochondria (2) simultaneously in live cell based on monomer and excimer-like emission, respectively, and more importantly, for diagnosing cell damage.
Collapse
Affiliation(s)
- Xi-Juan Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Kang-Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Li-Li Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Zhuo-Feng Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Du-Xia Cao
- School of Materials Science and Engineering , University of Jinan , Jinan 250022 Shandong , China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
- College of Materials and Energy , South China Agricultural University , Guangzhou 510642 , China
| |
Collapse
|
22
|
Russo A, Maiolino S, Pagliara V, Ungaro F, Tatangelo F, Leone A, Scalia G, Budillon A, Quaglia F, Russo G. Enhancement of 5-FU sensitivity by the proapoptotic rpL3 gene in p53 null colon cancer cells through combined polymer nanoparticles. Oncotarget 2018; 7:79670-79687. [PMID: 27835895 PMCID: PMC5346744 DOI: 10.18632/oncotarget.13216] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/14/2016] [Indexed: 01/09/2023] Open
Abstract
Colon cancer is one of the leading causes of cancer-related death worldwide and the therapy with 5-fluorouracil (5-FU) is mainly limited due to resistance. Recently, we have demonstrated that nucleolar stress upon 5-FU treatment leads to the activation of ribosome-free rpL3 (L3) as proapoptotic factor. In this study, we analyzed L3 expression profile in colon cancer tissues and demonstrated that L3 mRNA amount decreased with malignant progression and the intensity of its expression was inversely related to tumor grade and Bcl-2/Bax ratio. With the aim to develop a combined therapy of 5-FU plus plasmid encoding L3 (pL3), we firstly assessed the potentiation of the cytotoxic effect of 5-FU on colon cancer cells by L3. Next, 10 μM 5-FU and 2 μg of pL3 were encapsulated in biocompatible nanoparticles (NPs) chemically conjugated with HA to achieve active tumor-targeting ability in CD44 overexpressing cancer cells. We showed the specific intracellular accumulation of NPs in cells and a sustained release for 5-FU and L3. Analysis of cytotoxicity and apoptotic induction potential of combined NPs clearly showed that the 5-FU plus L3 were more effective in inducing apoptosis than 5-FU or L3 alone. Furthermore, we show that the cancer-specific chemosensitizer effect of combined NPs may be dependent on L3 ability to affect 5-FU efflux by controlling P-gp (P-glycoprotein) expression. These results led us to propose a novel combined therapy with the use of 5-FU plus L3 in order to establish individualized therapy by examining L3 profiles in tumors to yield a better clinical outcomes.
Collapse
Affiliation(s)
- Annapina Russo
- Laboratory of Biochemistry, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Sara Maiolino
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Valentina Pagliara
- Laboratory of Biochemistry, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Francesca Ungaro
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Fabiana Tatangelo
- Istituto Nazionale Tumori "Fondazione Pascale"-IRCCS, 80131 Napoli, Italy
| | - Alessandra Leone
- Istituto Nazionale Tumori "Fondazione Pascale"-IRCCS, 80131 Napoli, Italy
| | | | - Alfredo Budillon
- Istituto Nazionale Tumori "Fondazione Pascale"-IRCCS, 80131 Napoli, Italy
| | - Fabiana Quaglia
- Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Giulia Russo
- Laboratory of Biochemistry, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| |
Collapse
|
23
|
Gelgor A, Gam Ze Letova C, Yegorov Y, Kalt I, Sarid R. Nucleolar stress enhances lytic reactivation of the Kaposi's sarcoma-associated herpesvirus. Oncotarget 2018; 9:13822-13833. [PMID: 29568397 PMCID: PMC5862618 DOI: 10.18632/oncotarget.24497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/01/2018] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumorigenic virus exhibiting two forms of infection, latent and lytic. Latent infection is abortive and allows the virus to establish lifelong infection, while lytic infection is productive, and is needed for virus dissemination within the host and between hosts. Latent infection may reactivate and switch towards the lytic cycle. This switch is a critical step in the maintenance of long-term infection and for the development of KSHV-related neoplasms. In this study, we examined the effect of nucleolar stress, manifested by failure in ribosome biogenesis or function and often coupled with p53 activation, on lytic reactivation of KSHV. To this end, we induced nucleolar stress by treatment with Actinomycin D, CX-5461 or BMH-21. Treatment with these compounds alone did not induce the lytic cycle. However, enhancement of the lytic cycle by these compounds was evident when combined with expression of the viral protein K-Rta. Further experiments employing combined treatments with Nutlin-3, knock-down of p53 and isogenic p53+/+ and p53-/- cells indicated that the enhancement of lytic reactivation by nucleolar stress does not depend on p53. Thus, our study identifies nucleolar stress as a novel regulator of KSHV infection, which synergizes with K-Rta expression to increase lytic reactivation. This suggests that certain therapeutic interventions, which induce nucleolar stress, may affect the outcome of KSHV infection.
Collapse
Affiliation(s)
- Anastasia Gelgor
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Chen Gam Ze Letova
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Yana Yegorov
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Inna Kalt
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
24
|
Musso L, Mazzini S, Rossini A, Castagnoli L, Scaglioni L, Artali R, Di Nicola M, Zunino F, Dallavalle S. c-MYC G-quadruplex binding by the RNA polymerase I inhibitor BMH-21 and analogues revealed by a combined NMR and biochemical Approach. Biochim Biophys Acta Gen Subj 2017; 1862:615-629. [PMID: 29229300 DOI: 10.1016/j.bbagen.2017.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/03/2017] [Accepted: 12/07/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pyridoquinazolinecarboxamides have been reported as RNA polymerase I inhibitors and represent a novel class of potential antitumor agents. BMH-21, was reported to intercalate with GC-rich rDNA, resulting in nucleolar stress as a primary mechanism of cytotoxicity. METHODS The interaction of BMH-21 and analogues with DNA G-quadruplex structures was studied by NMR and molecular modelling. The cellular response was investigated in a panel of human tumor cell lines and protein expression was examined by Western Blot analysis. RESULTS AND CONCLUSIONS We explored the ability of BMH-21 and its analogue 2 to bind to G-quadruplex present in the c-MYC promoter, by NMR and molecular modelling studies. We provide evidence that both compounds are not typical DNA intercalators but are effective binders of the tested G-quadruplex. The interaction with c-MYC G-quadruplex was reflected in down-regulation of c-Myc expression in human tumor cells. The inhibitory effect was almost complete in lymphoma cells SUDHL4 characterized by overexpression of c-Myc protein. This downregulation reflected an early and persistent modulation of cMyc mRNA. Given the relevance of c-MYC in regulation of ribosome biogenesis, it is conceivable that the inhibition of c-MYC contributes to the perturbation of nuclear functions and RNA polymerase I activity. Similar experiments with CX-5461, another RNA polymerase I transcription inhibitor, indicate the same behaviour in G-quadruplex stabilization. GENERAL SIGNIFICANCE Our results support the hypothesis that BMH-21 and analogue compounds share the same mechanism, i.e. G-quadruplex binding as a primary event of a cascade leading to inhibition of RNA polymerase I and apoptosis.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Benzothiazoles/pharmacology
- Blotting, Western
- Cell Line, Tumor
- DNA, Neoplasm/drug effects
- DNA, Neoplasm/genetics
- Enzyme Inhibitors/pharmacology
- G-Quadruplexes/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, myc/drug effects
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Humans
- Models, Molecular
- Molecular Docking Simulation
- Molecular Structure
- Naphthyridines/pharmacology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Nuclear Magnetic Resonance, Biomolecular
- Organelle Biogenesis
- Promoter Regions, Genetic/drug effects
- RNA Polymerase I/antagonists & inhibitors
- Ribosomes/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Loana Musso
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, via Celoria 2, I-20133 Milano, Italy
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, via Celoria 2, I-20133 Milano, Italy.
| | - Anna Rossini
- Fondazione IRCCS, Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milano, Italy
| | - Lorenzo Castagnoli
- Molecular Targeting Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, via Venezian 1, 20133 Milano, Italy
| | - Leonardo Scaglioni
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, via Celoria 2, I-20133 Milano, Italy
| | - Roberto Artali
- Scientia Advice, di Roberto Artali, 20832 Desio, MB, Italy
| | - Massimo Di Nicola
- Fondazione IRCCS, Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milano, Italy
| | - Franco Zunino
- Fondazione IRCCS, Istituto Nazionale dei Tumori, via Venezian 1, 20133 Milano, Italy
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, via Celoria 2, I-20133 Milano, Italy
| |
Collapse
|
25
|
Emerging Therapeutics to Overcome Chemoresistance in Epithelial Ovarian Cancer: A Mini-Review. Int J Mol Sci 2017; 18:ijms18102171. [PMID: 29057791 PMCID: PMC5666852 DOI: 10.3390/ijms18102171] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer death among women and the most lethal gynecologic malignancy. One of the leading causes of death in high-grade serous ovarian cancer (HGSOC) is chemoresistant disease, which may present as intrinsic or acquired resistance to therapies. Here we discuss some of the known molecular mechanisms of chemoresistance that have been exhaustively investigated in chemoresistant ovarian cancer, including drug efflux pump multidrug resistance protein 1 (MDR1), the epithelial–mesenchymal transition, DNA damage and repair capacity. We also discuss novel therapeutics that may address some of the challenges in bringing approaches that target chemoresistant processes from bench to bedside. Some of these new therapies include novel drug delivery systems, targets that may halt adaptive changes in the tumor, exploitation of tumor mutations that leave cancer cells vulnerable to irreversible damage, and novel drugs that target ribosomal biogenesis, a process that may be uniquely different in cancer versus non-cancerous cells. Each of these approaches, or a combination of them, may provide a greater number of positive outcomes for a broader population of HGSOC patients.
Collapse
|
26
|
Ugrinova I, Petrova M, Chalabi-Dchar M, Bouvet P. Multifaceted Nucleolin Protein and Its Molecular Partners in Oncogenesis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 111:133-164. [PMID: 29459030 DOI: 10.1016/bs.apcsb.2017.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Discovered in 1973, nucleolin is one of the most abundant phosphoproteins of the nucleolus. The ability of nucleolin to be involved in many cellular processes is probably related to its structural organization and its capability to form many different interactions with other proteins. Many functions of nucleolin affect cellular processes involved in oncogenesis-for instance: in ribosome biogenesis; in DNA repair, remodeling, and genome stability; in cell division and cell survival; in chemokine and growth factor signaling pathways; in angiogenesis and lymphangiogenesis; in epithelial-mesenchymal transition; and in stemness. In this review, we will describe the different functions of nucleolin in oncogenesis through its interaction with other proteins.
Collapse
Affiliation(s)
- Iva Ugrinova
- "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Maria Petrova
- "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mounira Chalabi-Dchar
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Lyon, France
| | - Philippe Bouvet
- Université de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
27
|
Lefebvre J, Guetta C, Poyer F, Mahuteau-Betzer F, Teulade-Fichou MP. Copper-Alkyne Complexation Responsible for the Nucleolar Localization of Quadruplex Nucleic Acid Drugs Labeled by Click Reactions. Angew Chem Int Ed Engl 2017; 56:11365-11369. [DOI: 10.1002/anie.201703783] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Joël Lefebvre
- Research unit “Chemistry, Modelling and Imaging for Biology”, CNRS/UMR9187-INSERM/U1196; Institut Curie, Centre de recherché; Campus universitaire Paris-Sud 91405 Orsay France
| | - Corinne Guetta
- Research unit “Chemistry, Modelling and Imaging for Biology”, CNRS/UMR9187-INSERM/U1196; Institut Curie, Centre de recherché; Campus universitaire Paris-Sud 91405 Orsay France
| | - Florent Poyer
- Research unit “Chemistry, Modelling and Imaging for Biology”, CNRS/UMR9187-INSERM/U1196; Institut Curie, Centre de recherché; Campus universitaire Paris-Sud 91405 Orsay France
| | - Florence Mahuteau-Betzer
- Research unit “Chemistry, Modelling and Imaging for Biology”, CNRS/UMR9187-INSERM/U1196; Institut Curie, Centre de recherché; Campus universitaire Paris-Sud 91405 Orsay France
| | - Marie-Paule Teulade-Fichou
- Research unit “Chemistry, Modelling and Imaging for Biology”, CNRS/UMR9187-INSERM/U1196; Institut Curie, Centre de recherché; Campus universitaire Paris-Sud 91405 Orsay France
| |
Collapse
|
28
|
Lefebvre J, Guetta C, Poyer F, Mahuteau-Betzer F, Teulade-Fichou MP. Copper-Alkyne Complexation Responsible for the Nucleolar Localization of Quadruplex Nucleic Acid Drugs Labeled by Click Reactions. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Joël Lefebvre
- Research unit “Chemistry, Modelling and Imaging for Biology”, CNRS/UMR9187-INSERM/U1196; Institut Curie, Centre de recherché; Campus universitaire Paris-Sud 91405 Orsay France
| | - Corinne Guetta
- Research unit “Chemistry, Modelling and Imaging for Biology”, CNRS/UMR9187-INSERM/U1196; Institut Curie, Centre de recherché; Campus universitaire Paris-Sud 91405 Orsay France
| | - Florent Poyer
- Research unit “Chemistry, Modelling and Imaging for Biology”, CNRS/UMR9187-INSERM/U1196; Institut Curie, Centre de recherché; Campus universitaire Paris-Sud 91405 Orsay France
| | - Florence Mahuteau-Betzer
- Research unit “Chemistry, Modelling and Imaging for Biology”, CNRS/UMR9187-INSERM/U1196; Institut Curie, Centre de recherché; Campus universitaire Paris-Sud 91405 Orsay France
| | - Marie-Paule Teulade-Fichou
- Research unit “Chemistry, Modelling and Imaging for Biology”, CNRS/UMR9187-INSERM/U1196; Institut Curie, Centre de recherché; Campus universitaire Paris-Sud 91405 Orsay France
| |
Collapse
|
29
|
Liu F, Jin R, Liu X, Huang H, Wilkinson SC, Zhong D, Khuri FR, Fu H, Marcus A, He Y, Zhou W. LKB1 promotes cell survival by modulating TIF-IA-mediated pre-ribosomal RNA synthesis under uridine downregulated conditions. Oncotarget 2016; 7:2519-31. [PMID: 26506235 PMCID: PMC4823052 DOI: 10.18632/oncotarget.6224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/09/2015] [Indexed: 11/29/2022] Open
Abstract
We analyzed the mechanism underlying 5-aminoimidazole-4-carboxamide riboside (AICAR) mediated apoptosis in LKB1-null non-small cell lung cancer (NSCLC) cells. Metabolic profile analysis revealed depletion of the intracellular pyrimidine pool after AICAR treatment, but uridine was the only nucleotide precursor capable of rescuing this apoptosis, suggesting the involvement of RNA metabolism. Because half of RNA transcription in cancer is for pre-ribosomal RNA (rRNA) synthesis, which is suppressed by over 90% after AICAR treatment, we evaluated the role of TIF-IA-mediated rRNA synthesis. While the depletion of TIF-IA by RNAi alone promoted apoptosis in LKB1-null cells, the overexpression of a wild-type or a S636A TIF-IA mutant, but not a S636D mutant, attenuated AICAR-induced apoptosis. In LKB1-null H157 cells, pre-rRNA synthesis was not suppressed by AICAR when wild-type LKB1 was present, and cellular fractionation analysis indicated that TIF-IA quickly accumulated in the nucleus in the presence of a wild-type LKB1 but not a kinase-dead mutant. Furthermore, ectopic expression of LKB1 was capable of attenuating AICAR-induced death in AMPK-null cells. Because LKB1 promotes cell survival by modulating TIF-IA-mediated pre-rRNA synthesis, this discovery suggested that targeted depletion of uridine related metabolites may be exploited in the clinic to eliminate LKB1-null cancer cells.
Collapse
Affiliation(s)
- Fakeng Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Rui Jin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiuju Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Henry Huang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Scott C Wilkinson
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.,Graduate Program in Cancer Biology, Emory University, Atlanta, GA, USA
| | - Diansheng Zhong
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, P.R.China
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Haian Fu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adam Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yulong He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pathology and Laboratory Medicine and Department of Human Genetics Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
30
|
Becirovic L, Brown IR. Targeting of Heat Shock Protein HSPA6 (HSP70B') to the Periphery of Nuclear Speckles is Disrupted by a Transcription Inhibitor Following Thermal Stress in Human Neuronal Cells. Neurochem Res 2016; 42:406-414. [PMID: 27743288 DOI: 10.1007/s11064-016-2084-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022]
Abstract
Heat shock proteins (Hsps) are a set of highly conserved proteins involved in cellular repair and protective mechanisms. The intracellular localization of inducible members of the HSPA (HSP70) family can be used as an index to identify stress-sensitive sites in differentiated human neuronal cells. Following thermal stress, the little studied HSPA6 (HSP70B') was targeted to the periphery of nuclear speckles (perispeckles) that are sites of transcription factories. Triptolide, a fast-acting transcription inhibitor, knocked down levels of the large subunit of RNA polymerase II, RPB1, during the time-frame when HSPA6 associated with perispeckles. Administration of triptolide to heat shocked human neuronal SH-SY5Y cells, disrupted HSPA6 localization to perispeckles, suggesting the involvement of HSPA6 in transcriptional recovery after stress. The HSPA6 gene is present in the human genome but is not found in the genomes of the mouse and rat. Hence current animal models of neurodegenerative diseases lack a member of the HSPA family that exhibits the feature of stress-induced targeting to perispeckles.
Collapse
Affiliation(s)
- Larissa Becirovic
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
31
|
Jin R, Zhou W. TIF-IA: An oncogenic target of pre-ribosomal RNA synthesis. Biochim Biophys Acta Rev Cancer 2016; 1866:189-196. [PMID: 27641688 DOI: 10.1016/j.bbcan.2016.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/30/2022]
Abstract
Cancer cells devote the majority of their energy consumption to ribosome biogenesis, and pre-ribosomal RNA transcription accounts for 30-50% of all transcriptional activity. This aberrantly elevated biological activity is an attractive target for cancer therapeutic intervention if approaches can be developed to circumvent the development of side effects in normal cells. TIF-IA is a transcription factor that connects RNA polymerase I with the UBF/SL-1 complex to initiate the transcription of pre-ribosomal RNA. Its function is conserved in eukaryotes from yeast to mammals, and its activity is promoted by the phosphorylation of various oncogenic kinases in cancer cells. The depletion of TIF-IA induces cell death in lung cancer cells and mouse embryonic fibroblasts but not in several other normal tissue types evaluated in knock-out studies. Furthermore, the nuclear accumulation of TIF-IA under UTP down-regulated conditions requires the activity of LKB1 kinase, and LKB1-inactivated cancer cells are susceptible to cell death under such stress conditions. Therefore, TIF-IA may be a unique target to suppress ribosome biogenesis without significantly impacting the survival of normal tissues.
Collapse
Affiliation(s)
- Rui Jin
- Department of Hematology and Medical Oncology, The Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Wei Zhou
- Department of Hematology and Medical Oncology, The Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA; Department of Pathology and Laboratory Medicine and Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
32
|
Casapullo A, Cassiano C, Capolupo A, Del Gaudio F, Esposito R, Tosco A, Riccio R, Monti MC. β-Boswellic acid, a bioactive substance used in food supplements, inhibits protein synthesis by targeting the ribosomal machinery. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:821-827. [PMID: 27460774 DOI: 10.1002/jms.3819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
The Boswellia gum resin extracts have been used in traditional medicines because of their remarkable anti-inflammatory properties. Nowadays, these extracts are on the market as food supplements. β-Boswellic acid (βBA) is one of the main pentacyclic triterpene components, among the family of BAs, of the Boswellia gum resins. BAs have been broadly studied and are well known for their wide anti-inflammatory and potential anticancer properties. In this paper, a mass spectrometry-based chemoproteomic approach has been applied to characterize the whole βBA interacting profile. Among the large numbers of proteins fished out, proteasome, 14-3-3 and some ribosomal proteins were considered the most interesting targets strictly connected to the modulation of the cancer progression. In particular, because of their recent assessment as innovative chemotherapeutic targets, the ribosomal proteins were considered the most attractive βBA partners, and the biological role of their interaction with the natural compound has been evaluated. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- A Casapullo
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - C Cassiano
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - A Capolupo
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
- PhD Program in Drug Discovery and Development, Università degli studi di Salerno, Via Giovanni Paolo II 132, Fisciano, SA, I-84084, Italy
| | - F Del Gaudio
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
- PhD Program in Drug Discovery and Development, Università degli studi di Salerno, Via Giovanni Paolo II 132, Fisciano, SA, I-84084, Italy
- Farmaceutici Damor S.p.A, Via E. Scaglione 27, 80145, Naples, Italy
| | - R Esposito
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - A Tosco
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - R Riccio
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| | - M C Monti
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084, Italy
| |
Collapse
|
33
|
Li Y, Hu Y, Che L, Jia J, Chen M. Nucleolar localization of Small G protein RhoA is associated with active RNA synthesis in human carcinoma HEp-2 cells. Oncol Lett 2016; 11:3605-3610. [PMID: 27313679 PMCID: PMC4888017 DOI: 10.3892/ol.2016.4450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 03/01/2016] [Indexed: 01/09/2023] Open
Abstract
Previous studies have demonstrated that the nuclear localization of ras homolog family member A (RhoA), with prominent concentration in the nucleolus, is a common feature in human cancer tissues and cancer cell lines. Although a previous study has demonstrated that the nuclear translocation of RhoA occurs via active transport, a process that occurs through importin α in a nuclear factor-κB-dependent manner, the mechanism, biological function and pathological meaning of the nucleolar residency of RhoA remain to be elucidated. As the cell nucleolus is the site of ribosome biosynthesis, the aim of the present study was to investigate the association between RNA synthesis and the nucleolar localization of RhoA, as well as the molecular mechanisms underlying the residency of RhoA in the nucleolus of HEp-2 (human larynx epithelial carcinoma) cells. Indirect immunofluorescence microscopy was used to evaluate the subcellular distribution of nuclear RhoA, and immunoblotting analysis was used to determine the total cellular protein level of RhoA. Consistent with the results of previous studies, untreated HEp-2 cells exhibited bright nucleolar staining, indicating an increased concentration of RhoA in the nucleoli. Treatment with actinomycin D for the inhibition of RNA synthesis caused a redistribution of RhoA from the nucleoli to the nucleoplasm with a speckled staining pattern. Immunoblotting revealed that neither the total cellular amount of RhoA nor the integrity of RhoA was affected by treatment with actinomycin D. In cells that were treated at a decreased concentration (0.05 mg/l) of actinomycin D, the redistribution of RhoA was reversible following the removal of the drug from the culture medium. However, this reversal was not observed at an increased drug concentration (1 mg/l). Overall, to the best of our knowledge, the results of the present study provide the first in situ evidence that the inhibition of RNA synthesis induces a redistribution of nucleolar RhoA to the nucleoplasm, and additionally suggest that the nucleolar residency of RhoA in HEp-2 cells may be associated with active RNA synthesis.
Collapse
Affiliation(s)
- Yueying Li
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yong Hu
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Lilong Che
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Junhai Jia
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Min Chen
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
34
|
Huang Y, Song Y, Huang M, Fan YR, Tian DN, Zhao QP, Yang XB, Zhang WN. Synthesis, DNA binding, and cytotoxicity activity of bis-naphalenyl compounds with different diamine linkers. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2539-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
White JD, Haley MM, DeRose VJ. Multifunctional Pt(II) Reagents: Covalent Modifications of Pt Complexes Enable Diverse Structural Variation and In-Cell Detection. Acc Chem Res 2016; 49:56-66. [PMID: 26641880 DOI: 10.1021/acs.accounts.5b00322] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To enhance the functionality of Pt-based reagents, several strategies have been developed that utilize Pt compounds modified with small, reactive handles. This Account encapsulates work done by us and other groups regarding the use of Pt(II) compounds with reactive handles for subsequent elaboration with fluorophores or other functional moieties. Described strategies include the incorporation of substituents for well-known condensation or nucleophilic displacement-type reactions and their use, for example, to tether spectroscopic handles to Pt reagents for in vivo investigation. Other chief uses of displacement-type reactions have included tethering various small molecules exhibiting pharmacological activity directly to Pt, thus adding synergistic effects. Click chemistry-based ligation techniques have also been applied, primarily with azide- and alkyne-appended Pt complexes. Orthogonally reactive click chemistry reactions have proven invaluable when more traditional nucleophilic displacement reactions induce side-reactivity with the Pt center or when systematic functionalization of a larger number of Pt complexes is desired. Additionally, a diverse assortment of Pt-fluorophore conjugates have been tethered via click chemistry conjugation. In addition to providing a convenient synthetic path for diversifying Pt compounds, the use of click-capable Pt complexes has proved a powerful strategy for postbinding covalent modification and detection with fluorescent probes. This strategy bypasses undesirable influences of the fluorophore camouflaged as reactivity due to Pt that may be present when detecting preattached Pt-fluorophore conjugates. Using postbinding strategies, Pt reagent distributions in HeLa and lung carcinoma (NCI-H460) cell cultures were observed with two different azide-modified Pt compounds, a monofunctional Pt(II)-acridine type and a difunctional Pt(II)-neutral complex. In addition, cellular distribution was observed with an alkyne-appended difunctional Pt(II)-neutral complex analogous in structure to the aforementioned difunctional azide-Pt(II) reagent. In all cases, significant accumulation of Pt in the nucleolus of cells was observed, in addition to broader localization in the nucleus and cytoplasm of the cell. Using the same strategy of postbinding click modification with fluorescent probes, Pt adducts were detected and roughly quantified on rRNA and tRNA from Pt-treated Saccharomyces cerevisiae; rRNA adducts were found to be relatively long-lived and not targeted for immediate degradation. Finally, the utility and feasibility of the alkyne-appended Pt(II) compound has been further demonstrated with a turn-on fluorophore, dansyl azide, in fluorescent detection of DNA in vitro. In all, these modifications utilizing reactive handles have allowed for the diversification of new Pt reagents, as well as providing cellular localization information on the modified Pt compounds.
Collapse
Affiliation(s)
- Jonathan D. White
- Department of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael M. Haley
- Department of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Victoria J. DeRose
- Department of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
| |
Collapse
|
36
|
Bukar Maina M, Al-Hilaly YK, Serpell LC. Nuclear Tau and Its Potential Role in Alzheimer's Disease. Biomolecules 2016; 6:9. [PMID: 26751496 PMCID: PMC4808803 DOI: 10.3390/biom6010009] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/16/2015] [Accepted: 12/23/2015] [Indexed: 12/14/2022] Open
Abstract
Tau protein, found in both neuronal and non-neuronal cells, forms aggregates in neurons that constitutes one of the hallmarks of Alzheimer’s disease (AD). For nearly four decades, research efforts have focused more on tau’s role in physiology and pathology in the context of the microtubules, even though, for over three decades, tau has been localised in the nucleus and the nucleolus. Its nuclear and nucleolar localisation had stimulated many questions regarding its role in these compartments. Data from cell culture, mouse brain, and the human brain suggests that nuclear tau could be essential for genome defense against cellular distress. However, its nature of translocation to the nucleus, its nuclear conformation and interaction with the DNA and other nuclear proteins highly suggest it could play multiple roles in the nucleus. To find efficient tau-based therapies, there is a need to understand more about the functional relevance of the varied cellular distribution of tau, identify whether specific tau transcripts or isoforms could predict tau’s localisation and function and how they are altered in diseases like AD. Here, we explore the cellular distribution of tau, its nuclear localisation and function and its possible involvement in neurodegeneration.
Collapse
Affiliation(s)
- Mahmoud Bukar Maina
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, East Sussex, UK.
- Department of Human Anatomy, College of Medical Science, Gombe State University, Gombe 760, Nigeria.
| | - Youssra K Al-Hilaly
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, East Sussex, UK.
- Chemistry Department, College of Sciences, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Louise C Serpell
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, East Sussex, UK.
| |
Collapse
|
37
|
Liu F, Suryadi J, Bierbach U. Cellular Recognition and Repair of Monofunctional-Intercalative Platinum--DNA Adducts. Chem Res Toxicol 2015; 28:2170-8. [PMID: 26457537 DOI: 10.1021/acs.chemrestox.5b00327] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cellular recognition and processing of monofunctional-intercalative DNA adducts formed by [PtCl(en)(L)](NO3)2 (P1-A1; en = ethane-1,2-diamine; L = N-[2-(acridin-9-ylamino)ethyl]-N-methylpropionamidine, acridinium cation), a cytotoxic hybrid agent with potent anticancer activity, was studied. Excision of these adducts and subsequent DNA repair synthesis were monitored in plasmids modified with platinum using incubations with mammalian cell-free extract. On the basis of the levels of [α-(32)P]-dCTP incorporation, P1-A1-DNA adducts were rapidly repaired with a rate approximately 8 times faster (t1/2 ≈ 18 min at 30 °C) than the adducts (cross-links) formed by the drug cisplatin. Cellular responses to P1-A1 and cisplatin were also studied in NCI-H460 lung cancer cells using immunocytochemistry in conjunction with confocal fluorescence microscopy. At the same dose, P1-A1, but not cisplatin, elicited a distinct requirement for DNA double-strand break repair and stalled replication fork repair, which caused nuclear fluorescent staining related to high levels of MUS81, a specialized repair endonuclease, and phosphorylated histone protein γ-H2AX. The results confirm previous observations in yeast-based chemical genomics assays. γ-H2AX fluorescence is observed as a large number of discrete foci signaling DNA double-strand breaks, pan-nuclear preapoptotic staining, and unique circularly shaped staining around the nucleoli and nuclear rim. DNA cleavage assays indicate that P1-A1 does not act as a typical topoisomerase poison, suggesting the high level of DNA double-strand breaks in cells is more likely a result of topoisomerase-independent replication fork collapse. Overall, the cellular response to platinum-acridines shares striking similarities with that reported for DNA adduct-forming derivatives of the drug doxorubicin. The results of this study are discussed in light of the cellular mechanism of action of platinum-acridines and their ability to overcome resistance to cisplatin.
Collapse
Affiliation(s)
- Fang Liu
- Department of Chemistry, Wake Forest University , Winston-Salem, North Carolina 27109, United States
| | - Jimmy Suryadi
- Department of Chemistry, Wake Forest University , Winston-Salem, North Carolina 27109, United States
| | - Ulrich Bierbach
- Department of Chemistry, Wake Forest University , Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
38
|
Qiao M, Luo D, Kuang Y, Feng H, Luo G, Liang P. Cell cycle specific distribution of killin: evidence for negative regulation of both DNA and RNA synthesis. Cell Cycle 2015; 14:1823-9. [PMID: 25945611 PMCID: PMC4614363 DOI: 10.1080/15384101.2015.1038686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/28/2015] [Accepted: 04/02/2015] [Indexed: 12/13/2022] Open
Abstract
p53 tumor-suppressor gene is a master transcription factor which controls cell cycle progression and apoptosis. killin was discovered as one of the p53 target genes implicated in S-phase control coupled to cell death. Due to its extreme proximity to pten tumor-suppressor gene on human chromosome 10, changes in epigenetic modification of killin have also been linked to Cowden syndrome as well as other human cancers. Previous studies revealed that Killin is a high-affinity DNA-binding protein with preference to single-stranded DNA, and it inhibits DNA synthesis in vitro and in vivo. Here, co-localization studies of RFP-Killin with either GFP-PCNA or endogenous single-stranded DNA binding protein RPA during S-phase show that Killin always adopts a mutually exclusive punctuated nuclear expression pattern with the 2 accessory proteins in DNA replication. In contrast, when cells are not in S-phase, RFP-Killin largely congregates in the nucleolus where rRNA transcription normally occurs. Both of these cell cycle specific localization patterns of RFP-Killin are stable under high salt condition, consistent with Killin being tightly associated with nucleic acids within cell nuclei. Together, these cell biological results provide a molecular basis for Killin in competitively inhibiting the formation of DNA replication forks during S-phase, as well as potentially negatively regulate RNA synthesis during other cell cycle phases.
Collapse
Affiliation(s)
- Man Qiao
- Center for Growth, Metabolism and Aging; Department of Biochemistry & Molecular Biology; School of Life Sciences; Sichuan University; Chengdu, China
| | - Dan Luo
- Center for Growth, Metabolism and Aging; Department of Biochemistry & Molecular Biology; School of Life Sciences; Sichuan University; Chengdu, China
| | - Yi Kuang
- Center for Growth, Metabolism and Aging; Department of Biochemistry & Molecular Biology; School of Life Sciences; Sichuan University; Chengdu, China
| | - Haiyan Feng
- Center for Growth, Metabolism and Aging; Department of Biochemistry & Molecular Biology; School of Life Sciences; Sichuan University; Chengdu, China
| | - Guangping Luo
- State Key Laboratory for Gene and Cell Therapy; Sichuan University; Chengdu, China
| | - Peng Liang
- Center for Growth, Metabolism and Aging; Department of Biochemistry & Molecular Biology; School of Life Sciences; Sichuan University; Chengdu, China
- Clover Biopharmaceuticals; Chengdu, China
- State Key Laboratory for Gene and Cell Therapy; Sichuan University; Chengdu, China
| |
Collapse
|
39
|
Huang H, Zhang P, Chen Y, Ji L, Chao H. Labile ruthenium(ii) complexes with extended phenyl-substituted terpyridyl ligands: synthesis, aquation and anticancer evaluation. Dalton Trans 2015; 44:15602-10. [DOI: 10.1039/c5dt02446c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The present study demonstrated that the anticancer activities of labile Ru(ii) complexes can be efficiently tuned by chelating with different phenyl-substituted terpyridyl ligands.
Collapse
Affiliation(s)
- Huaiyi Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Pingyu Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| |
Collapse
|
40
|
Peterson EJ, Menon VR, Gatti L, Kipping R, Dewasinghe D, Perego P, Povirk LF, Farrell NP. Nucleolar targeting by platinum: p53-independent apoptosis follows rRNA inhibition, cell-cycle arrest, and DNA compaction. Mol Pharm 2014; 12:287-97. [PMID: 25407898 PMCID: PMC4334294 DOI: 10.1021/mp5006867] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
TriplatinNC
is a highly positively charged, substitution-inert
derivative of the phase II clinical anticancer drug, BBR3464. Such
substitution-inert complexes form a distinct subset of polynuclear
platinum complexes (PPCs) interacting with DNA and other biomolecules
through noncovalent interactions. Rapid cellular entry is facilitated
via interaction with cell surface glycosoaminoglycans and is a mechanism
unique to PPCs. Nanoscale secondary ion mass spectrometry (nanoSIMS)
showed rapid distribution within cytoplasmic and nucleolar compartments,
but not the nucleus. In this article, the downstream effects of nucleolar
localization are described. In human colon carcinoma cells, HCT116,
the production rate of 47S rRNA precursor transcripts was dramatically
reduced as an early event after drug treatment. Transcriptional inhibition
of rRNA was followed by a robust G1 arrest, and activation
of apoptotic proteins caspase-8, -9, and -3 and PARP-1 in a p53-independent
manner. Using cell synchronization and flow cytometry, it was determined
that cells treated while in G1 arrest immediately, but
cells treated in S or G2 successfully complete mitosis.
Twenty-four hours after treatment, the majority of cells finally arrest
in G1, but nearly one-third contained highly compacted
DNA; a distinct biological feature that cannot be associated with
mitosis, senescence, or apoptosis. This unique effect mirrored the
efficient condensation of tRNA and DNA in cell-free systems. The combination
of DNA compaction and apoptosis by TriplatinNC treatment conferred
striking activity in platinum-resistant and/or p53 mutant or null
cell lines. Taken together, our results support that the biological
activity of TriplatinNC reflects reduced metabolic deactivation (substitution-inert
compound not reactive to sulfur nucleophiles), high cellular accumulation,
and novel consequences of high-affinity noncovalent DNA binding, producing
a new profile and a further shift in the structure–activity
paradigms for antitumor complexes.
Collapse
Affiliation(s)
- Erica J Peterson
- Department of Chemistry and ‡Massey Cancer Center, Virginia Commonwealth University , Richmond, Virginia 23284, United States
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Khalouei S, Chow AM, Brown IR. Localization of heat shock protein HSPA6 (HSP70B') to sites of transcription in cultured differentiated human neuronal cells following thermal stress. J Neurochem 2014; 131:743-54. [DOI: 10.1111/jnc.12970] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/05/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Sam Khalouei
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
| | - Ari M. Chow
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
| | - Ian R. Brown
- Centre for the Neurobiology of Stress; Department of Biological Sciences; University of Toronto Scarborough; Toronto Ontario Canada
| |
Collapse
|
42
|
Pickard AJ, Liu F, Bartenstein TF, Haines LG, Levine KE, Kucera GL, Bierbach U. Redesigning the DNA-targeted chromophore in platinum-acridine anticancer agents: a structure-activity relationship study. Chemistry 2014; 20:16174-87. [PMID: 25302716 PMCID: PMC4244275 DOI: 10.1002/chem.201404845] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Indexed: 01/07/2023]
Abstract
Platinum-acridine hybrid agents show low-nanomolar potency in chemoresistant non-small cell lung cancer (NSCLC), but high systemic toxicity in vivo. To reduce the promiscuous genotoxicity of these agents and improve their pharmacological properties, a modular build-click-screen approach was used to evaluate a small library of twenty hybrid agents containing truncated and extended chromophores of varying basicities. Selected derivatives were resynthesized and tested in five NSCLC cell lines representing large cell, squamous cell, and adenocarcinomas. 7-Aminobenz[c]acridine was identified as a promising scaffold in a hybrid agent (P1-B1) that maintained submicromolar activity in several of the DNA-repair proficient and p53-mutant cancer models, while showing improved tolerability in mice by 32-fold compared to the parent platinum-acridine (P1-A1). The distribution and DNA/RNA adduct levels produced by the acridine- and benz[c]acridine-based analogues in NCI-H460 cells (confocal microscopy, ICP-MS), and their ability to bind G-quadruplex forming DNA sequences (CD spectroscopy, HR-ESMS) were studied. P1-B1 emerges as a less genotoxic, more tolerable, and potentially more target-selective hybrid agent than P1-A1.
Collapse
Affiliation(s)
- Amanda J. Pickard
- Department of Chemistry, Wake Forest University Winston-Salem, NC 27109 (USA)
| | - Fang Liu
- Department of Chemistry, Wake Forest University Winston-Salem, NC 27109 (USA)
| | | | | | | | - Gregory L. Kucera
- Department of Internal Medicine, Section on Hematology and Oncology Wake Forest University Health Sciences Winston-Salem, NC 27157 (USA)
| | - Ulrich Bierbach
- Department of Chemistry, Wake Forest University Winston-Salem, NC 27109 (USA)
| |
Collapse
|
43
|
Huang H, Zhang P, Yu B, Chen Y, Wang J, Ji L, Chao H. Targeting Nucleus DNA with a Cyclometalated Dipyridophenazineruthenium(II) Complex. J Med Chem 2014; 57:8971-83. [DOI: 10.1021/jm501095r] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Huaiyi Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Pingyu Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Bole Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jinquan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
44
|
Leonidova A, Pierroz V, Rubbiani R, Lan Y, Schmitz AG, Kaech A, Sigel RKO, Ferrari S, Gasser G. Photo-induced uncaging of a specific Re(i) organometallic complex in living cells. Chem Sci 2014. [DOI: 10.1039/c3sc53550a] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|